A Technical Comparative Heart Disease Prediction Framework Using Boosting Ensemble Techniques
Abstract
:1. Introduction
- Almost all the research work with the target of predicting heart disease using techniques of machine learning, deep learning, and fuzzy logic [11] have been carried out using various parameters, but still, there is inadequate parameter tuning and parameter evaluation.
- Lack of use of different discretization techniques, multiple classifiers, techniques of voting, and other decision tree algorithms (Gini index, Gini ratio).
- The technical issues with regard to overfitting.
- Selection and usage of proper tools, proper pre-processing of datasets, and the use of advanced machine learning algorithms to reduce time complexity should be incorporated.
1.1. Socio-Economic Impact of Heart Diseases
1.2. Literature Review
1.2.1. Machine Learning Techniques
1.2.2. Deep Learning Techniques
1.2.3. Ensemble Learning Techniques
1.3. Motivations and Challenges
2. Technical Details of Dataset
Frequency Distribution
3. Methods
Algorithm 1 Workflow of Methodology Employed: |
|
3.1. Machine Learning Framework
3.2. Pre-Processing
3.3. Ensemble Learning Approaches
3.3.1. Decision Tree
3.3.2. Random Forest
3.3.3. Gradient Boosting
3.3.4. CatBoost
3.3.5. XGBoost
3.3.6. AdaBoost
3.3.7. Light GBM
3.4. Performance Measures
3.5. Validation
4. Experimental Results
4.1. Feature Importance for AdaBoost
4.2. Comparative Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Petrelli, A.; Gnavi, R.; Marinacci, C.; Costa, G. Socioeconomic inequalities in coronary heart disease in Italy: A multilevel population-based study. Soc. Sci. Med. 2006, 63, 446–456. [Google Scholar] [CrossRef]
- Sharma, H.; Rizvi, M. Prediction of heart disease using machine learning algorithms: A survey. Int. J. Recent Innov. Trends Comput. Commun. 2017, 5, 99–104. [Google Scholar]
- Gheorghe, A.; Griffiths, U.; Murphy, A.; Legido-Quigley, H.; Lamptey, P.; Perel, P. The economic burden of cardiovascular disease and hypertension in low-and middle-income countries: A systematic review. BMC Public Health 2018, 18, 975. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.N.; Ullah, S.; Algethami, A.; Fatima, H.; Akhter, S.M.H. Comparative study of optimum medical diagnosis of human heart disease using machine learning technique with and without sequential feature selection. IEEE Access 2022, 10, 23808–23828. [Google Scholar] [CrossRef]
- Mohammad, F.; Al-Ahmadi, S. WT-CNN: A Hybrid Machine Learning Model for Heart Disease Prediction. Mathematics 2023, 11, 4681. [Google Scholar] [CrossRef]
- Osisanwo, F.Y.; Akinsola, J.E.T.; Awodele, O.; Hinmikaiye, J.O.; Olakanmi, O.; Akinjobi, J. Supervised machine learning algorithms: Classification and comparison. Int. J. Comput. Trends Technol. (IJCTT) 2017, 48, 128–138. [Google Scholar]
- Rashid, Y.; Bhat, J.I. Topological to deep learning era for identifying influencers in online social networks: A systematic review. Multimed. Tools Appl. 2023, 1–44. [Google Scholar] [CrossRef]
- Taylan, O.; Alkabaa, A.S.; Alqabbaa, H.S.; Pamukçu, E.; Leiva, V. Early prediction in classification of cardiovascular diseases with machine learning, neuro-fuzzy and statistical methods. Biology 2023, 12, 117. [Google Scholar] [CrossRef]
