Solving the Optimal Selection of Wellness Tourist Attractions and Destinations in the GMS Using the AMIS Algorithm
Abstract
:1. Introduction
2. Literature Review and Related Work
3. The Mathematical Model Formulation for M-ADes-SFWFPT
s | hotel s when s = 1…S |
i | attractions/destinations i = 1…I |
j | tourist group j = 1….J |
n | type of tourist n = 1…N |
k | type of attraction/destination k = 1…K |
t | planning period t = 1…T |
the cost incurred when attraction i is included in any package (Baht/time/person) | |
capacity of attractions/destinations i for each time period (person) | |
the tourist type n joins package j period t (person) | |
a popularity score of attraction i (score) | |
the preference score of tourist type n for attraction i (score) | |
the hotel’s per-person, per-night rate (Baht/night) | |
full preference score set to 10 | |
equals 1 if attraction i is classified as type k of wellness destinations and 0 otherwise | |
LN | large number which is defined as 500,000 |
number of tourists of type n participating in group tour j | |
total preference and popularity score of attraction i to group tour j | |
equals 1 and 0 the other way around | |
percentage of the tourist group j’s satisfaction with attraction i | |
attractiveness of travel packages j to type k of attraction | |
equal to 1 when is more than 20% and 0 otherwise |
4. Artificial Multiple Intelligence System (AMIS)
- Step 1:
- Count all the tourists composed in each tourist group, and then sort the data into List A in ascending order. For instance, List A = 1, 4, 2, 5, 3.
- Step 2:
- Sort the value of entities in the hotel, coded in an increasing order. This list is called List B, and WP 1 has List B = {2,1,3}. Then, we assign the hotel to the tourist group according to List A and List B. The assignment of the hotel must be under the hotel’s capacity.
- Step 3:
- After assigning the attractions/destinations to the group tours (package) in the first order of list A (in this case, group tour 1) and waiting for group 1 to complete all of its requirements, assign group 4, 2, 5 and 3 one at a time. The assignment of the attractions to the values of and is performed in the following way:
- Step 3.1:
- Choose the tourist destinations first whose category has a value of equal to 1. The attraction with the lowest value of WP is chosen first if there is more than one attraction to choose from using this criterion.
- Step 3.2:
- Add the attraction with the highest value of to the package once all types of k with values of equal to 1 have been chosen. If both candidates have equal values for , the candidate with the higher WP value is chosen first.
- Step 3.3:
- Until all tourist stay times are satisfied, repeat process 3.1. Please ensure that the attractions’ capacity limits are always followed.
- Step 3.4:
- If i is assigned to j more than once to the attraction, transfer all i to be serviced in continuous periods. For example, if the outcome of package 1’s assignment in periods 1 to 4 is “A,B,A,C,” the new assignment is “A,A,B,C.”
- Step 4:
- Repeat step 2 until all packages and time frames are appropriate.
4.1. Updating the Heuristics Info
4.2. Continue Carrying out the Work Package until All of the Termination Conditions Are Satisfied
Algorithm 1: Artificial Multiple Intelligence System (AMIS) |
input: Population Size (NP), Problem Size (D), Mutation Rate (F), Recombination Rate (R), Number of Intelligence Boxes (NIB) output: Best_Vector_Solution begin Population = Initialize set of WPs IBPop = Initialize InformationIB(NIB) encode Population to WP while the stopping criterion is not met do for i=1: NP Vrand1, Vrand2, Vrand3 = Select_Random_Vector (WP) for j = 1:D // Loop for the mutation operator Vy [j]= Vrand1 [j]+ F (Vrand2 [j]+ Vrand3 [j]) end for loop//end mutation operator for j = 1:D //Loop for recombination operation if (randj [0,1) <R) then u [j]= Vi [j] else u [j]= Vy [j] end for loop//end recombination operation // selected Intelligence box by RouletteWheelSelection selected_IB = RouletteWheelSelection(IBPop) if (selected_IB = 1) then new_u = AIM (u) else if (selected_IB = 2) new_u = PIM (u) else if (selected_IB = 3) new_u = DIM (u) else if (selected_IB = 4) new_u = BIM (u) else if (selected_IB = 5) new_u = RT (u) else if (selected_IB = 6) new_u = IT (u) else if (selected_IB = 7) new_u = RT-AIM (u) else if (selected_IB = 8) new_u = SF (u) else if (selected_IB = 9) new_u = RESTART (u) if (CostFunction(new_u) ≤ CostFunction(Vi)) then Vi = new_u // Loop for updating the intelligence box’s heuristics data for j = 1: NIB interpreting WP to discover the real problems solution Gather Pareto Front Data and Calculate TOPSIS end For Loop//end update heuristics information end for Loop end return Best_Vector_Solution end |
4.3. The Compared Methods
5. Framework and Results of the Computation
5.1. Demonstrate the Effectiveness of AMIS in Solving Random and Real-World Problems
5.2. Case Study Results
6. Discussion and Recommendations
6.1. Academic Implications
6.2. Business and Social Implications
7. Conclusions
8. Limitations and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bankok Post. Famous southern cities set to promote Thailand as a world-class health and wellness travel destination. Bangkok Post. 28 April 2022. Available online: https://www.bangkokpost.com/thailand/pr/2301938/famous-southern-cities-set-to-promote-thailand-as-a-world-class-health-and-wellness-travel-destination (accessed on 20 July 2022).
