Modeling the Properties of Magnetostrictive Elements Using Quantum Emulators
Abstract
:1. Introduction
2. Materials and Methods
- Each state of the atom must have a certain value of the total angular momentum.
- The total moment of all electrons in an atom must obey the rules of quantization and spatial quantization.
- Since the spin of electrons is also the moment of momentum, it should also contribute to the total moment of the atom.
- The moments and spins of individual electrons should be combined so that the total moment remains an observable quantity and obeys the postulates and equations of quantum mechanics.
- Write down the formally exact solution of the SE (1) in the form of a vector :
- Set the initial state , the time point , or whichever is required to determine the solution and discretization step , such that , for some integer . To accept ,
- Construct a quantum circuit of in the form:
- The beginning of the iterative process.
- At one iteration step, the value is calculated, and the counter i is incremented by one.
- The iterative process stops when the condition is met. The result is returned to .
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barabanov, A.L. Quantum Mechanics; MIPT: Dolgoprudny, Russia, 2015; 97p. [Google Scholar]
- Kashurnikov, V.A.; Krasavin, A.V. Computational Methods in Quantum Physics; MEPHI: Moscow, Russia, 2005; 412p. [Google Scholar]
- Linev, A.V. Technique for Solving the Nonstationary Schrodinger Equation Using a Parallel Version of the Runge-Kutta Method; Linev, A.V., Satanin, A.M., Eds.; Nizhny Novgorod State University: Nizhny Novgorod, Russia, 2014; 89p. [Google Scholar]
- Serov, V.V. Numerical Methods for Solving Quantum Mechanical Problems; Saratov State University: Saratov, Russia, 2008; 39p. [Google Scholar]
- Chuluunbaatar, O. Multilayer schemes for the numerical solution of the nonstationary Schrodinger equation by the finite element method. Bull. RUDN Math. Ser. Comput. Sci. Phys. 2008, 69–84. Available online: https://cyberleninka.ru/article/n/mnogosloynye-shemy-dlya-chislennogo-resheniya-nestatsionarnogo-uravneniya-shryodingera-metodom-konechnyh-elementov/viewer (accessed on 6 May 2024).
- Liu, Y.; Ran, M.; Zhang, L. Hamiltonian-preserving schemes for the two-dimensional fractional nonlinear Schrödinger wave equations. Comput. Math. Appl. 2023, 150, 54–69. [Google Scholar] [CrossRef]
- Zhang, Q.; Duan, J. Constraint minimization problem of the nonlinear Schrödinger equation with the Anderson Hamiltonian. J. Math. Anal. Appl. 2024, 538, 128360. [Google Scholar] [CrossRef]
- Chen, Y.P.; Wei, E.I.; Jiang, L.; Meng, M.; Wu, Y.M.; Chew, W.C. A unified Hamiltonian solution to Maxwell–Schrödinger equations for modeling electromagnetic field–particle interaction. Comput. Phys. Commun. 2017, 215, 63–70. [Google Scholar] [CrossRef]
- Lorin, E.; Yang, X. Quasi-optimal domain decomposition method for neural network-based computation of the time-dependent Schrödinger equation. Comput. Phys. Commun. 2024, 299, 109129. [Google Scholar] [CrossRef]
- Gabrick, E.C.; Sayari, E.; de Castro, A.S.M.; Trobia, J.; Batista, A.M.; Lenzi, E.K. Fractional Schrödinger equation and time dependent potentials. Commun. Nonlinear Sci. Numer. Simul. 2023, 123, 107275. [Google Scholar] [CrossRef]
- Ignatov, S.K. Quantum Chemistry. Quantum Mechanics and the Structure of the Atom; Nizhny Novgorod State University: Nizhny Novgorod, Russia, 2015; 113p. [Google Scholar]
- Kaiser, S.; Granad, K. Study Quantum Computing in Python and Q#; DMK Press: Moscow, Russia, 2021; 430p. [Google Scholar]
- Karpukhin, E.V.; Bormotov, A.N. Numerical methods to calculate magnetic fields of magnetostriction level converter EDP Sciences. In Proceedings of the International Scientific and Practical Conference “Environmental Risks and Safety in Mechanical Engineering” (ERSME-2023), Rostov-on-Don, Russia, 1–3 March 2023; Volume 376, p. 01101. [Google Scholar] [CrossRef]