- Adeli, A.; Neshat, M. A fuzzy expert system for heart disease diagnosis. In Proceedings of the International Multi-Conference of Engineers and Computer Scientists, IMECS 2010, Hong Kong, 17–19 March 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6. [Google Scholar]
- Neshat, M.; Zadeh, A.E. Hopfield neural network and fuzzy Hopfield neural network for diagnosis of liver disorders. In Proceedings of the 2010 5th IEEE International Conference Intelligent Systems, London, UK, 7–9 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 162–167. [Google Scholar]
- Neshat, M.; Yaghobi, M.; Naghibi, M.B.; Zadeh, A.E. Fuzzy expert system design for diagnosis of liver disorders. In Proceedings of the International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, 21–22 December 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 252–256. [Google Scholar]
- Li, X.; Zhao, Y.; Zhang, D.; Kuang, L.; Huang, H.; Chen, W.; Fu, X.; Wu, Y.; Li, T.; Zhang, J.; et al. Development of an interpretable machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018. Chemosphere 2023, 311, 137039. [Google Scholar] [CrossRef]
- Usama, M.; Qadir, J.; Raza, A.; Arif, H.; Yau, K.L.A.; Elkhatib, Y.; Hussain, A.; Al-Fuqaha, A. Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEE Access 2019, 7, 65579–65615. [Google Scholar] [CrossRef]
- Ngiam, K.Y.; Khor, W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019, 20, e262–e273. [Google Scholar] [CrossRef] [PubMed]
- Nissa, N.; Jamwal, S.; Mohammad, S. Early detection of cardiovascular disease using machine learning techniques an experimental study. Int. J. Recent Technol. Eng. 2020, 9, 635–641. [Google Scholar] [CrossRef]
- Kecman, V. Support vector machines—An introduction. In Support Vector Machines: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–47. [Google Scholar]
- Paladino, L.M.; Hughes, A.; Perera, A.; Topsakal, O.; Akinci, T.C. Evaluating the Performance of Automated Machine Learning (AutoML) Tools for Heart Disease Diagnosis and Prediction. AI 2023, 4, 1036–1058. [Google Scholar] [CrossRef]
- Rojas-Albarracin, G.; Chaves, M.Á.; Fernandez-Caballero, A.; Lopez, M.T. Heart attack detection in color images using convolutional neural networks. Appl. Sci. 2019, 9, 5065. [Google Scholar] [CrossRef]
- Mehmood, A.; Iqbal, M.; Mehmood, Z.; Irtaza, A.; Nawaz, M.; Nazir, T.; Masood, M. Prediction of heart disease using deep convolutional neural networks. Arab. J. Sci. Eng. 2021, 46, 3409–3422. [Google Scholar] [CrossRef]
- Rani, M.; Bakshi, A.; Gupta, A. Prediction of Heart Disease Using Naïve bayes and Image Processing. In Proceedings of the 2020 International Conference on Emerging Smart Computing and Informatics (ESCI), Shimla, India, 26–28 November 2021; IEEE: Piscataway, NJ, USA, 2020; pp. 215–219. [Google Scholar]
- Rairikar, A.; Kulkarni, V.; Sabale, V.; Kale, H.; Lamgunde, A. Heart disease prediction using data mining techniques. In Proceedings of the 2017 International Conference on Intelligent Computing and Control (I2C2), Coimbatore, India, 23–24 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–8. [Google Scholar]