- THLA. Staff, “Wellness Tourism 2021,” Texas Hotel & Lodging Association. 29 July 2021. Available online: https://texaslodging.com/wellness-tourism-2021/?gclid=Cj0KCQjw54iXBhCXARIsADWpsG9_D2Im7f-B-ewo0pZQ7n76Mj_67bRh0hm50H7q8RyqVSz1AqHsl9caAryyEALw_wcB. (accessed on 20 July 2022).
- Kapur, N. Longer Average Length of Stay to Revive Wellness Industry in Next Quarter. ET Hospitality World. 15 October 2020. Available online: https://hospitality.economictimes.indiatimes.com/top-talk/longer-average-length-of-stay-to-revive-wellness-industry-in-next-quarter/4579 (accessed on 20 July 2022).
- Khamsing, N.; Chindaprasert, K.; Pitakaso, R.; Sirirak, W.; Theeraviriya, C. Modified ALNS Algorithm for a Processing Application of Family Tourist Route Planning: A Case Study of Buriram in Thailand. Computation 2021, 9, 23. [Google Scholar] [CrossRef]
- Global Wellness Institute. History of Wellness; Global Wellness Institute: Miami, FL, Florida, USA, 2022; Available online: https://globalwellnessinstitute.org/what-is-wellness/history-of-wellness/ (accessed on 14 July 2022).
- Medical Tourism Magazine. Complementary & Alternative Medicine Health and Wellness Tourism Today. Medical Tourism Magazine. Available online: https://www.magazine.medicaltourism.com/article/health-and-wellness-tourism-today (accessed on 20 July 2022).
- Lengieza, M.; Hunt, C.; Swim, J. Measuring eudaimonic travel experiences. Ann. Tour. Res. 2019, 74, 195–197. [Google Scholar] [CrossRef]
- Filep, S.; Laing, S. Trends and directions in tourism and positive psychology. J. Travel Res. 2019, 58, 343–354. [Google Scholar] [CrossRef]
- Huta, V.; Ryan, R. Pursuing pleasure or virtue: The differential and overlapping well-being benefits of hedonic and eudaimonic motives. J. Happiness Stud. 2010, 11, 735–762. [Google Scholar] [CrossRef]
- Buzinde, C. Theoretical linkages between well-being and tourism: The case of self-determination theory and spiritual tourism. Ann. Tour. Res. 2020, 83, 102920. [Google Scholar] [CrossRef]
- Hao, F.; Xiao, H. Residential tourism and eudaimonic well-being: A ‘value-adding’ analysis. Ann. Tour. Res. 2021, 87, 103150. [Google Scholar] [CrossRef]
- Scuttari, A.; Pechlaner, H.; Erschbamer, G. Destination Design: A heuristic case study approach to sustainability-oriented innovation. Ann. Tour. Res. 2021, 26, 103068. [Google Scholar] [CrossRef]
- Su, L.; Tang, B.; Nawijn, J. Eudaimonic and hedonic well-being pattern changes: Intensity and activity. Ann. Tour. Res. 2020, 84, 103008. [Google Scholar] [CrossRef]
- Nawij, J.; Marchand, M.; Veenhoven, R.; Vingerhoets, A. Vacationers Happier, but Most not Happier After a Holiday. Appl. Res. Qual. Life 2010, 5, 35–47. [Google Scholar] [CrossRef]
- Rook, J.; Zijlstra, F. The contribution of various types of activities to recovery. Eur. J. Work Organ. Psychol. 2006, 15, 218–240. [Google Scholar] [CrossRef]
- Kulczycki, C.; Lück, M. Outdoor Adventure Tourism, Wellness, and Place Attachment. In Wellness and Tourism: Mind, Body, Spirit, Place; Cognizant Communication: Putnam Valley, NY, USA, 2009; pp. 165–176. [Google Scholar]
- Birdsall, D. Wellness Tourism: Sense of Place; Heta Architects: London, UK, 2020; Available online: https://hetaarchitects.com/Insights/2020/04/Wellness-Tourism-Sense-of-Place (accessed on 20 July 2022).
