Influence of Gyrotactic Microorganisms on Bioconvection in Electromagnetohydrodynamic Hybrid Nanofluid through a Permeable Sheet
Abstract
:1. Introduction
- The mathematical model is extended to three dimensions instead of the usual two-dimensional model;
- An unsteady flow model is investigated instead of a steady-state case;
- Two-phase hybrid nanofluid is considered with variable distribution nanoparticles-fraction;
- The considered model combines the effect of microorganism type and nanoparticle shape factor.
2. Mathematical Formulation
3. System Invariant Group Transformation
3.1. Similarity Transformation of the Problem
3.2. The Problem Analysis
3.3. The Full Transformation of System’s Variables
The Independent Variables Transformation
4. Results and Discussion
4.1. Verification of the Results Obtained
4.2. The Influence of Prandtl Number,
4.3. The Influence of Magnetic Diffusivity
4.4. The Influence of Brownian Motion Coefficient,
4.5. The Influence of Thermophoresis Diffusion Coefficient,
4.6. The Influence of Microorganism Diffusion Coefficient,
4.7. The Influence of Concentration Difference,
4.8. The Influence of Temperature Difference,
4.9. The Influence of Shape Factor,
4.10. The Influence of Bioconvection Peclet Number,
5. Conclusions
- The temperature, heat flow, nanoparticles, and bacterial density all drop when values rise;
- Examining the impact of magnetic diffusivity, it is shown that an increase in values result in a decrease in both the magnetic field and nanofluid velocity;
- The temperature, heat flow, and bacterial density all drop as values rise;
- The temperature, heat flow, and nanoparticles all rise when values rise;
- Examining how the microbe diffusion coefficient affects things shows that as values rise, so does the density of bacteria;
- Examining the effect of concentration difference indicates that when values rise, the temperature, heat flow, bacterial density, and nanoparticles all decrease;
- Examining the impact of temperature variations shows that when values rise, the number of nanoparticles increases while the density of bacteria decreases;
- Examining the impact of the nanoparticle shape factor demonstrates that as n values increase, so does the density of both nanoparticles and bacteria;
- Examining the effects of bioconvection Peclet number indicates that an increase in values results in a decrease in bacterial density.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Latin characters | |
Components of velocity | |
Stretching velocity | |
Components of magnetic field | |
Stretching magnetic field | |
Independent variables | |
Constant | |
External magnetic flux | |
Mean absorption coefficient | |
Acceleration due to gravity | |
Thermal conductivity of hybrid nanofluid | |
Brownian diffusion coefficient | |
Thermophoresis diffusion coefficient | |
Temperature of nanoparticles | |
Temperature at wall | |
Ambient temperature | |
Concentration of nanoparticles | |
Concentration at wall | |
Ambient concentration | |
Microorganisms’ concentration | |
Microorganisms at wall | |
Ambient microorganisms | |
Prandtl number | |
Volumetric rate of heat generation/absorption | |
Shape factor | |
Cell swimming speed | |
Thermal relaxation constant | |
Bioconvection Peclet number | |
Microorganism diffusion coefficient | |
Suction/injection velocity | |
Temperature difference | |
Concentration difference | |
Differential coefficient functions | |
System variables | |
Group structure | |
Original dependent variables of the system | |
Constants | |
Greek characters | |
Magnetic permeability | |
Density of hybrid nanofluid | |
Viscosity of hybrid nanofluid | |
Magnetic diffusivity | |
Density of microorganisms | |
Density of base fluid | |
Magnetic field parameter | |
Volumetric heat capacity of hybrid nanofluid | |
Similarity variable |
References
- Ali, A.; Sarkar, S.; Das, S.; Jana, R.N. Investigation of cattaneo–christov double diffusions theory in bioconvective slip flow of radiated magneto-cross-nanomaterial over stretching cylinder/plate with activation energy. Int. J. Appl. Comput. Math. 2021, 7, 208. [Google Scholar] [CrossRef]