- Zakariah, M.; AlShalfan, K. Cardiovascular Disease Detection Using MRI Data with Deep Learning Approach. Int. J. Comp. Electr. Eng. 2020, 12, 72–82. [Google Scholar] [CrossRef]
- Ahmed, A.E.; Abbas, Q.; Daadaa, Y.; Qureshi, I.; Perumal, G.; Ibrahim, M.E. A Residual-Dense-Based Convolutional Neural Network Architecture for Recognition of Cardiac Health Based on ECG Signals. Sensors 2023, 23, 7204. [Google Scholar] [CrossRef]
- Arif, M.S.; Mukheimer, A.; Asif, D. Enhancing the early detection of chronic kidney disease: A robust machine learning model. Big Data Cogn. Comput. 2023, 7, 144. [Google Scholar] [CrossRef]
- Chandrasekhar, N.; Peddakrishna, S. Enhancing Heart Disease Prediction Accuracy through Machine Learning Techniques and Optimization. Processes 2023, 11, 1210. [Google Scholar] [CrossRef]
- Yang, J.; Guan, J. A heart disease prediction model based on feature optimization and smote-Xgboost algorithm. Information 2022, 13, 475. [Google Scholar] [CrossRef]
- Reddy, K.V.V.; Elamvazuthi, I.; Aziz, A.A.; Paramasivam, S.; Chua, H.N.; Pranavanand, S. Heart disease risk prediction using machine learning classifiers with attribute evaluators. Appl. Sci. 2021, 11, 8352. [Google Scholar] [CrossRef]
- Mohan, S.; Thirumalai, C.; Srivastava, G. Effective heart disease prediction using hybrid machine learning technique. South Asian J. Eng. Technol. 2022, 12, 123–130. [Google Scholar] [CrossRef]
- Asif, D.; Bibi, M.; Arif, M.S.; Mukheimer, A. Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization. Algorithms 2023, 16, 308. [Google Scholar] [CrossRef]
- Banerjee, S. Heart Attack Risk Prediction Dataset. 2023. Available online: https://www.kaggle.com/datasets/iamsouravbanerjee/heart-attack-prediction-dataset (accessed on 10 January 2024).
- Hassan, C.A.u.; Iqbal, J.; Irfan, R.; Hussain, S.; Algarni, A.D.; Bukhari, S.S.H.; Alturki, N.; Ullah, S.S. Effectively predicting the presence of coronary heart disease using machine learning classifiers. Sensors 2022, 22, 7227. [Google Scholar] [CrossRef] [PubMed]
- Tayefi, M.; Tajfard, M.; Saffar, S.; Hanachi, P.; Amirabadizadeh, A.R.; Esmaeily, H.; Taghipour, A.; Ferns, G.A.; Moohebati, M.; Ghayour-Mobarhan, M. hs-CRP is strongly associated with coronary heart disease (CHD): A data mining approach using decision tree algorithm. Comput. Methods Programs Biomed. 2017, 141, 105–109. [Google Scholar] [CrossRef]
- Mohan, S.; Thirumalai, C.; Srivastava, G. Effective heart disease prediction using hybrid machine learning techniques. IEEE Access 2019, 7, 81542–81554. [Google Scholar] [CrossRef]
- Kubat, M.; Kubat, J. An Introduction to Machine Learning; Springer: Berlin/Heidelberg, Germany, 2017; Volume 2. [Google Scholar]
- Graczyk, M.; Lasota, T.; Trawiński, B.; Trawiński, K. Comparison of bagging, boosting and stacking ensembles applied to real estate appraisal. In Proceedings of the Intelligent Information and Database Systems: Second International Conference, ACIIDS, Hue City, Vietnam, 24–26 March 2010; Part II 2. Springer: Berlin/Heidelberg, Germany, 2010; pp. 340–350. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31, 1–12. [Google Scholar]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Qiu, Y.; Zhou, J.; Khandelwal, M.; Yang, H.; Yang, P.; Li, C. Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration. Eng. Comput. 2021, 38, 4145–4162. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, Bari, Italy, 3–6 July 1996; Volume 96, pp. 148–156. [Google Scholar]