- THLA. Staff, Wellness Tourism 2021. Texas Hotel & Lodging Association, 29 July 2021. Available online: https://texaslodging.com/wellness-tourism-2021/?gclid=CjwKCAjw5NqVBhAjEiwAeCa97Q1zz9-j-f3SYxrTi3KO-VZbwQWshRzcGVcNRw-_I2l97-xqhEhX2xoCeRMQAvD_BwE (accessed on 20 July 2022).
- Majeed, S.; Kim, W. Emerging Trends in Wellness Tourism: A Scoping Review. J. Hosp. Tour. Insights, 2022; ahead of print. [Google Scholar]
- Schlemmer, P.; Scholten, T.; Niedermeier, M.; Kopp, M.; Schnitzer, M. Do outdoor adventure park activities increase visitors’ well-being? J. Outdoor Recreat. Tour. 2021, 35, 100391. [Google Scholar] [CrossRef]
- Huang, L.; Xu, H. Therapeutic landscapes and longevity: Wellness tourism in Bama. Soc. Sci. Med. 2018, 197, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Puyat, J.; Ranote, H.; Vila-Rodriguez, F.; Kazanjian, A. A cross-sectional survey of activities to support mental wellness during the COVID-19 pandemic. J. Affect. Disord. Rep. 2021, 5, 100167. [Google Scholar] [CrossRef] [PubMed]
- Hung, H.-K.; Wu, C.-C. Effect of adventure tourism activities on subjective well-being. Ann. Tour. Res. 2021, 91, 103147. [Google Scholar] [CrossRef]
- Li, T.; Chan, E. Diaspora tourism and well-being over life-courses. Ann. Tour. Res. 2020, 82, 102917. [Google Scholar] [CrossRef]
- Krajangchom, S.; Sangkakorn, K. Behaviors and Needs of Thai and Foreign Wellness Tourists in Upper North of Thailand. UTCC J. Humanit. Soc. Sci. 2020, 40, 57–76. (In Thailand) [Google Scholar]
- Su, L.; Tang, B.; Nawij, J. How tourism activity shapes travel experience sharing: Tourist well-being and social context. Ann. Tour. Res. 2021, 91, 103316. [Google Scholar] [CrossRef]
- Li, T.; Chan, E. With a young spirit, we will be young forever: Exploring the links between tourism and ageing well in contemporary China. Tour. Manag. 2021, 86, 104345. [Google Scholar] [CrossRef]
- Pomfre, G. Conceptualising family adventure tourist motives, experiences and benefits. J. Outdoor Recreat. Tour. 2019, 28, 1–8. [Google Scholar]
- Rojas-de-Graci, M.-M.; Alarcón-Urbistond, P. Importance of family for individual tourist satisfaction. Ann. Tour. Res. 2020, 85, 103031. [Google Scholar] [CrossRef]
- Moschis, G.; Churchill, G. Consumer Socialization: A Theoretical and Empirical Analysis. J. Mark. Res. 1978, 15, 599–609. [Google Scholar] [CrossRef]
- Marshall, D. Understanding Children as Consumers; SAGE Publications Ltd.: London, UK, 2010. [Google Scholar]
- Horner, S.; Swarbrooke, J. Consumer Behaviour in Tourism; Routledge: Abingdon, UK, 2016. [Google Scholar]
- Gram, M. Children as co-decision makers in the family? The case of family holidays. Young Consum. 2007, 8, 19–28. [Google Scholar] [CrossRef]
- Wang, K.-C.; Hsieh, A.-T.; Yeh, Y.-C.; Tsai, C.-W. Who is the decision-maker: The parents or the child in group package tours? Tour. Manag. 2004, 25, 183–194. [Google Scholar] [CrossRef]
- Nanda, D.; Hu, C.; Bai, B. Exploring Family Roles in Purchasing Decisions during Vacation Planning; Review and Discussions for Future Research. J. Travel Tour. Mark. 2007, 20, 107–125. [Google Scholar] [CrossRef]
- Yang, M.; Khoo-Lattimor, C.; LingYang, E. Three generations on a holiday: Exploring the influence of Neo-Confucian values on Korean Multigenerational Family vacation decision making. Tour. Manag. 2020, 78, 104076. [Google Scholar] [CrossRef]
- Nagy, V.; Kozma, T. Business Cooperations Along the Supply Chain. Econ. Cult. 2018, 13, 5–13. [Google Scholar] [CrossRef]
- Heitman, S. 12 Simple (Yet Effective!) Ways Small Businesses Can Compete with the Big Brands; LOCALiQ: Mclean, VA, USA, 2020; Available online: https://localiq.com/blog/ways-small-businesses-can-compete-with-big-businesses/ (accessed on 20 July 2022).