- Alwatban, A.M.; Khan, S.U.; Waqas, H.; Tlili, I. Interaction of Wu’s slip features in bioconvection of Eyring Powell nanoparticles with activation energy. Processes 2019, 7, 859. [Google Scholar] [CrossRef]
- Biswas, N.; Mandal, D.K.; Manna, N.K.; Benim, A.C. Enhanced energy and mass transport dynamics in a thermo-magneto-bioconvective porous system containing oxytactic bacteria and nanoparticles: Cleaner energy application. Energy 2023, 263, 125775. [Google Scholar] [CrossRef]
- Dawar, A.; Saeed, A.; Islam, S.; Shah, Z.; Kumam, W.; Kumam, P. Electromagnetohydrodynamic bioconvective flow of binary fluid containing nanoparticles and gyrotactic microorganisms through a stratified stretching sheet. Sci. Rep. 2021, 11, 23159. [Google Scholar] [CrossRef] [PubMed]
- Ghadikolaei, S.; Hosseinzadeh, K.; Ganji, D. Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe3O4-Ag) dependent on shape factor. J. Mol. Liquids 2018, 262, 376–388. [Google Scholar] [CrossRef]
- Ghadikolaei, S.; Hosseinzadeh, K.; Ganji, D. Investigation on ethylene glycol-water mixture fluid suspend by hybrid nanoparticles (TiO2-CuO) over rotating cone with considering nanoparticles shape factor. J. Mol. Liquids 2018, 272, 226–236. [Google Scholar] [CrossRef]
- Hosseinzadeh, K.; Asadi, A.; Mogharrebi, A.; Ermia Azari, M.; Ganji, D. Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect. J. Therm. Anal. Calorim. 2021, 143, 1081–1095. [Google Scholar] [CrossRef]
- Hosseinzadeh, K.; Roghani, S.; Mogharrebi, A.; Asadi, A.; Ganji, D. Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic field. J. Therm. Anal. Calorim. 2021, 143, 1413–1424. [Google Scholar] [CrossRef]
- Hosseinzadeh, K.; Salehi, S.; Mardani, M.; Mahmoudi, F.; Waqas, M.; Ganji, D. Investigation of nano-Bioconvective fluid motile microorganism and nanoparticle flow by considering MHD and thermal radiation. Inform. Med. Unlocked 2020, 21, 100462. [Google Scholar] [CrossRef]
- Khan, N.S.; Shah, Q.; Sohail, A.; Ullah, Z.; Kaewkhao, A.; Kumam, P.; Zubair, S.; Ullah, N.; Thounthong, P. Rotating flow assessment of magnetized mixture fluid suspended with hybrid nanoparticles and chemical reactions of species. Sci. Rep. 2021, 11, 11277. [Google Scholar] [CrossRef]
- Koriko, O.K.; Shah, N.A.; Saleem, S.; Chung, J.D.; Omowaye, A.J.; Oreyeni, T. Exploration of bioconvection flow of MHD thixotropic nanofluid past a vertical surface coexisting with both nanoparticles and gyrotactic microorganisms. Sci. Rep. 2021, 11, 16627. [Google Scholar] [CrossRef]
- Kuznetsov, A. The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int. Commun. Heat Mass Transf. 2010, 37, 1421–1425. [Google Scholar] [CrossRef]
- Mahanthesh, B.; Thriveni, K. Significance of inclined magnetic field on nano-bioconvection with nonlinear thermal radiation and exponential space based heat source: A sensitivity analysis. Eur. Phys. J. Spec. Top. 2021, 230, 1487–1501. [Google Scholar] [CrossRef]
- Mohamed, K.; Ismail, T.; Nourreddine, N.; Mohamed Rafik, S. Analytical study of nano-bioconvective flow in a horizontal channel using Adomian decomposition method. J. Comput. Appl. Res. Mech. Eng. 2020, 9, 245–258. [Google Scholar]
- Moradi, M.R.; Hosseinzadeh, K.; Hasibi, A.; Domiri Ganji, D. Hydrothermal study on nano-bioconvective fluid flow over a vertical plate under the effect of magnetic field. Numer. Heat Transf. Part B Fundam. 2023, 1–15. [Google Scholar] [CrossRef]
- Nawaz, M. Role of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol. Phys. A Stat. Mech. Its Applic. 2020, 537, 122447. [Google Scholar] [CrossRef]
- Nawaz, M.; Nazir, U.; Saleem, S.; Alharbi, S.O. An enhancement of thermal performance of ethylene glycol by nano and hybrid nanoparticles. Phys. A Stat. Mech. Its Applic. 2020, 551, 124527. [Google Scholar] [CrossRef]
- Nazir, U.; Nawaz, M.; Alharbi, S.O. Thermal performance of magnetohydrodynamic complex fluid using nano and hybrid nanoparticles. Phys. A Stat. Mech. Its Applic. 2020, 553, 124345. [Google Scholar] [CrossRef]