- Ganie, S.M.; Dutta Pramanik, P.K.; Mallik, S.; Zhao, Z. Chronic kidney disease prediction using boosting techniques based on clinical parameters. PLoS ONE 2023, 18, e0295234. [Google Scholar] [CrossRef] [PubMed]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 1–12. [Google Scholar]
- Ceylan, Z.; Bulkan, S.; Elevli, S. Prediction of medical waste generation using SVR, GM (1, 1) and ARIMA models: A case study for megacity Istanbul. J. Environ. Health Sci. Eng. 2020, 18, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.; Bhavani, V.R.; Xu, A.Q.; Hossain, M. An artificial intelligence model for heart disease detection using machine learning algorithms. Healthc. Anal. 2022, 2, 100016. [Google Scholar] [CrossRef]
- Neshat, M.; Ahmedb, M.; Askarid, H.; Thilakaratnee, M.; Mirjalilia, S. Hybrid Inception Architecture with Residual Connection: Fine-tuned Inception-ResNet Deep Learning Model for Lung Inflammation Diagnosis from Chest Radiographs. arXiv 2023, arXiv:2310.02591. [Google Scholar]
- Sajja, T.K.; Kalluri, H.K. A Deep Learning Method for Prediction of Cardiovascular Disease Using Convolutional Neural Network. Rev. D’Intelligence Artif. 2020, 34, 601–606. [Google Scholar] [CrossRef]
- Saboor, A.; Usman, M.; Ali, S.; Samad, A.; Abrar, M.F.; Ullah, N. A method for improving prediction of human heart disease using machine learning algorithms. Mob. Inf. Syst. 2022, 2022, 1410169. [Google Scholar] [CrossRef]
- Hera, S.Y.; Amjad, M.; Saba, M.K. Improving heart disease prediction using multi-tier ensemble model. Netw. Model. Anal. Health Informatics Bioinform. 2022, 11, 41. [Google Scholar] [CrossRef]
- Pandey, S. The Cardiovascular Disease Prediction Using Machine Learning. Buana Inf. Technol. Comput. Sci. (BIT CS) 2023, 4, 24–27. [Google Scholar] [CrossRef]
S. No | Heart Disease | Description |
---|---|---|
01 | Coronary artery disease | Damage to the heart’s major arteries. These include:
|
02 | Hypertension | The condition in which there is an excessive force of blood against the arterial walls is characterized as being hypertensive. |
03 | Cardiac Arrest | A state in which the cessation of cardiac contractions, respiratory movements, and loss of consciousness occur is commonly referred to as cardiac arrest. |
04 | Arrhythmias | An irregular rhythm of the heart, known as bradycardia, which manifests as a decreased heart rate, and tachycardia, which presents as an increased heart rate, are both observed phenomena. |
05 | Peripheral AD | The narrowing of arteries, resulting in a constriction of blood flow, is classified as a condition known as arteriosclerosis. |
06 | Ischemia | Restricted blood supply to heart muscles. |
Country | 2020 | 2030 | ||
---|---|---|---|---|