- Lazarev, A.; Lemtyuzhnikova, D.; Werner, F. A General Approximation Approach for Multi-Machine Scheduling Problems with Minimizing the Maximum Penalty; Researchgate.net: Berlin, Germany, 2019; pp. 1–25. [Google Scholar]
- Pitakaso, R.; Nanthasamroeng, N.; Srichok, T.; Khonjun, S.; Weerayuth, N.; Kotmongkol, T.; Pornprasert, P.; Pranet, K. A Novel Artificial Multiple Intelligence System (AMIS) for Agricultural Product Transborder Logistics Network Design in the Greater Mekong Subregion (GMS). Computation 2022, 10, 126. [Google Scholar] [CrossRef]
- Tomoiagă, B.; Chindriş, M.; Sumper, A.; Sudria-Andreu, A.; Villafafila-Robles, R. Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II. Energies 2013, 6, 1439–1455. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Storn, R. On the usage of differential evolution for function optimization. Fuzzy Information Processing Society. In Proceedings of the NAFIPS. 1996 Biennial Conference of the North American, Berkeley, CA, USA, 19–22 June 1996; pp. 1–5. [Google Scholar]
- Huang, Y.; Lai, L.; Li, W.; Wang, H. A differential evolution algorithm with ternary search tree for solving the three-dimensional packing problem. Inf. Sci. 2022, 606, 440–452. [Google Scholar] [CrossRef]
- Wan, X.; Zuo, X.; Zhao, X. A differential evolution algorithm combined with linear programming for solving a closed loop facility layout problem. Appl. Soft Comput. 2022, 121, 108725. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Peng, J. A hybrid differential evolution algorithm for flexible job shop scheduling with outsourcing operations and job priority constraints. Expert Syst. Appl. 2022, 201, 117182. [Google Scholar] [CrossRef]
- Vousden, M.; Bragg, G.; Brown, A. Asynchronous simulated annealing on the placement problem: A beneficial race condition. J. Parallel Distrib. Comput. 2022, 169, 242–251. [Google Scholar] [CrossRef]
- Bentsen, H.; Hoff, A.; Hvattum, L. Exponential extrapolation memory for tabu search. EURO J. Comput. Optim. 2022, 10, 100028. [Google Scholar] [CrossRef]
- Su, B.; Lin, Y.; Wang, J.; Quan, X.; Chang, Z.; Rui, C. Sewage treatment system for improving energy efficiency based on particle swarm optimization algorithm. Energy Rep. 2022, 8, 8701–8708. [Google Scholar] [CrossRef]
- Hwang, C.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; Volume 186, pp. 58–191. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Boston, MA, USA, 2020. [Google Scholar]
- Sethanan, K.; Pitakaso, R. Differential evolution algorithms for scheduling raw milk transportation. Comput. Electron. Agric. 2016, 121, 245–259. [Google Scholar] [CrossRef]
- Santini, A. An adaptive large neighbourhood search algorithm for the orienteering problem. Expert Syst. Appl. 2019, 123, 154–167. [Google Scholar] [CrossRef]
- Tsakirakis, E.; Marinaki, M.; Marinakis, Y.; Matsatsinis, N. A similarity hybrid harmony search algorithm for the Team Orienteering Problem. Appl. Soft Comput. 2019, 80, 776–796. [Google Scholar] [CrossRef]
