Prototyping a Traffic Light Recognition Device with Expert Knowledge
Abstract
:1. Introduction
2. Related Works
3. Traffic Light Recognition Device Prototype
3.1. Adaptive Background Suppression Filter
3.2. Prototype Results
4. Expert Knowledge
4.1. PCANet/SVM Classifier
4.2. Training with Expert Knowledge
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AdaBSF | Adaptive Background Suppression Filter |
AI | Artificial Intelligence |
BD | Blob Detection |
CNN | Convolutional Neural Network |
EK | Expert Knowledge |
HD | High Definition |
HMM | Hidden Markov Models |
HOG | Histogram of Oriented Gradient |
HSV | Hue, Saturation, Value |
ML | Machine Learning |
NN | Neural Network |
PCANet | Principal Component Analysis Network |
ROI | Region Of Interest |
SM | Saliency Map |
SVM | Support Vector Machine |
TLR | Traffic Light Recognition |
VIVA | Visions for Intelligent Vehicles and Applications |
WPI | Worcester Polytechnic Institute |
References
- Gonçalves, J. Desrespeito à sinalização causa 7,5 mil acidentes no trânsito em 2014. Available online: http://radioagencianacional.ebc.com.br/educacao/audio/2015-07/desobediencia-sinalizacao-causa-75-mil-acidentes-no-transito-em-2014 (accessed on 9 July 2015).
- Shi, Z.; Zou, Z.; Zhang, C. Real-Time Traffic Light Detection with Adaptative Background Suppression Filter. IEEE Trans. Intell. Transp. Syst. 2016, 17, 690–700. [Google Scholar] [CrossRef]
- Weber, M.; Wolf, P.; Zöllner, J.M. DeepTLR: A single deep convolutional network for detection and classification of traffic lights. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; pp. 342–348. [Google Scholar] [CrossRef]
- John, V.; Zheming, L.; Mita, S. Robust traffic light and arrow detection using optimal camera parameters and GPS-based priors. In Proceedings of the 2016 Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Tokyo, Japan, 20–22 July 2016; pp. 204–208. [Google Scholar] [CrossRef]
- John, V.; Yoneda, K.; Liu, Z.; Mita, S. Saliency Map Generation by the Convolutional Neural Network for Real-Time Traffic Light Detection Using Template Matching. IEEE Trans. Comput. Imaging 2015, 1, 159–173. [Google Scholar] [CrossRef]
- John, V.; Yoneda, K.; Qi, B.; Liu, Z.; Mita, S. Traffic light recognition in varying illumination using deep learning and saliency map. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 2286–2291. [Google Scholar] [CrossRef]
- Wang, Z.; Bi, Z.; Wang, C.; Lin, L.; Wang, H. Traffic lights recognition based on PCANet. In Proceedings of the 2015 Chinese Automation Congress (CAC), Wuhan, China, 27–29 November 2015; pp. 559–564. [Google Scholar] [CrossRef]
- Philipsen, M.P.; Jensen, M.B.; Møgelmose, A.; Moeslund, T.B.; Trivedi, M.M. Traffic Light Detection: A Learning Algorithm and Evaluations on Challenging Dataset. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, Spain, 15–18 September 2015; pp. 2341–2345. [Google Scholar] [CrossRef]
- Kim, S.; Jang, E.; Hyun, S.; Han, D.S. Real time object detection based on saliency map. In Proceedings of the 2016 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 7–11 January 2016; pp. 534–535. [Google Scholar] [CrossRef]
- Almeida, T.; Vasconcelos, N.; Benicasa, A.; Macedo, H. Fuzzy model applied to the recognition of traffic lights signals. In Proceedings of the 2016 8th Euro American Conference on Telematics and Information Systems (EATIS), Cartagena, Colombia, 28–29 April 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Almeida, T.; Vasconcelos, N.; Benicasa, A. Framework para Detecção de Semáforos Baseado em Atenção Visual. In Proceedings of the Conference on Graphics, Patterns and Images (SIBGRAPI), Salvador, Brazil, 26–29 August 2015. [Google Scholar]