- Bormotov, A.N.; Orlov, D.I.; Khnyreva, E.S.; Bratkova, M.E. Experience in using the algorithm for unloading a flywheel engine using magnetic actuators to ensure stabilization of the Aist-2D remote sensing satellite. Mod. Probl. Remote Sens. Earth Space 2023, 20, 157–164. [Google Scholar]
- Li, Z.; Ye, J.; Wang, Y.; Liu, L.; Shi, Y.; Li, Y.; Ye, J. A novel micromechanical method for nonlinear analysis of magnetostrictive composites. Compos. Struct. 2023, 311, 116633. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Ling, J.; Zhang, M. Temperature dependence modeling and experimental evaluation of a multidimensional discrete magnetostrictive actuator. Appl. Therm. Eng. 2023, 230, 120736. [Google Scholar] [CrossRef]
- Mizukawa, Y.; Ahmed, U.; Blažević, D.; Rasilo, P. Modeling and efficiency maximization of magnetostrictive energy harvester under free vibration. J. Sound Vib. 2023, 558, 117759. [Google Scholar] [CrossRef]
- Xie, J.; Li, M. A fast BDF2 Galerkin finite element method for the one-dimensional time-dependent Schrödinger equation with artificial boundary conditions. Appl. Numer. Math. 2023, 187, 89–106. [Google Scholar] [CrossRef]
- Navia, D.; Sanz, Á.S. Exploring the nonclassical dynamics of the “classical” Schrödinger equation. Ann. Phys. 2024, 463, 169637. [Google Scholar] [CrossRef]
- Bormotov, A.N.; Proshin, I.A.; Vasilkov, A.V. Investigation of Mathematical Models of Structure Formation of Composite Materials by Analytical Methods; Bulletin of the Bryansk State Technical University: Bryansk, Russian, 2011; pp. 62–70. Available online: https://www.elibrary.ru/item.asp?id=16388945 (accessed on 10 June 2024).
- Bormotov, A.N.; Proshin, I.A.; Kuznetsova, M.V. Quality management system in mathematical modeling and multicriteria synthesis of nanomodified composites for special purposes. Proc. Inst. Syst. Anal. Russ. Acad. Sci. 2014, 64, 110–118. [Google Scholar]
- Konovalova, I.I.; Selezneva, S.V.; Konovalov, A.N.; Bormotov, A.N. Algorithm for setting adaptive regulators. World Sci. Discov. 2013, 22–33. Available online: https://www.elibrary.ru/item.asp?id=19049611 (accessed on 10 June 2024).
- Nielsen, M.; Chang, I. Quantum Computing and Quantum Information; Publishing House “Mir”: Moscow, Russian, 2006; 824p. [Google Scholar]
- Ozhigov, Y.I. Modified Zalka–Wiesner scheme for modeling quantum systems. Math. Model. 2012, 24, 109–119. [Google Scholar]
- Satanin, A.M. Additional Chapters of Quantum Mechanics: Methods for Solving the Scattering Problem Using High-Performance Computing; Nizhny Novgorod State University: Nizhny Novgorod, Russia, 2014; 56p. [Google Scholar]
- Li, A.; Goto, K.; Kobayashi, Y.; Hara, Y.; Jia, Y.; Shi, Y.; Soutis, C.; Kurita, H.; Narita, F.; Otsuka, K.; et al. Energy harvesting using a magnetostrictive transducer based on switching control. Sens. Actuators A Phys. 2023, 355, 114303. [Google Scholar] [CrossRef]
- Kurita, H.; Keino, T.; Senzaki, T.; Narita, F. Direct and inverse magnetostrictive properties of Fe–Co–V alloy particle-dispersed polyurethane matrix soft composite sheets. Sens. Actuators A Phys. 2022, 337, 113427. [Google Scholar] [CrossRef]
- Bogdanov, Y.I.; Bogdanova, N.A.; Fastovets, D.V.; Lukichev, V.F. The solution of the Schrodinger equation on a quantum computer by the Zalka–Wiesner method taking into account quantum noise. Lett. JETF 2021, 114, 391–399. [Google Scholar]
- De Raedt, H.; Hams, A.H.; Michielsen, K.; De Raedt, K. Quantum Computer Emulator. Comput. Phys. Commun. 2000, 132, 1–20. [Google Scholar] [CrossRef]