- Bayliss, C.; Juan, A.; Currie, C.; Panadero, J. A learnheuristic approach for the team orienteering problem with aerial drone motion constraints. Appl. Soft Comput. 2019, 92, 106280. [Google Scholar] [CrossRef]
- Sangkaphet, P.; Pitakaso, R.; Sethanan, K.; Nanthasamroeng, N.; Pranet, K.; Khonjun, S.; Srichok, T.; Kaewman, S.; Kaewta, C. A Multiobjective Variable Neighborhood Strategy Adaptive Search to Optimize the Dynamic EMS Location—Allocation Problem. Computation 2022, 10, 103. [Google Scholar] [CrossRef]
- Khonjun, S.; Pitakaso, R.; Sethanan, K.; Nanthasamroeng, N.; Pranet, K.; Kaewta, C.; Sangkaphet, P. Differential Evolution Algorithm for Optimizing the Energy Usage of Vertical Transportation in an Elevator (VTE), Taking into Consideration Rush Hour Management and COVID-19 Prevention. Sustainability 2022, 14, 2581. [Google Scholar] [CrossRef]
Hotel | Attractions | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WP | 1 | 2 | 3 | A | B | C | D | E | F | G | H | I | J |
1 | 0.18 | 0.01 | 0.63 | 0.05 | 0.56 | 0.84 | 0.67 | 0.46 | 0.78 | 0.30 | 0.26 | 0.81 | 0.75 |
2 | 0.06 | 0.84 | 0.08 | 0.12 | 0.33 | 0.97 | 0.13 | 0.59 | 0.45 | 0.98 | 0.55 | 0.94 | 0.41 |
3 | 0.55 | 0.91 | 1.00 | 0.83 | 0.51 | 0.26 | 0.91 | 0.10 | 0.45 | 0.20 | 0.40 | 0.10 | 0.00 |
4 | 0.11 | 0.25 | 0.98 | 0.40 | 0.13 | 0.65 | 0.01 | 0.23 | 0.83 | 0.42 | 0.09 | 0.87 | 0.45 |
5 | 0.78 | 0.52 | 0.93 | 0.49 | 0.88 | 0.90 | 0.71 | 0.81 | 0.20 | 0.03 | 0.05 | 0.99 | 0.68 |
Tourist Group | Type of Tourist (Person) | Duration of Stay (Period) | Entering Period (t) | Hotel | Period | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||||||||
N1 | N2 | N3 | N4 | N5 | |||||||||||
1 | 2 | 4 | 7 | 0 | 1 | 3 | 1 | 2 | A | A | C | ||||
2 | 2 | 4 | 4 | 2 | 4 | 5 | 3 | 1 | G | D | H | J | B | ||
3 | 4 | 8 | 8 | 5 | 6 | 2 | 5 | 3 | B | E | |||||
4 | 0 | 5 | 5 | 2 | 2 | 7 | 3 | 2 | J | C | G | F | A | A | E |
5 | 0 | 4 | 7 | 4 | 7 | 4 | 5 | 1 | A | D | F | I |
IB Operators | Group | ||
---|---|---|---|
ACO-inspired move (AIM) | (15) | ||
PSO-inspired move (PIM) | (16) | ||
DE-inspired Move (DIM) | (17) | ||
ABCO-inspired move (BIM) | (18) | ||
Restart | (19) | ||
Random Transit (RT) | (20) | ||
Inter-Transit (IT) | (21) | ||
Scaling Factor (SF) | (22) | ||
RT-AIM | (23) |
Variables | Updated Method |
---|---|
Total number of WPs from iteration 1 to iteration t that choose IB b | |
when | |
Current best global WP is updated | |
Updated IB’s best WP is updated. | |
Choose at random a value for all positions for each WP |
Instance Name | Number of Tourist Groups (Group) | Number of Tourists (Person) | Number of Attractions/ Destinations | Planning Period |
---|---|---|---|---|
W-1 | 5 | 97 | 72 | 7 |
W-2 | 5 | 133 | 72 | 10 |
W-3 | 5 | 184 | 84 | 12 |
W-4 | 8 | 319 | 84 | 12 |
W-5 | 8 | 510 | 84 | 12 |
W-6 | 8 | 582 | 84 | 16 |
W-7 | 15 | 914 | 84 | 16 |
W-8 | 15 | 941 | 96 | 16 |
W-9 | 15 | 1091 | 96 | 16 |
W-10 | 30 | 2190 | 96 | 16 |
W-11 | 35 | 2584 | 96 | 20 |
W-12 | 40 | 2962 | 96 | 20 |
W-13 | 40 | 3084 | 121 | 20 |
W-14 | 40 | 3157 | 121 | 30 |
W-15 | 50 | 3955 | 121 | 30 |
C-1 | 50 | 4143 | 137 | 30 |
Parameters | Range | Parameters | Range |
---|---|---|---|
