Application of the ARA Method in Solving Integro-Differential Equations in Two Dimensions
Abstract
:1. Introduction
2. Basic Definitions and Theorems of ARA Transform
- ;
- ;
- ;
- ;
- ;
3. Double ARA Transform (DARAT)
- Let . Then,
- Let and are constants. Then,
- Let , and are constants. Then,Similarly,Consequently,
- Let or .Recall that
- Let , where is the zero Bessel function. Then,
- (a)
- .
- (b)
- .
- (c)
- .
- (d)
- .
- (e)
- .
(a) | |
(b) | |
The proof of parts (c), (d) and (e) can be obtained by similar arguments. |
4. Applications of DARAT in Solving Integral Equations
- (I)
- Integral equations of two variables.
- (II)
- First order partial integro-differential equations.
- (III)
- Second order partial integro-differential equations.
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, L.; Khan, M. Importance of activation energy in development of chemical covalent bounding in flow of Sisko magneto-Nano fluids over porous moving curved surface. Int. J. Hydrogen Energy 2019, 44, 10197–10206. [Google Scholar] [CrossRef]
- Ahmad, L.; Khan, M. Numerical simulation for MHD flow of Sisko nanofluid over a moving curved surface: A revised model. Microsyst. Technol. 2019, 25, 2411–2428. [Google Scholar] [CrossRef]
- Constanda, C. Solution Techniques for Elementary Partial Differential Equations; Chapman and Hall/CRC: New York, NY, USA, 2002. [Google Scholar]
- Debnath, L. The double Laplace transforms and their properties with applications to functional, integral and partial differential equations. Int. J. Appl. Comput. Math. 2016, 2, 223–241. [Google Scholar] [CrossRef]
- Muatjetjeja, B. Group classification and conservation laws of the generalized Klein–Gordon–Fock equation. Int. J. Mod. Phys. B 2016, 30, 1640023. [Google Scholar] [CrossRef]
- Wazwaz, A. Partial Differential Equations and Solitary Waves Theory; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Eddine, N.C.; Ragusa, M.A. Generalized critical Kirchhoff-type potential systems with Neumann boundary conditions. Appl. Anal. 2022, 101, 3958–3988. [Google Scholar] [CrossRef]
- Rashid, S.; Ashraf, R.; Bonyah, E. On analytical solution of time-fractional biological population model by means of generalized integral transform with their uniqueness and convergence analysis. J. Funct. Spaces 2022, 2022, 7021288. [Google Scholar] [CrossRef]
- Zid, S.; Menkad, S. The lambda-Aluthge transform and its applications to some classes of operators. Filomat 2022, 36, 289. [Google Scholar] [CrossRef]
- Debnath, L. Nonlinear Partial Differential Equations for Scientists and Engineers; Birkh User: Boston, MA, USA, 1997. [Google Scholar]
- Qazza, A.; Hatamleh, R.; Alodat, N. About the solution stability of Volterra integral equation with random kernel. Far. East J. Math. Sci. 2016, 100, 671–680. [Google Scholar] [CrossRef]
- Gharib, G.; Saadeh, R. Reduction of the self-dual yang-mills equations to sinh-poisson equation and exact solutions. WSEAS Interact. Math. 2021, 20, 540–554. [Google Scholar] [CrossRef]
- Saadeh, R.; Al-Smadi, M.; Gumah, G.; Khalil, H.; Khan, A. Numerical investigation for solving two-point fuzzy boundary value problems by reproducing kernel approach. Appl. Math. Inf. Sci. 2016, 10, 2117–2129. [Google Scholar] [CrossRef]
- Widder, V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1941. [Google Scholar]
- Bochner, S.; Chandrasekharan, K. Fourier Transforms; Princeton University Press: London, UK, 1949. [Google Scholar]
- Atangana, A.; Kiliçman, A. A novel integral operator transform and its application to some FODE and FPDE with some kind of singularities. Math. Probl. Eng. 2013, 2013, 531984. [Google Scholar] [CrossRef]
- Srivastava, H.; Luo, M.; Raina, R. A new integral transform and its applications. Acta Math. Sci. 2015, 35B, 1386–1400. [Google Scholar] [CrossRef]
- Watugula, G.K. Sumudu transform: A new integral transform to solve differential equations and control engineering problems. Int. J. Math. Educ. Sci. Technol. 1993, 24, 35–43. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khan, W.A. Natural transform-properties and applications. NUST J. Eng. Sci. 2008, 1, 127–133. [Google Scholar]
- . Elzaki, T.M. The new integral transform “Elzaki transform”. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- Sedeeg, A.H. The New Integral Transform “Kamal Transform ”. Adv. Theor. Appl. Math. 2016, 11, 451–458. [Google Scholar]
- Aboodh, K.; Abdullahi, I.; Nuruddeen, R. On the Aboodh transform connections with some famous integral transforms. Int. J. Eng. Inform. Syst. 2017, 1, 143–151. [Google Scholar]