Quantitative measure of morality. | Estimated annualized rate per 100,000. | Quantitative measure of mortality. | Estimated annualized rate per 100,000. | |
India | 72,221,165 | 3172 | 16,937,070 | 2570 |
Brazil | 104,840 | 2021 | 16,141,620 | 1857 |
China | 5,656,890 | 1395 | 10,350,030 | 1653 |
Index | Feature | Description | Value Type |
---|---|---|---|
1 | Age | Age of the patient | Numerical |
2 | Sex | Gender of the patient | (Male/Female) |
3 | Cholesterol | Cholesterol levels of the patient | Numerical |
4 | Blood Pressure | Blood pressure of the patient (systolic/diastolic) | Numerical |
5 | Heart Rate | Heart rate of the patient | Numerical |
6 | Diabetes | Whether the patient has diabetes | (Yes/No) |
7 | Family History | Family history of heart-related problems | (1: Yes, 0: No) |
8 | Smoking | Smoking status of the patient | (1: Smoker, 0: Non-smoker) |
9 | Obesity | Obesity status of the patient | (1: Obese, 0: Not obese) |
10 | Alcohol Consumption | Level of alcohol consumption by the patient | (None/ Light/ Moderate/ Heavy) |
11 | Exercise Hours Per Week | Number of exercise hours per week | Numerical |
12 | Diet | Dietary habits of the patient | (Healthy/ Average/ Unhealthy) |
13 | Previous Heart Problems | Previous heart problems of the patient | (1: Yes, 0: No) |
14 | Medication Use | Medication usage by the patient | (1: Yes, 0: No) |
15 | Stress Level | Stress level reported by the patient | (1–10) |
16 | Sedentary Hours Per Day | Hours of sedentary activity per day | Numerical |
17 | Income | Income level of the patient | Numerical |
18 | BMI | Body Mass Index (BMI) of the patient | Numerical |
19 | Triglycerides | Triglyceride levels of the patient | Numerical |
20 | Physical Activity Days Per Week | Days of physical activity per week | Numerical |
21 | Sleep Hours Per Day | Hours of sleep per day | Numerical |
22 | Country | Country of the patient | Numerical |
23 | Continent | Continent where the patient resides | Numerical |
24 | Hemisphere | Hemisphere where the patient resides | Numerical |
25 | Heart Attack Risk | Presence of heart attack risk | (1: Yes, 0: No) |
Attribute | Count | Mean | Std | min | 25% | 50% | 75% | max |
---|---|---|---|---|---|---|---|---|
Age | 8763 | 58.8 | 21.2 | 18 | 35 | 54 | 72 | 90 |
Sex | 8763 | 0.67 | 0.45 | 0 | 0 | 1 | 1 | 1 |
Cholesterol | 8763 | 259 | 80 | 120 | 192 | 259 | 330 | 400 |
Blood Pressure | 8763 | 1.85 | 0.35 | 1 | 2 | 2 | 2 | 2 |
Heart Rate | 8763 | 75 | 20 | 40 | 58 | 75 | 93 | 110 |
Diabetes | 8763 | 0.65 | 0.47 | 0 | 0 | 1 | 1 | 1 |
Family History | 8763 | 0.49 | 0.49 | 0 | 0 | 0 | 1 | 1 |
Smoking | 8763 | 0.896 | 0.304 | 0 | 1 | 1 | 1 | 1 |
Obesity | 8763 | 0.501 | 0.5 | 0 | 0 | 1 | 1 | 1 |
Alcohol consumption | 8763 | 0.589 | 0.49 | 0 | 0 | 1 | 1 | 1 |
Exercise hours/W | 8763 | 10.01 | 5.78 | 0.002 | 4.98 | 10.06 | 15.05 | 19.99 |
Diet | 8763 | 0.992 | 0.81 | 0 | 0 | 1 | 2 | 2 |
Previous heart problem | 8763 | 0.49 | 0.5 | 0 | 0 | 0 | 1 | 1 |
Medication use | 8763 | 0.498 | 0.5 | 0 | 0 | 0 | 1 | 1 |
Stress level | 8763 | 5.46 | 2.85 | 1 | 3 | 5 | 8 | 10 |
Sedentary H/D | 8763 | 5.99 | 3.46 | 0.001 | 2.998 | 5.93 | 9 | 11.9 |
Income | 8763 | 158,263 | 80,575 | 20,062 | 88,310 | 157,866 | 227,749 | 299,954 |