- Rana, B.; Arifuzzaman, S.; Islam, S.; Reza-E-Rabbi, S.; Al-Mamun, A.; Mazumder, M.; Roy, K.C.; Khan, M.S. Swimming of microbes in blood flow of nano-bioconvective Williamson fluid. Therm. Sci. Eng. Prog. 2021, 25, 101018. [Google Scholar] [CrossRef]
- Aziz, S.; Kolsi, L.; Ahmad, I.; Al-Turjman, F.; Omri, M.; Khan, S.U. Thermal stability and bioconvection investigation for couple stress nanofluid due to a three-dimensional accelerated frame. Waves Random Complex Media 2022, 1–22. [Google Scholar] [CrossRef]
- Mansour, M.A.; Rashad, A.M.; Mallikarjuna, B.; Hussein, A.K.; Aichouni, M.; Kolsi, L. MHD mixed bioconvection in a square porous cavity filled by gyrotactic microorganisms. Int. J. Heat Technol. 2019, 37, 433–445. [Google Scholar] [CrossRef]
- Ghachem, K.; Al-Khaled, K.; Khan, S.U.; Alwadai, N.; Alshammari, B.M.; Kolsi, L.; Chammam, W.; Almuqrin, M. An unsteady bioconvective non-Newtonian nanofluid model with variable thermal properties and modified heat flux framework. Int. J. Modern Phys. B 2023, 9, 2450202. [Google Scholar] [CrossRef]
- Almeshaal, M.A.; Palaniappan, M.; Kolsi, L. Significance of induced magnetic force for bioconvective transport of thixotropic nanofluid with variable thermal conductivity. Int. J. Modern Phys. B 2023, 37, 2350298. [Google Scholar] [CrossRef]
- Rana, P.; Makkar, V.; Gupta, G. Finite element study of bio-convective Stefan blowing Ag-MgO/water hybrid nanofluid induced by stretching cylinder utilizing non-Fourier and non-Fick’s laws. Nanomaterials 2021, 11, 1735. [Google Scholar] [CrossRef] [PubMed]
- Bees, M.A.; Croze, O.A. Mathematics for streamlined biofuel production from unicellular algae. Biofuels 2014, 5, 53–65. [Google Scholar] [CrossRef]
- Saleem, S.; Rafiq, H.; Al-Qahtani, A.; El-Aziz, M.A.; Malik, M.; Animasaun, I. Magneto Jeffrey nanofluid bioconvection over a rotating vertical cone due to gyrotactic microorganism. Math. Probl. Eng. 2019, 2019, 3478037. [Google Scholar] [CrossRef]
- Adhikari, R.; Das, S. Biological transmission in a magnetized reactive Casson–Maxwell nanofluid over a tilted stretchy cylinder in an entropy framework. Chin. J. Phys. 2023, 86, 194–226. [Google Scholar] [CrossRef]
- Hazarika, S.; Ahmed, S. Physical Insights on Bio-Convection in Prandtl Nanofluid over an Inclined Stretching Sheet in Non-Darcy Medium: Numerical Simulation. Sci. Iran. 2023, in press.
- Ge-JiLe, H.; Waqas, H.; Khan, S.U.; Khan, M.I.; Farooq, S.; Hussain, S. Three-dimensional radiative bioconvective flow of a sisko nanofluid with motile microorganisms. Coatings 2021, 11, 335. [Google Scholar] [CrossRef]
- Datta, T.; Rajoria, A.; Sk, M.T. Bioconvective Study on Flow Analysis of the Mhd Falkner-Skan Flow of Eyring-Powell Nanofluid with Gyrotatic Microorganism Past A Wedge. J. Biol. Syst. 2016, 24, 1–21. [Google Scholar]
- Alsheekhhussain, Z.; Moaddy, K.; Shah, R.; Alshammari, S.; Alshammari, M.; Al-Sawalha, M.M.; Alderremy, A.A. Extension of the Optimal Auxiliary Function Method to Solve the System of a Fractional-Order Whitham–Broer–Kaup Equation. Fractal Fract. 2023, 8, 1. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Mukhtar, S.; Shah, R.; Ganie, A.H.; Moaddy, K. Solitary Waves Propagation Analysis in Nonlinear Dynamical System of Fractional Coupled Boussinesq-Whitham-Broer-Kaup Equation. Fract. Fract. 2023, 7, 889. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Yasmin, H.; Shah, R.; Ganie, A.H.; Moaddy, K. Unraveling the Dynamics of Singular Stochastic Solitons in Stochastic Fractional Kuramoto–Sivashinsky Equation. Fract. Fract. 2023, 7, 753. [Google Scholar] [CrossRef]
- Salehi, S.; Nori, A.; Hosseinzadeh, K.; Ganji, D.D. Hydrothermal analysis of MHD squeezing mixture fluid suspended by hybrid nanoparticles between two parallel plates. Case Stud. Therm. Eng. 2020, 21, 100650. [Google Scholar] [CrossRef]
- Uddin, M.J.; Rana, P.; Gupta, S.; Uddin, M.N. Bio-nanoconvective Micropolar Fluid Flow in a Darcy Porous Medium Past a Cone with Second-Order Slips and Stefan Blowing: FEM Solution. Iran. J. Sci. Technol. Trans. Mech. Eng. 2023, 47, 1–15. [Google Scholar] [CrossRef]