- Saadeh, R.; Qazza, A.; Burqan, A. A new integral transform: ARA transform and its properties and applications. Symmetry 2020, 12, 925. [Google Scholar] [CrossRef]
- Zafar, Z. ZZ transform method. Int. J. Adv. Eng. Glob. Technol. 2016, 4, 1605–1611. [Google Scholar]
- Aghili, A.; Parsa Moghaddam, B. Certain theorems on two dimensional Laplace transform and non-homogeneous parabolic partial differential equations. Surv. Math. Its Appl. 2011, 6, 165–174. [Google Scholar]
- Dhunde, R.R.; Bhondge, N.M.; Dhongle, P.R. Some remarks on the properties of double Laplace transforms. Int. J. Appl. Phys. Math. 2013, 3, 293–295. [Google Scholar] [CrossRef] [Green Version]
- Dhunde, R.R.; Waghmare, G.L. Double Laplace transform method in mathematical physics. Int. J. Theor. Math. Phys. 2017, 7, 14–20. [Google Scholar]
- Eltayeb, H.; Kiliçman, A. A note on double Laplace transform and telegraphic equations. Abstr. Appl. Anal. 2013, 2013, 932578. [Google Scholar] [CrossRef]
- Alfaqeih, S.; Misirli, E. On double Shehu transform and its properties with applications. Int. J. Anal. Appl. 2020, 18, 381–395. [Google Scholar]
- Sonawane, M.S.; Kiwne, S.B. Double Kamal transforms: Properties and Applications. J. Appl. Sci. Comput. 2019, 4, 1727–1739. [Google Scholar]
- Ganie, J.A.; Ahmad, A.; Jain, R. Basic analogue of double Sumudu transform and its applicability in population dynamics. Asian J. Math. Stat. 2018, 11, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Eltayeb, H.; Kiliçman, A. On double Sumudu transform and double Laplace transform. Malays. J. Math. Sci. 2010, 4, 17–30. [Google Scholar]
- Tchuenche, J.M.; Mbare, N.S. An application of the double Sumudu transform. Appl. Math. Sci. 2007, 1, 31–39. [Google Scholar]
- Al-Omari, S.K.Q. Generalized functions for double Sumudu transformation. Int. J. Algebra 2012, 6, 139–146. [Google Scholar]
- . Eshag, M.O. On double Laplace transform and double Sumudu transform. Am. J. Eng. Res. 2017, 6, 312–317. [Google Scholar]
- Ahmed, Z.; Idrees, M.I.; Belgacem, F.B.M.; Perveenb, Z. On the convergence of double Sumudu transform. J. Nonlinear Sci. Appl. 2020, 13, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Idrees, M.I.; Ahmed, Z.; Awais, M.; Perveen, Z. On the convergence of double Elzaki transform. Int. J. Adv. Appl. Sci. 2018, 5, 19–24. [Google Scholar] [CrossRef]
- Ahmed, S.; Elzaki, T.; Elbadri, M.; Mohamed, M.Z. Solution of partial differential equations by new double integral transform (Laplace–Sumudu transform). Ain. Shams Eng. J. 2021, 12, 4045–4049. [Google Scholar] [CrossRef]
- Saadeh, R.; Qazza, A.; Burqan, A. On the Double ARA-Sumudu transform and its applications. Mathematics 2022, 10, 2581. [Google Scholar] [CrossRef]
- Qazza, A.; Burqan, A.; Saadeh, R.; Khalil, R. Applications on double ARA–Sumudu transform in solving fractional partial differential equations. Symmetry 2022, 14, 1817. [Google Scholar] [CrossRef]
- Frassu, S.; Galván, R.R.; Viglialoro, G. Uniform in time L^ infinity estimates for an attraction-repulsion chemotaxis model with double saturation. Discret. Contin. Dyn. Syst. B 2023, 28, 1886–1904. [Google Scholar] [CrossRef]
- Frassu, S.; Li, T.; Viglialoro, G. Improvements and generalizations of results concerning attraction-repulsion chemotaxis models. Math. Methods Appl. Sci. 2021, 45, 11067–11078. [Google Scholar] [CrossRef]
- Kamenskii, M.; Petrosyan, G.A.; Wen, C.F. An existence result for a periodic boundary value problem of fractional semilinear differential equations in a Banach space. J. Nonlinear Var. Anal. 2021, 5, 155–177. [Google Scholar]
- Meddahi, M.; Jafari, H.; Yang, X.-J. Towards new general double integral transform and its applications to differential equations. Math. Meth. Appl. Sci. 2021, 45, 1916–1933. [Google Scholar] [CrossRef]
Function | ARA Transform |
---|---|
is the zero order Bessel function | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadeh, R. Application of the ARA Method in Solving Integro-Differential Equations in Two Dimensions. Computation 2023, 11, 4. https://doi.org/10.3390/computation11010004
Saadeh R. Application of the ARA Method in Solving Integro-Differential Equations in Two Dimensions. Computation. 2023; 11(1):4. https://doi.org/10.3390/computation11010004
Chicago/Turabian StyleSaadeh, Rania. 2023. "Application of the ARA Method in Solving Integro-Differential Equations in Two Dimensions" Computation 11, no. 1: 4. https://doi.org/10.3390/computation11010004
APA StyleSaadeh, R. (2023). Application of the ARA Method in Solving Integro-Differential Equations in Two Dimensions. Computation, 11(1), 4. https://doi.org/10.3390/computation11010004