BMI | 8763 | 28.89 | 6.31 | 18 | 23.4 | 28.7 | 32.3 | 39.9 |
Triglycerides | 8763 | 418.3 | 223.17 | 30 | 227 | 418 | 612 | 800 |
Physical act/w | 8763 | 3.489 | 2.28 | 0 | 2 | 3 | 5 | 7 |
Sleep hours/day | 8763 | 7.02 | 1.98 | 4 | 5 | 7 | 9 | 10 |
HA Risk | 8763 | 0.358 | 0.47 | 0 | 0 | 1 | 1 | 1 |
Algorithm | Accuracy | Sensitivity | Specificity | Precision | NPV | FPR | FDR | FNR | FI-Score | MCC |
---|---|---|---|---|---|---|---|---|---|---|
DT | 0.716 | 0.695 | 1 | 1 | 0.193 | 0 | 0 | 0.304 | 0.82 | 0.366 |
RF | 0.743 | 0.729 | 0.78 | 0.904 | 0.504 | 0.219 | 0.095 | 0.27 | 0.807 | 0.457 |
GBoost | 0.909 | 0.898 | 0.953 | 0.987 | 0.703 | 0.046 | 0.012 | 0.101 | 0.94 | 0.766 |
CatBoost | 0.8739 | 0.8372 | 1 | 1 | 0.6415 | 0 | 0 | 0.1628 | 0.9114 | 0.7329 |
XGBoost | 0.9238 | 0.899 | 0.9869 | 0.9943 | 0.794 | 0.0131 | 0.0057 | 0.101 | 0.9442 | 0.8356 |
Light GBM | 0.938 | 0.934 | 0.953 | 0.987 | 0.785 | 0.046 | 0.012 | 0.065 | 0.96 | 0.828 |
AdaBoost | 0.952 | 0.952 | 0.953 | 0.987 | 0.8344 | 0.0469 | 0.0122 | 0.0475 | 0.9698 | 0.8628 |
Ref | Year | Method | Dataset | Splitting Ratio | Results |
---|---|---|---|---|---|
[46] | 2020 | CNN | UCI with 303 instances and 14 attributes | 70:30 | Accuracy = 94.78% |
[47] | 2022 | AB, LR, CART, SVM, LDA, RF, XGB | UCI with 303 instances and 14 attributes | 70:30 | XGB Precision = 90, Recall = 100, F-measure = 95, and Accuracy = 91.80%. |
[8] | 2023 | SVR, ANFIS, M5 Tree | UCI with 1028 instances and 13 attributes | 70:30 | ANFIS, ANN-LM, and ANN-BFG, Accuracy = 94.7%, 96.2%, and 91.50. |
[48] | 2022 | Stacking ensemble of LR, RF, SGD, Ensemble of GDC and ADA | Cleveland, Switzerland, long beach Va Satlog | 60:40 | MTE, Accuracy, Precision, Recall, F-measure, AUC-ROC = 91.84%, 91.75%, 95.22%, 93.30% and 94.05%. |
[49] | 2023 | RF, LR, NB, DT | UCI | 70:30 | Accuracy, ROC, Precision, Recall, F1, and Score = 0.98%, 0.63%, 0.98%, 1.00%, 0.99%. |
[19] | 2021 | CNN | UCI | 60:40 | Precision = 0.8669, Recall = 0.8174, Fl-score = 0.8414, Accuracy = 0.8667. |
Our Model | DT, RF, CatB, GB, XGB, Adaboost, Light GBM | Kaggle with 8763 and 26 attributes | 60:40 | AdaBoost, Accuracy, Sensitivity, Specificity, and Precision = 0.952%, 0.952%, 0.953%, and 0.987%. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nissa, N.; Jamwal, S.; Neshat, M. A Technical Comparative Heart Disease Prediction Framework Using Boosting Ensemble Techniques. Computation 2024, 12, 15. https://doi.org/10.3390/computation12010015
Nissa N, Jamwal S, Neshat M. A Technical Comparative Heart Disease Prediction Framework Using Boosting Ensemble Techniques. Computation. 2024; 12(1):15. https://doi.org/10.3390/computation12010015
Chicago/Turabian StyleNissa, Najmu, Sanjay Jamwal, and Mehdi Neshat. 2024. "A Technical Comparative Heart Disease Prediction Framework Using Boosting Ensemble Techniques" Computation 12, no. 1: 15. https://doi.org/10.3390/computation12010015
APA StyleNissa, N., Jamwal, S., & Neshat, M. (2024). A Technical Comparative Heart Disease Prediction Framework Using Boosting Ensemble Techniques. Computation, 12(1), 15. https://doi.org/10.3390/computation12010015