- Uddin, M.J.; Kabir, M.N.; Alginahi, Y.; Bég, O.A. Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 6910–6927. [Google Scholar] [CrossRef]
- Waqas, H.; Farooq, U.; Bhatti, M.M.; Hussain, S. Magnetized bioconvection flow of Sutterby fluid characterized by the suspension of nanoparticles across a wedge with activation energy. ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Mech. 2021, 101, e202000349. [Google Scholar] [CrossRef]
- Waqas, H.; Khan, S.U.; Hassan, M.; Bhatti, M.M.; Imran, M. Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles. J. Mol. Liq. 2019, 291, 111231. [Google Scholar] [CrossRef]
- Yook, S.J.; Raju, C.S.K.; Almutairi, B.; Mamatha, S.U.; Shah, N.A.; Eldin, S.M. Heat and momentum diffusion of ternary hybrid nanoparticles in a channel with dissimilar permeability’s and moving porous walls: A Multi-linear regression. Case Stud. Therm. Eng. 2023, 47, 103133. [Google Scholar] [CrossRef]
- Zuhra, S.; Khan, N.S.; Shah, Z.; Islam, S.; Bonyah, E. Simulation of bioconvection in the suspension of second grade nanofluid containing nanoparticles and gyrotactic microorganisms. Aip Adv. 2018, 8, 105210. [Google Scholar] [CrossRef]
- Morgan, A.J.A. The reduction by one of the number of independent variables in some systems of partial differential equations. Q. J. Math. 1952, 3, 250–259. [Google Scholar] [CrossRef]
- Mabrouk, S.M.; Rashed, A.S. Analysis of (3 + 1)-dimensional Boiti—Leon—Manna–Pempinelli equation via Lax pair investigation and group transformation method. Comput. Math. Appl. 2017, 74, 2546–2556. [Google Scholar] [CrossRef]
- Saleh, R.; Kassem, M.; Mabrouk, S. Exact solutions of Calgero-Bogoyavlenskii-Schiff equation using the singular manifold method after Lie reductions. MMA Math. Methods Appl. Sci. 2017, 40, 5851–5862. [Google Scholar] [CrossRef]
- Rashed, A.S.; Kassem, M.M. Group analysis for natural convection from a vertical plate. J. Comput. Appl. Math. 2008, 222, 392–403. [Google Scholar] [CrossRef]
- Mabrouk, S.; Kassem, M. Group similarity solutions of (2 + 1) Boiti-Leon-Manna-Pempinelli Lax pair. ASEJ Ain Shams Eng. J. 2014, 5, 227–235. [Google Scholar] [CrossRef]
- Mabrouk, S.; Kassem, M.; Abd-el-Malek, M. Group similarity solutions of the lax pair for a generalized Hirota-Satsuma equation. Appl. Math. Comput. 2013, 219, 7882–7890. [Google Scholar] [CrossRef]
- Kassem, M.M.; Rashed, A.S. Group solution of a time dependent chemical convective process. Appl. Math. Comput. 2009, 215, 1671–1684. [Google Scholar] [CrossRef]
- Rashed, A.S.; Mahmoud, T.; Kassem, M. Analysis of homogeneous steady state nanofluid surrounding cylindrical solid pipes. Egypt. J. Eng. Sci. Technol. 2020, 31, 71–82. [Google Scholar] [CrossRef]
- Alshomrani, A.S.; Ullah, M.Z.; Baleanu, D. Importance of multiple slips on bioconvection flow of cross nanofluid past a wedge with gyrotactic motile microorganisms. Case Stud. Therm. Eng. 2020, 22, 100798. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashed, A.S.; Nasr, E.H.; Mabrouk, S.M. Influence of Gyrotactic Microorganisms on Bioconvection in Electromagnetohydrodynamic Hybrid Nanofluid through a Permeable Sheet. Computation 2024, 12, 17. https://doi.org/10.3390/computation12010017
Rashed AS, Nasr EH, Mabrouk SM. Influence of Gyrotactic Microorganisms on Bioconvection in Electromagnetohydrodynamic Hybrid Nanofluid through a Permeable Sheet. Computation. 2024; 12(1):17. https://doi.org/10.3390/computation12010017
Chicago/Turabian StyleRashed, Ahmed S., Ehsan H. Nasr, and Samah M. Mabrouk. 2024. "Influence of Gyrotactic Microorganisms on Bioconvection in Electromagnetohydrodynamic Hybrid Nanofluid through a Permeable Sheet" Computation 12, no. 1: 17. https://doi.org/10.3390/computation12010017
APA StyleRashed, A. S., Nasr, E. H., & Mabrouk, S. M. (2024). Influence of Gyrotactic Microorganisms on Bioconvection in Electromagnetohydrodynamic Hybrid Nanofluid through a Permeable Sheet. Computation, 12(1), 17. https://doi.org/10.3390/computation12010017