- Ji, Y.; Yang, M.; Lu, Z.; Wang, C. Integrating visual selective attention model with HOG features for traffic light detection and recognition. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; pp. 280–285. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Huang, X. A system-on-chip FPGA design for real-time traffic signal recognition system. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 1778–1781. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, X. Accurate and Reliable Detection of Traffic Lights Using Multiclass Learning and Multiobject Tracking. IEEE Intell. Transp. Syst. Mag. 2016, 8, 28–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, J.; Zhang, G.; Zhang, Y.; Zheng, N. A multi-feature fusion based traffic light recognition algorithm for intelligent vehicles. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 4924–4929. [Google Scholar] [CrossRef]
- Widyantoro, D.H.; Saputra, K.I. Traffic lights detection and recognition based on color segmentation and circle hough transform. In Proceedings of the 2015 International Conference on Data and Software Engineering (ICoDSE), Yogyakarta, Indonesia, 25–26 November 2015; pp. 237–240. [Google Scholar] [CrossRef]
- Chiu, Y.T.; Chen, D.Y.; Hsieh, J.W. Real-time traffic light detection on resource-limited mobile platform. In Proceedings of the 2014 IEEE International Conference on Consumer Electronics, Taipei, Taiwan, 26–28 May 2014; pp. 211–212. [Google Scholar] [CrossRef]
- Omachi, M.; Omachi, S. Detection of traffic light using structural information. In Proceedings of the IEEE 10th International Conference on Signal Processing Proceedings, Beijing, China, 24–28 October 2010; pp. 809–812. [Google Scholar] [CrossRef]
- Sooksatra, S.; Kondo, T. Red traffic light detection using fast radial symmetry transform. In Proceedings of the 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Ratchasima, Thailand, 14–17 May 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Trehard, G.; Pollard, E.; Bradai, B.; Nashashibi, F. Tracking both pose and status of a traffic light via an Interacting Multiple Model filter. In Proceedings of the 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–7. [Google Scholar]
- Oniga, F.; Prodan, S.; Nedevschi, S. Traffic light detection on mobile devices. In Proceedings of the 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 3–5 September 2015; pp. 287–292. [Google Scholar] [CrossRef]
- Jie, Y.; Xiaomin, C.; Pengfei, G.; Zhonglong, X. A new traffic light detection and recognition algorithm for electronic travel aid. In Proceedings of the 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), Beijing, China, 9–11 June 2013; pp. 644–648. [Google Scholar] [CrossRef]
- Borrmann, J.M.; Haxel, F.; Nienhüser, D.; Viehl, A.; Zöllner, J.M.; Bringmann, O.; Rosenstiel, W. STELLaR—A case-study on SysTEmaticaLLy embedding a Traffic Light Recognition. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 1258–1265. [Google Scholar] [CrossRef]
- Zong, W.; Chen, Q. Traffic Light Detection Based on Multi-feature Segmentation and Online Selecting Scheme. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; pp. 204–209. [Google Scholar] [CrossRef]
- Sathiya, S.; Balasubramanian, M.; Priya, D.V. Real time recognition of traffic light and their signal count-down timings. In Proceedings of the International Conference on Information Communication and Embedded Systems (ICICES2014), Chennai, India, 27–28 February 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Gong, J.; Jiang, Y.; Xiong, G.; Guan, C.; Tao, G.; Chen, H. The recognition and tracking of traffic lights based on color segmentation and CAMSHIFT for intelligent vehicles. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 21–24 June 2010; pp. 431–435. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, Q.; Huang, X. Automatic detection of traffic lights using support vector machine. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; pp. 37–40. [Google Scholar] [CrossRef]