- Pfister, R.; Schubert, G.; Kröll, M. Transfer of Logistics Optimizations to Material Flow Resource Optimizations using Quantum Computing. Procedia Comput. Sci. 2024, 232, 32–42. [Google Scholar] [CrossRef]
- Lee, K.F.; Reilly, D.R.; Moraw, P.; Kanter, G.S. Emulation of up-conversion based quantum key distribution scheme using active pump-controlled basis selection and adaptive thresholding. Opt. Commun. 2020, 475, 126258. [Google Scholar] [CrossRef]
- Osca, J.; Vala, J. Implementation of photon partial distinguishability in a quantum optical circuit simulation. Comput. Phys. Commun. 2023, 289, 108773. [Google Scholar] [CrossRef]
- Rakyta, P.; Morse, G.; Nádori, J.; Majnay-Takács, Z.; Mencer, O.; Zimborás, Z. Highly optimized quantum circuits synthesized via data-flow engines. J. Comput. Phys. 2024, 500, 112756. [Google Scholar] [CrossRef]
- Islam, M.T.; Nandwana, D.; Healy, J.; Jaklich, J.K.; Dong, B.; Yu, A.; Moore, E.E.; Ijiri, Y.; McCall, S.K.; Willard, M.A. Structural and magnetic properties of magnetostrictive Fe-Ga-Zr nanocrystalline alloy. J. Alloys Compd. 2023, 958, 170541. [Google Scholar] [CrossRef]
- Zhan, Y.-S.; Lin, C.-H. Micromechanics-based constitutive modeling of magnetostrictive 1–3 and 0–3 composites. Compos. Struct. 2021, 260, 113264. [Google Scholar] [CrossRef]
- Hubert, O.; Daniel, L.; Bernard, L. Multiscale Modeling of Magnetostrictive Materials. Encycl. Smart Mater. 2022, 5, 337–354. [Google Scholar] [CrossRef]
- Ajagekar, A.; You, F. Variational quantum circuit based demand response in buildings leveraging a hybrid quantum-classical strategy. Appl. Energy 2024, 364, 123244. [Google Scholar] [CrossRef]
- Cranganore, S.S.; De Maio, V.; Brandic, I.; Deelman, E. Paving the way to hybrid quantum–classical scientific workflows. Future Gener. Comput. Syst. 2024, 158, 346–366. [Google Scholar] [CrossRef]
- Hevia, J.L.; Peterssen, G.; Piattini, M. qSOA®: Dynamic integration for hybrid quantum/Classical software systems. J. Syst. Softw. 2024, 214, 112061. [Google Scholar] [CrossRef]
- Shukla, A.; Vedula, P. A hybrid classical-quantum algorithm for solution of nonlinear ordinary differential equations. Appl. Math. Comput. 2023, 442, 127708. [Google Scholar] [CrossRef]
- Gay-Balmaz, F.; Tronci, C. Evolution of hybrid quantum–classical wavefunctions. Phys. D Nonlinear Phenom. 2022, 440, 133450. [Google Scholar] [CrossRef]
- Zagrebin, M.A. Crystal Structure, Phase Diagrams, Electronic and Magnetic Properties of Three-, Four- and Five-Component Geisler Alloys: Dissertation for the degree of Doctor of Physical and Mathematical Sciences. Ph.D. Thesis, Chelyabinsk State University Publishing House, Chelyabinsk, Russia, 2021; 326p. [Google Scholar]
- Chernenko, V. Magnetostrictive Ni-Mn-Based Heusler Alloys. Encycl. Smart Mater. 2022, 4, 160–176. [Google Scholar] [CrossRef]
- Chen, Z.X.; Sakuraba, Y.; Masuda, K.; Xu, X.D.; Kumara, L.S.R.; Tajiri, H.; Kotani, Y.; Kushwaha, V.; Perumal, A.; Hono, K. Microstructure and atomic order analyses in Co-Fe-Cr-Al Heusler alloy thin films: Interpretation of spin gapless semiconductor-like transport properties. Acta Mater. 2022, 232, 117958. [Google Scholar] [CrossRef]
- Pfeuffer, L.; Gràcia-Condal, A.; Gottschall, T.; Koch, D.; Faske, T.; Bruder, E.; Lemke, J.; Taubel, A.; Ener, S.; Scheibel, F.; et al. Influence of microstructure on the application of Ni-Mn-In Heusler compounds for multicaloric cooling using magnetic field and uniaxial stress. Acta Mater. 2021, 217, 117157. [Google Scholar] [CrossRef]
- Budruk, A.; Phatak, C.; Petford-Long, A.K.; De Graef, M. In situ lorentz TEM magnetization study of a Ni–Mn–Ga ferromagnetic shape memory alloy. Acta Mater. 2011, 59, 4895–4906. [Google Scholar] [CrossRef]
- Hao, Z.; Liu, R.; Fan, Y.; Wang, L. First-principles calculations of a new half-metallic Heusler alloy Fe-Cr-As. J. Alloys Compd. 2020, 820, 153118. [Google Scholar] [CrossRef]