LN | 500,000 | (Persons) | [80, 460] |
(Points) | [4, 10] | (Points) | [4, 10] |
(Persons) | [0, 10] | (Baht) | [100, 500] |
[0, 1] | (Baht) | [400, 1000] |
Lingo v.16 | AMIS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
w1 = 0.5, w2 = 0.5 | w1 = 0.1, w2 = 0.9 | w1 = 0.9, w2 = 0.1 | Com. Time (Minutes) | w1 = 0.5, w2 = 0.5 | w1 = 0.1, w2 = 0.9 | w1 = 0.9, w2 = 0.1 | Com. Time (Minutes) | |||||||
Satisfaction (Score) | Total Cost (Baht) | Satisfaction (Score) | Total Cost (Baht) | Satisfaction (Score) | Total Cost (Baht) | Satisfaction (Score) | Total Cost (Baht) | Satisfaction (Score) | Total Cost (Baht) | Satisfaction (Score) | Total Cost (Baht) | |||
W-1 * | 6630 | 70,120 | 6567 | 65,490 | 6740 | 125,282 | 339.3 | 6630 | 70,120 | 6537 | 65,490 | 6719 | 125,282 | 10.7 |
W-2 * | 10,162 | 117,722 | 10,041 | 112,588 | 10,232 | 143,272 | 347.2 | 10,162 | 117,722 | 10,041 | 115,583 | 10,232 | 143,272 | 20.8 |
W-3 * | 27,997 | 405,824 | 27,417 | 314,071 | 27,997 | 405,824 | 523.8 | 27,997 | 405,824 | 27,417 | 314,071 | 27,997 | 405,824 | 25.8 |
W-4 * | 45,982 | 757,865 | 45,578 | 695,853 | 46,930 | 779,765 | 1410 | 44,235 | 757,865 | 45,578 | 722,991 | 46,930 | 782,182 | 27.5 |
W-5 | 82,399 | 1,684,090 | 74,040 | 865,194 | 83,080 | 1,838,974 | 14,400 | 83,214 | 1,590,197 | 74,040 | 816,983 | 83,080 | 1,738,453 | 30.0 |
W-6 | 102,388 | 2,160,524 | 91,089 | 1,043,798 | 102,900 | 2,297,151 | 14,400 | 108,309 | 2,070,869 | 96,933 | 981,769 | 108,173 | 2,223,621 | 30.0 |
W-7 | 200,578 | 3,810,915 | 175,886 | 2,268,883 | 201,028 | 3,857,902 | 14,400 | 215,479 | 3,694,219 | 192,482 | 2,187,206 | 213,386 | 3,670,236 | 30.0 |
W-8 | 204,244 | 3,677,865 | 183,049 | 2,099,596 | 208,091 | 4,902,770 | 14,400 | 221,560 | 3,559,632 | 192,941 | 2,030,103 | 225,331 | 4,621,271 | 30.0 |
W-9 | 234,452 | 5,037,064 | 196,084 | 3,267,995 | 234,518 | 5,226,302 | 14,400 | 248,674 | 4,744,578 | 210,172 | 3,122,413 | 247,004 | 5,062,970 | 30.0 |
W-10 | 312,062 | 6,528,241 | 262,297 | 4,224,412 | 312,233 | 6,637,461 | 14,400 | 328,910 | 6,308,218 | 283,337 | 3,984,404 | 342,317 | 6,405,986 | 30.0 |
W-11 | 472,811 | 9,807,354 | 401,569 | 6,602,266 | 473,845 | 10,006,565 | 14,400 | 513,967 | 9,266,786 | 421,954 | 6,306,535 | 513,688 | 9,584,266 | 30.0 |
W-12 | 550,270 | 11,380,035 | 472,981 | 8,016,179 | 550,880 | 11,588,320 | 14,400 | 591,410 | 10,761,718 | 519,552 | 7,634,403 | 601,189 | 11,207,614 | 30.0 |
W-13 | 527,260 | 10,736,330 | 470,415 | 6,675,515 | 531,362 | 12,052,420 | 14,400 | 564,491 | 10,372,998 | 514,450 | 6,381,725 | 565,991 | 11,478,608 | 30.0 |
W-14 | 671,727.5 | 13,439,990 | 594,357.6 | 7,183,665 | 680,654 | 16,378,220 | 14,400 | 737,957 | 12,859,685 | 635,782 | 6,953,417 | 725,454 | 15,513,864 | 30.0 |
W-15 | 804,707.1 | 15,607,910 | 720,143.3 | 8,887,651 | 818,796.8 | 20,538,430 | 14,400 | 850,843 | 15,032,954 | 756,633 | 8,401,172 | 881,846 | 19,756,930 | 30.0 |
C-1 | 861,358.3 | 16,976,090 | 772,848.6 | 8,694,322 | 864,695.3 | 18,319,670 | 14,400 | 944,089 | 16,443,455 | 820,222 | 8,413,863 | 921,988 | 17,265,483 | 30.0 |
Method | Lingo v.16 (240 h) | GA | DE | ||||||