- Shi, X.; Zhao, N.; Xia, Y. Detection and Classification of Traffic Lights for Automated Setup of Road Surveillance Systems. Multimedia Tools Appl. 2016, 75, 12547–12562. [Google Scholar] [CrossRef]
- Michael, M.; Schlipsing, M. Extending traffic light recognition: Efficient classification of phase and pictogram. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Salarian, M.; Manavella, A.; Ansari, R. A vision based system for traffic lights recognition. In Proceedings of the 2015 SAI Intelligent Systems Conference (IntelliSys), London, UK, 10–11 November 2015; pp. 747–753. [Google Scholar] [CrossRef]
- Jang, C.; Kim, C.; Kim, D.; Lee, M.; Sunwoo, M. Multiple exposure images based traffic light recognition. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 1313–1318. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, Z.; Zou, Z. Robust and real-time traffic light recognition based on hierarchical vision architecture. In Proceedings of the 2014 7th International Congress on Image and Signal Processing, Dalian, China, 14–16 October 2014; pp. 114–119. [Google Scholar] [CrossRef]
- Chung, Y.C.; Wang, J.M.; Chen, S.W. A vision-based traffic light detection system at intersections. J. Natl. Taiwan Normal Univ. Math. Sci. Technol. 2002, 47, 67–86. [Google Scholar]
- Almagambetov, A.; Velipasalar, S.; Baitassova, A. Mobile Standards-Based Traffic Light Detection in Assistive Devices for Individuals with Color-Vision Deficiency. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1305–1320. [Google Scholar] [CrossRef]
- Balcerek, J.; Konieczka, A.; Marciniak, T.; Dąbrowski, A.; Maćkowiak, K.; Piniarski, K. Automatic detection of traffic lights changes from red to green and car turn signals in order to improve urban traffic. In Proceedings of the 2014 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 22–24 September 2014; pp. 110–115. [Google Scholar]
- Cai, Z.; Li, Y.; Gu, M. Real-time recognition system of traffic light in urban environment. In Proceedings of the 2012 IEEE Symposium on Computational Intelligence for Security and Defence Applications, Ottawa, ON, Canada, 11–13 July 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Omachi, M.; Omachi, S. Traffic light detection with color and edge information. In Proceedings of the 2009 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China, 8–11 August 2009; pp. 284–287. [Google Scholar] [CrossRef]
- Choi, J.; Ahn, B.T.; Kweon, I.S. Crosswalk and traffic light detection via integral framework. In Proceedings of the 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision, Incheon, Korea, 30 January–1 February 2013; pp. 309–312. [Google Scholar] [CrossRef]
- Fan, B.; Lin, W.; Yang, X. An efficient framework for recognizing traffic lights in night traffic images. In Proceedings of the 2012 5th International Congress on Image and Signal Processing, Dindigul, India, 22–24 February 2012; pp. 832–835. [Google Scholar] [CrossRef]
- de Charette, R.; Nashashibi, F. Real time visual traffic lights recognition based on Spot Light Detection and adaptive traffic lights templates. In Proceedings of the 2009 IEEE Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009; pp. 358–363. [Google Scholar] [CrossRef]
- Levinson, J.; Askeland, J.; Dolson, J.; Thrun, S. Traffic light mapping, localization, and state detection for autonomous vehicles. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 5784–5791. [Google Scholar] [CrossRef]
- Mascetti, S.; Ahmetovic, D.; Gerino, A.; Bernareggi, C.; Busso, M.; Rizzi, A. Robust Traffic Lights Detection on Mobile Devices for Pedestrians with Visual Impairment. Comput. Vis. Image Underst. 2016, 148, 123–135. [Google Scholar] [CrossRef]