- Mori, K.; Horibe, T.; Maejima, K. Evaluation of the axial force in an FeCo bolt using the inverse magnetostrictive effect. Measurement 2020, 165, 108131. [Google Scholar] [CrossRef]
- Hao, X.; Yang, B.; Li, J.; Wang, D.; Li, Z.; Yan, H.; Zhang, Y.; Esling, C.; Zhao, X.; Zuo, L. Achieving a linear magnetostrictive effect in textured MnCoSiGe alloys. Acta Mater. 2023, 242, 118486. [Google Scholar] [CrossRef]
- Wittek, P.; Cucchietti, F.M. A second-order distributed Trotter–Suzuki solver with a hybrid CPU–GPU kernel. Comput. Phys. Commun. 2013, 184, 1165–1171. [Google Scholar] [CrossRef]
- Ariasoca, T.A.; Sholihun; Santoso, I. Trotter-Suzuki-time propagation method for calculating the density of states of disordered graphene. Comput. Mater. Sci. 2019, 156, 434–440. [Google Scholar] [CrossRef]
- Wittek, P.; Calderaro, L. Extended computational kernels in a massively parallel implementation of the Trotter–Suzuki approximation. Comput. Phys. Commun. 2015, 197, 339–340. [Google Scholar] [CrossRef]
- Semenova, A.; Dyachenko, S.A.; Korotkevich, A.O.; Lushnikov, P.M. Comparison of split-step and Hamiltonian integration methods for simulation of the nonlinear Schrödinger type equations. J. Comput. Phys. 2021, 427, 110061. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, B.; Wei, C.; Luo, M. Quantization method and Schrödinger equation of fractional time and their weak effects on Hamiltonian: Phase transitions of energy and wave functions. Commun. Nonlinear Sci. Numer. Simul. 2021, 93, 105531. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1–50. [Google Scholar] [CrossRef]
- Pirge, G.; Hyatt, C.V.; Altıntaş, S. Characterization of Ni-Mn-Ga magnetic shape memory alloys. J. Mater. Process. Technol. 2004, 155–156, 1266–1272. [Google Scholar] [CrossRef]
- Webster, P.J.; Ziebeck, K.R.A. Dynamic magnetic properties of ferromagnetic and antiferromagnetic Heusler alloys. J. Magn. Magn. Mater. 1985, 50, 7–18. [Google Scholar] [CrossRef]
- Scherban, A.B.; Meshcheryakova, E.N. Approach to the formalization of models of identification and structural management of complex systems. J. Adv. Res. Dyn. Control Syst. 2019, 11, 124–131. [Google Scholar]
- Vorontsov, A.A.; Slesarev, Y.N. Mathematical Modeling and Experimental Check of Output Signals of Magne-tostrictive Converters of Movement. In Proceedings of the 2019 International Russian Automation Conference, RusAutoCon, Sochi, Russia, 8–14 September 2019. [Google Scholar]
- Pashchenko, D.; Martyshkin, A.; Trokoz, D. Modeling of Process Control Algorithms for Parallel Computing Systems Using Nondeterministic Automata. Stud. Syst. Decis. Control 2021, 337, 235–249. [Google Scholar]
- Sedelnikov, A.; Kurkin, E.; Quijada-Pioquinto, J.G.; Lukyanov, O.; Nazarov, D.; Chertykov-tseva, V.; Kurkina, E.; Hoang, V.H. Algorithm for Propeller Optimization Based on Differential Evolution. Computation 2024, 12, 52. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpukhin, E.; Bormotov, A.; Manukyan, L. Modeling the Properties of Magnetostrictive Elements Using Quantum Emulators. Computation 2024, 12, 147. https://doi.org/10.3390/computation12070147
Karpukhin E, Bormotov A, Manukyan L. Modeling the Properties of Magnetostrictive Elements Using Quantum Emulators. Computation. 2024; 12(7):147. https://doi.org/10.3390/computation12070147
Chicago/Turabian StyleKarpukhin, Edvard, Alexey Bormotov, and Luiza Manukyan. 2024. "Modeling the Properties of Magnetostrictive Elements Using Quantum Emulators" Computation 12, no. 7: 147. https://doi.org/10.3390/computation12070147
APA StyleKarpukhin, E., Bormotov, A., & Manukyan, L. (2024). Modeling the Properties of Magnetostrictive Elements Using Quantum Emulators. Computation, 12(7), 147. https://doi.org/10.3390/computation12070147