The Singularity May Be Near
Abstract
:1. Introduction
2. Contrasting Yampolskiy’s and Walsh’s Arguments
2.1. Fast-Thinking Dog
2.2. Anthropocentric
2.3. Meta-Intelligence
2.4. Diminishing Returns
2.5. Limits of Intelligence
2.6. Computational Complexity
3. Response to Walsh’s Arguments
3.1. Fast-Thinking Dog
3.2. Anthropocentric
3.3. Meta-Intelligence
3.4. Diminishing Returns
3.5. Limits of Intelligence
3.6. Computational Complexity
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Walsh, T. The Singularity May Never be Near. In Proceedings of the 2nd International Workshop on AI, Ethics and Society (AIEthicsSociety2016) & 30th AAAI Conference on Artificial Intelligence (AAAI-2016), Phoenix, AZ, USA, 12–13 February 2016. [Google Scholar]
- Yampolskiy, R.V. From Seed AI to Technological Singularity via Recursively Self-Improving Software. arXiv, 2015; arXiv:1502.06512. [Google Scholar]
- Yampolskiy, R.V. Analysis of Types of Self-Improving Software. In Proceedings of the Artificial General Intelligence: 8th International Conference (AGI 2015), Berlin, Germany, 22–25 July 2015; Volume 9205, p. 384. [Google Scholar]
- Yampolskiy, R.V. On the Limits of Recursively Self-Improving AGI. In Proceedings of the Artificial General Intelligence: 8th International Conference (AGI 2015), Berlin, Germany, 22–25 July 2015; Volume 9205, p. 394. [Google Scholar]
- Loosemore, R.; Goertzel, B. Why an Intelligence Explosion Is Probable, Singularity Hypotheses; Springer: Berlin/Heidelberg, Germany, 2012; pp. 83–98. [Google Scholar]
- Chalmers, D. The Singularity: A Philosophical Analysis. J. Conscious. Stud. 2010, 17, 7–65. [Google Scholar]
- Shahaf, D.; Amir, E. Towards a theory of AI completeness. In Proceedings of the 8th International Symposium on Logical Formalizations of Commonsense Reasoning (Commonsense 2007), Stanford, CA, USA, 26–28 March 2007. [Google Scholar]
- Yampolskiy, R. Turing Test as a Defining Feature of AI-Completeness. In Artificial Intelligence, Evolutionary Computing and Metaheuristics; Yang, X.-S., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–17. [Google Scholar]
- Yampolskiy, R.V. AI-Complete, AI-Hard, or AI-Easy–Classification of Problems in AI. In Proceedings of the 23rd Midwest Artificial Intelligence and Cognitive Science Conference, Cincinnati, OH, USA, 21–22 April 2012. [Google Scholar]
- Bremermann, H.J. Quantum noise and information. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 27 December 1966–7 January 1967; pp. 15–22. [Google Scholar]
- Bekenstein, J.D. Information in the holographic universe. Sci. Am. 2003, 289, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S. Ultimate Physical Limits to Computation. Nature 2000, 406, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, A. The physics of information processing superobjects: Daily life among the Jupiter brains. J. Evol. Technol. 1999, 5, 1–34. [Google Scholar]
- Aaronson, S. Guest column: NP-complete problems and physical reality. ACM Sigact News 2005, 36, 30–52. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Krauss, L.M.; Starkman, G.D. Universal limits on computation. arXiv, 2004; arXiv:astro-ph/0404510. [Google Scholar]
- Schaeffer, J.; Burch, N.; Bjornsson, Y.; Kishimoto, A.; Muller, M.; Lake, R.; Lu, P.; Sutphen, S. Checkers is Solved. Science 2007, 317, 1518–1522. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, M. Is There a Model for RSI? SL4. 20 June 2008. Available online: http://www.sl4.org/archive/0806/19028.html (accessed on 26 July 2018).
- Turing, A. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 1936, 2, 230–265. [Google Scholar]
- Yampolskiy, R.V. Construction of an NP Problem with an Exponential Lower Bound. arXiv 2011, arXiv:1111.0305. [Google Scholar]
- Feuillet, L.; Dufour, H.; Pelletier, J. Brain of a white-collar worke. Lancet 2007, 370, 262. [Google Scholar] [CrossRef]
- Johansson, B.B. Brain plasticity and stroke rehabilitation The Willis lecture. Stroke 2000, 31, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Bostrom, N. Superintelligence: Paths, Dangers, Strategies; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Kurzweil, R.; Schneider, M.L.; Schneider, M.L. The Age of intelligent Machines; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Smith, P. An Introduction to Gödel's Theorems; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bringsjord, S.; Arkoudas, K. On the Provability, Veracity, and Al-Relevance of the Church—Turing Thesis. In Church’s Thesis after 70 Years; Ontos Gmbh: Leipzig, Germany, 2006; Volume 1, p. 66. [Google Scholar]
- Sotala, K. Advantages of artificial intelligences, uploads, and digital minds. Int. J. Mach. Conscious. 2012, 4, 275–291. [Google Scholar] [CrossRef]
- Muehlhauser, L.; Salamon, A. Intelligence Explosion: Evidence and Import, Singularity Hypotheses; Springer: Berlin/Heidelberg, Germany, 2012; pp. 15–42. [Google Scholar]
- Yudkowsky, E. Levels of Organization in General Intelligence, Artificial General Intelligence; Springer: Berlin/Heidelberg, Germany, 2007; pp. 389–501. [Google Scholar]
- Eden, A.H.; Moor, J.H.; Soraker, J.H.; Steinhart, E. Singularity Hypotheses: A Scientific and Philosophical Assessment; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yampolskiy, R.V. The Singularity May Be Near. Information 2018, 9, 190. https://doi.org/10.3390/info9080190
Yampolskiy RV. The Singularity May Be Near. Information. 2018; 9(8):190. https://doi.org/10.3390/info9080190
Chicago/Turabian StyleYampolskiy, Roman V. 2018. "The Singularity May Be Near" Information 9, no. 8: 190. https://doi.org/10.3390/info9080190
APA StyleYampolskiy, R. V. (2018). The Singularity May Be Near. Information, 9(8), 190. https://doi.org/10.3390/info9080190