---|---|---|---|---|---|---|---|---|---|
Instances | w1 = 0.5, w2 = 0.5 | w1 = 0.1, w2 = 0.9 | w1 = 0.9, w2 = 0.1 | w1 = 0.5, w2 = 0.5 | w1 = 0.1, w2 = 0.9 | w1 = 0.9, w2 = 0.1 | w1 = 0.5, w2 = 0.5 | w1 = 0.1, w2 = 0.9 | w1 = 0.9, w2 = 0.1 |
W-1 * | 0.00 | 0.23 | 0.16 | 4.88 | 5.16 | 6.73 | 1.73 | 10.76 | 9.39 |
W-2 * | 0.00 | 1.33 | 0.00 | 3.39 | 4.30 | 6.67 | 2.63 | 5.54 | 3.20 |
W-3 * | 0.00 | 0.00 | 0.66 | 4.68 | 7.39 | 5.10 | 4.07 | 3.13 | 9.63 |
W-4 * | 4.45 | 1.95 | 0.16 | 5.26 | 2.83 | 8.65 | 4.55 | 2.29 | 2.87 |
W-5 | 3.13 | 6.72 | 3.32 | 2.25 | 7.46 | 12.47 | 5.45 | 6.39 | 5.96 |
W-6 | 6.49 | 3.74 | 5.24 | 8.50 | 7.04 | 9.04 | 8.60 | 9.30 | 7.56 |
W-7 | 4.97 | 10.50 | 0.58 | 6.36 | 6.47 | 2.81 | 9.86 | 11.38 | 11.31 |
W-8 | 3.61 | 1.99 | 3.32 | 10.19 | 7.36 | 7.65 | 5.83 | 5.96 | 10.31 |
W-9 | 6.18 | 3.71 | 4.68 | 5.92 | 8.49 | 6.25 | 10.43 | 10.84 | 11.74 |
W-10 | 8.52 | 3.92 | 3.66 | 9.50 | 7.25 | 7.24 | 8.66 | 9.54 | 9.19 |
W-11 | 1.13 | 2.55 | 6.92 | 9.81 | 8.56 | 13.71 | 12.01 | 7.18 | 7.13 |
W-12 | 7.95 | 8.69 | 5.19 | 8.37 | 6.88 | 12.51 | 13.25 | 12.52 | 9.21 |
W-13 | 4.87 | 3.09 | 7.01 | 7.83 | 4.93 | 10.21 | 13.44 | 5.81 | 10.94 |
W-14 | 3.31 | 7.41 | 2.54 | 4.75 | 9.70 | 10.15 | 6.79 | 7.62 | 14.31 |
W-15 | 2.76 | 4.32 | 1.60 | 8.04 | 6.94 | 11.07 | 7.82 | 9.29 | 8.12 |
C-1 | 4.28 | 8.77 | 8.30 | 10.36 | 7.35 | 11.77 | 9.64 | 12.22 | 6.85 |
Mean | 3.85 | 4.31 | 3.33 | 6.88 | 6.76 | 8.88 | 7.80 | 8.11 | 8.61 |
Max | 8.52 | 10.50 | 8.30 | 10.36 | 9.70 | 13.71 | 13.44 | 12.52 | 14.31 |
Min | 0.00 | 0.00 | 0.00 | 2.25 | 2.83 | 2.81 | 1.73 | 2.29 | 2.87 |
Grand Mean (%) | 3.83 | 7.50 | 8.17 |
SPA (SPA) | Restaurant (RES) | Outdoor Recreation (OUT) | Beauty Service (BEA) | Temple (TEM) | Must-See Attraction (MU) | |
---|---|---|---|---|---|---|
Visit time | 142 | 52 | 104 | 42 | 78 | 149 |
Percentage | 25.04 | 9.17 | 18.34 | 7.41 | 13.76 | 26.28 |
PI | MI | SR | SP | |
---|---|---|---|---|
Number of visit time | 152 | 140 | 250 | 112 |
Percentage | 23.24 | 21.41 | 38.23 | 17.13 |
% Increase in Number of Tourist Groups/Number of Tourists | # of Tourist Groups | # of Tourists | Total Profit (Baht) | Total Satisfaction (Score) | ||||
---|---|---|---|---|---|---|---|---|
AMIS | GA | DE | AMIS | GA | DE | |||
0% | 50 | 4143 | 42,258,600 | 39,350,121 | 38,360,405 | 941,100 | 916,740 | 917,222 |
5% | 53 | 4351 | 45,353,375 | 41,910,145 | 39,706,733 | 987,999 | 926,999 | 926,349 |
10% | 55 | 4558 | 48,038,863 | 44,328,025 | 40,447,324 | 1,035,180 | 934,267 | 935,162 |
15% | 58 | 4765 | 50,345,098 | 48,360,307 | 47,653,714 | 1,082,067 | 978,306 | 979,885 |
20% | 60 | 4972 | 51,181,304 | 48,427,079 | 48,782,534 | 1,129,515 | 999,468 | 1,022,546 |
25% | 63 | 5179 | 56,348,527 | 52,514,727 | 51,611,057 | 1,176,273 | 1,074,458 | 1,072,772 |
30% | 65 | 5386 | 57,211,453 | 53,838,960 | 52,895,189 | 1,223,016 | 1,121,959 | 1,122,233 |
35% | 68 | 5594 | 60,367,640 | 55,978,474 | 54,964,127 | 1,270,530 | 1,169,431 | 1,146,359 |
40% | 70 | 5801 | 62,097,400 | 57,008,199 | 56,956,233 | 1,317,043 | 1,212,261 | 1,170,367 |