- Gomez, A.E.; Alencar, F.A.R.; Prado, P.V.; Osório, F.S.; Wolf, D.F. Traffic lights detection and state estimation using Hidden Markov Models. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 750–755. [Google Scholar] [CrossRef]
- de Charette, R.; Nashashibi, F. Traffic light recognition using image processing compared to learning processes. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 333–338. [Google Scholar] [CrossRef]
- Roters, J.; Jiang, X.; Rothaus, K. Recognition of Traffic Lights in Live Video Streams on Mobile Devices. IEEE Trans. Circuits Syst. Video Technol. 2011, 21, 1497–1511. [Google Scholar] [CrossRef]
- Jensen, M.B.; Philipsen, M.P.; Møgelmose, A.; Moeslund, T.B.; Trivedi, M.M. Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1800–1815. [Google Scholar] [CrossRef]
- Sung, T.P.; Tsai, H.M. Real-time traffic light recognition on mobile devices with geometry-based filtering. In Proceedings of the 2013 Seventh International Conference on Distributed Smart Cameras (ICDSC), Palm Springs, CA, USA, 29 October–1 November 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Hair, J.; Anderson, R.; Tatham, R.; Black, W. Multivariate Data Analysis, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Chan, T.H.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A simple deep learning baseline for image classification? IEEE Trans. Image Process. 2015, 24, 5017–5032. [Google Scholar] [CrossRef] [PubMed]
Author | Technique (s) | Recall (%) | Precision (%) | Accuracy (%) |
---|---|---|---|---|
[13] | Blob Detection/SVM/Histograms | 93.00 | 98.70 | - |
[9] | Saliency Map | 97.66 | 93.20 | - |
[14] | Blob Detection/PCAnetwork/SVM | 93.10 | 93.20 | - |
[2] | Adaptive Filters/SVM | 94.69 | 92.20 | - |
[4] | CNN | 99.83 | 99.70 | - |
[10] | Saliency Map/Fuzzy | - | - | 80.00 |
[5] | CNN/Saliency Map/Template Matching | 99.70 | 98.20 | - |
[29] | Color or Shape Segmentation/HOG/SVM | - | - | 89.90 |
[30] | Color or Shape Segmentation/SVM | 86.20 | 95.50 | - |
[21] | Gaussian Distribution | - | - | 80.00–85.00 |
[16] | Geometric Transforms | - | - | 56.00–93.00 |
[34] | Color or Shape Segmentation/Histograms | - | - | 97.50 |
[7] | PCAnet/SVM | - | - | 97.50 |
[6] | CNN/Saliency Map | - | - | 96.25 |
[24] | Color or Shape Segmentation | - | - | 92.00–96.00 |
[19] | Geometric Transforms | 87.32 | 84.93 | - |
[17] | Geometric Transforms | - | - | 70.00 |
[25] | Color or Shape Segmentation/Threshold | - | - | 88.00–96.00 |
[35] | Color or Shape Segmentation/Histograms | - | - | 50.00–83.33 |
[32] | Color or Shape Segmentation/SVM | 98.96 | 99.18 | - |
[20] | Template Matching | 98.00 | 97.00 | - |
[43] | Hidden Markov Models | - | - | 90.55 |
[38] | Template Matching | - | - | 90.50 |
[22] | Top Hat | - | - | 97.00 |
[39] | Template Matching | - | - | 69.23 |
[36] | Histograms | - | - | 91.00 |
[41] | Probability Histograms | - | - | 94.00 |
[18] | Geometric Transforms/Histograms | - | - | 89.00 |
[40] | Template Matching | 98.41 | 95.38 | - |
[44] | Template Matching | 44.00–63.00 | 75.00–94.00 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, T.; Macedo, H.; Matos, L.; Vasconcelos, N. Prototyping a Traffic Light Recognition Device with Expert Knowledge. Information 2018, 9, 278. https://doi.org/10.3390/info9110278
Almeida T, Macedo H, Matos L, Vasconcelos N. Prototyping a Traffic Light Recognition Device with Expert Knowledge. Information. 2018; 9(11):278. https://doi.org/10.3390/info9110278
Chicago/Turabian StyleAlmeida, Thiago, Hendrik Macedo, Leonardo Matos, and Nathanael Vasconcelos. 2018. "Prototyping a Traffic Light Recognition Device with Expert Knowledge" Information 9, no. 11: 278. https://doi.org/10.3390/info9110278
APA StyleAlmeida, T., Macedo, H., Matos, L., & Vasconcelos, N. (2018). Prototyping a Traffic Light Recognition Device with Expert Knowledge. Information, 9(11), 278. https://doi.org/10.3390/info9110278