45% | 73 | 6008 | 64,283,979 | 58,552,392 | 57,859,578 | 1,364,364 | 1,259,638 | 1,212,925 |
50% | 75 | 6215 | 65,710,741 | 60,613,434 | 58,639,101 | 1,410,588 | 1,306,686 | 1,294,481 |
54,836,089 | 50,989,260 | 50,716,000 | 1,176,152 | 1,081,838 | 1,072,755 |
% Increase in Number of Tourist Groups/Number of Tourists | # of Tourist Groups | # of Tourists | Utilization (Percentage) | Percent Occupied Servicing Periods (Percentage) | ||||
---|---|---|---|---|---|---|---|---|
AMIS | GA | DE | AMIS | GA | DE | |||
0% | 50 | 4143 | 21.72 | 19.23 | 18.58 | 50.09 | 45.41 | 43.94 |
5% | 53 | 4351 | 24.75 | 23.74 | 23.07 | 54.27 | 50.18 | 47.34 |
10% | 55 | 4558 | 28.15 | 23.89 | 26.55 | 56.55 | 50.69 | 51.75 |
15% | 58 | 4765 | 31.66 | 25.76 | 29.68 | 59.06 | 54.32 | 54.65 |
20% | 60 | 4972 | 34.87 | 30.56 | 33.37 | 60.30 | 57.90 | 55.17 |
25% | 63 | 5179 | 38.13 | 34.21 | 34.16 | 65.17 | 59.14 | 58.15 |
30% | 65 | 5386 | 41.83 | 36.69 | 37.58 | 65.61 | 64.09 | 59.19 |
35% | 68 | 5594 | 44.10 | 40.40 | 42.01 | 70.55 | 64.96 | 61.31 |
40% | 70 | 5801 | 48.11 | 43.06 | 43.41 | 73.61 | 65.12 | 64.49 |
45% | 73 | 6008 | 52.71 | 45.87 | 46.98 | 77.37 | 65.96 | 66.68 |
50% | 75 | 6215 | 53.76 | 48.00 | 51.12 | 81.90 | 66.46 | 69.07 |
average | 38.16 | 33.76 | 35.14 | 64.95 | 58.57 | 57.43 | ||
% different of 50% increase and 0% increase | 147.5 | 149.6 | 175.2 | 63.5 | 46.3 | 57.2 |
Range | Profit | Preferable Score | ||
---|---|---|---|---|
Average Profit | Slope | Average Profit | Slope | |
0–25% | 48,920,961 | 0.33 | 1,058,689 | 0.25 |
26–50% | 61,934,243 | 0.15 | 1,317,108 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitakaso, R.; Nanthasamroeng, N.; Dinkoksung, S.; Chindaprasert, K.; Sirirak, W.; Srichok, T.; Khonjun, S.; Sirisan, S.; Jirasirilerd, G.; Chomchalao, C. Solving the Optimal Selection of Wellness Tourist Attractions and Destinations in the GMS Using the AMIS Algorithm. Computation 2022, 10, 165. https://doi.org/10.3390/computation10090165
Pitakaso R, Nanthasamroeng N, Dinkoksung S, Chindaprasert K, Sirirak W, Srichok T, Khonjun S, Sirisan S, Jirasirilerd G, Chomchalao C. Solving the Optimal Selection of Wellness Tourist Attractions and Destinations in the GMS Using the AMIS Algorithm. Computation. 2022; 10(9):165. https://doi.org/10.3390/computation10090165
Chicago/Turabian StylePitakaso, Rapeepan, Natthapong Nanthasamroeng, Sairoong Dinkoksung, Kantimarn Chindaprasert, Worapot Sirirak, Thanatkij Srichok, Surajet Khonjun, Sarinya Sirisan, Ganokgarn Jirasirilerd, and Chaiya Chomchalao. 2022. "Solving the Optimal Selection of Wellness Tourist Attractions and Destinations in the GMS Using the AMIS Algorithm" Computation 10, no. 9: 165. https://doi.org/10.3390/computation10090165
APA StylePitakaso, R., Nanthasamroeng, N., Dinkoksung, S., Chindaprasert, K., Sirirak, W., Srichok, T., Khonjun, S., Sirisan, S., Jirasirilerd, G., & Chomchalao, C. (2022). Solving the Optimal Selection of Wellness Tourist Attractions and Destinations in the GMS Using the AMIS Algorithm. Computation, 10(9), 165. https://doi.org/10.3390/computation10090165