Natural Convection Fluid Flow and Heat Transfer in a Valley-Shaped Cavity
Abstract
:1. Introduction
2. Numerical Model Formulations
- P is the pressure;
- ρ is the density;
- t is the time;
- T is the temperature, at time T0, where T0 = (Tc + Th)/2, the fluid medium in the triangular cavity is isothermally stationary.
3. Grid Dependency Test
4. Validation
5. Numerical Results and Discussion
5.1. Symmetric Flow
5.2. Asymmetric Flow
5.2.1. Pitchfork Bifurcation
5.2.2. Other Bifurcations
5.3. Unsteady Flow
5.3.1. Hopf Bifurcation
5.3.2. Chaotic
5.4. Temperature and Velocity
5.5. Heat Transfer
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
κ | thermal diffusivity |
τ | non-dimensional time |
Δτ | non-dimensional time step |
θ | non-dimensional temperature |
ν | kinematic viscosity |
ρ | Density |
β | thermal expansion coefficient |
A | aspect ratio |
g | gravitational acceleration |
Gr | Grashof number |
L | half length of the cavity |
H | height of the cavity |
k | thermal conductivity |
l | inclined wall length |
n | non-dimensional coordinate normal to the inclined wall |
ln | non-dimensional length of the inclined wall |
Nu | Nusselt number |
P | Pressure |
p | non-dimensional pressure |
Pr | Prandtl number |
Ra | Rayleigh number |
Rac | critical Rayleigh number for the break of the symmetric state |
T | dimensional temperature |
T0 | initial temperature |
Tc | cold top wall temperature |
Th | hot inclined wall temperature |
t | Time |
ΔT | temperature difference |
U, V | velocity components |
u, v | the non-dimensional velocity components |
X, Y | coordinates in the horizontal and vertical |
x, y | the non-dimensional coordinates in the horizontal and vertical |
References
- Gill, E. The boundary-layer regime for convection in a rectangular cavity. J. Fluid Mech. 1966, 26, 515–536. [Google Scholar] [CrossRef]
- Prandtl, L. Essentials of Fluid Dynamics; Blackie: London, UK, 1952; pp. 422–425. [Google Scholar]
- Ravi, M.R.R.; Henkes, R.A.W.M.; Hoogendoorn, C.J. On the high-Rayleigh-number structure of steady laminar natural-convection flow in a square enclosure. J. Fluid Mech. 1994, 262, 325–351. [Google Scholar] [CrossRef]
- Xu, F.; Patterson, J.C.; Lei, C. An experimental study of the unsteady thermal flow around a thin fin on a sidewall of a differentially heated cavity. Int. J. Heat Fluid Flow 2008, 29, 1139–1153. [Google Scholar] [CrossRef]
- Cui, H.; Xu, F.; Saha, S.C. Transition to unsteady natural convection flow in a prismatic enclosure of triangular section. Int. J. Therm. Sci. 2017, 111, 330–339. [Google Scholar] [CrossRef]
- Saha, S.C.; Khan, M.M.K. A review of natural convection and heat transfer in attic-shaped space. Energy Build. 2011, 43, 2564–2571. [Google Scholar] [CrossRef]
- Cui, H.; An, H.; Wang, W.; Han, Z.; Hu, B.; Xu, F.; Liu, Q.; Saha, S.C. Numerical Study of Mixed Convection and Heat Transfer in Arc-Shaped Cavity with Inner Heat Sources. Appl. Sci. 2023, 13, 1029. [Google Scholar] [CrossRef]
- Chuhan, I.S.; Li, J.; Guo, Z.; Yaqub, M.; Manan, M.A. Heat Transfer Investigation in Plus-Shaped Enclosure Using Power Law Fluid: A Finite Element Approach. Appl. Sci. 2023, 13, 11042. [Google Scholar] [CrossRef]
- Sarangi, A.; Sarangi, A.; Sahoo, S.S.; Mallik, R.K.; Awad, M.M. Conjugate Radiation and Convection Heat Transfer Analysis in Solar Cooker Cavity Using a Computational Approach. Energies 2023, 16, 3868. [Google Scholar] [CrossRef]
- Gebhart, B.; Jaluria, Y.; Mahajan, R.L.; Sammakia, B. Buoyancy-Induced Flows and Transport; Hemisphere: Washington, DC, USA, 1988. [Google Scholar]
- Manneville, P. Rayleigh-Bénard convection, thirty years of experimental, theoretical, and modeling work, Dynamics of spatio-temporal cellular structures. In Dynamics of Spatio-Temporal Cellular Structures: Henri Bénard Centenary Review; Springer: New York, NY, USA, 2006; Volume 207, pp. 41–65. [Google Scholar]
- Bodenschatz, E.; Pesch, W.; Ahlers, G. Recent developments in Rayleigh Benard convection. Annu. Rev. Fluid Mech. 2000, 32, 709–778. [Google Scholar] [CrossRef]
- Sparrow, E.M.; Husar, R.B. Longitudinal vortices in natural convection flow on inclined plates. J. Fluid Mech. 1969, 37, 251–255. [Google Scholar] [CrossRef]
- Batchelor, G.K. Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Q. Appl. Math. 1954, 12, 209–233. [Google Scholar] [CrossRef]
- Eckert, E.R.G.; Carlson, W.O. Natural convection in an air layer enclosed between two vertical plates at different temperatures. Int. J. Heat Mass Transf. 1961, 2, 106–120. [Google Scholar] [CrossRef]
- Elder, J.W. Laminar free convection in a vertical slot. J. Fluid Mech. 1965, 23, 77–98. [Google Scholar] [CrossRef]
- Xu, F.; Patterson, J.C.; Lei, C. An experimental study of the coupled thermal boundary layers adjacent to a partition in a differentially heated cavity. Exp. Therm. Fluid Sci. 2014, 54, 12–21. [Google Scholar] [CrossRef]
- Xu, F.; Patterson, J.C.; Lei, C. Transient natural convection flows around a thin fin on the sidewall of a differentially heated cavity. J. Fluid Mech. 2009, 639, 261–290. [Google Scholar] [CrossRef]
- Patterson, J.C.; Imberger, J. Unsteady natural convection in a rectangular cavity. J. Fluid Mech. 1980, 100, 65–86. [Google Scholar] [CrossRef]
- Patterson, J.C.; Armfield, S.W. Transient features of natural convection in a cavity. J. Fluid Mech. 1990, 219, 469–497. [Google Scholar] [CrossRef]
- De, A.K.; Eswaran, V.; Mishra, P.K. Scaling of heat transport and energy spectra of turbulent Rayleigh-Bénard convection in a large-aspect-ratio box. Int. J. Heat Fluid Flow 2017, 67, 111–124. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Bhowmick, S.; Mondal, R.N.; Saha, S.C. Unsteady natural convection in an initially stratified air-filled trapezoidal enclosure heated from below. Processes 2022, 10, 1383. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Bhowmick, S.; Mondal, R.N.; Saha, S.C. A Computational Study of Chaotic Flow and Heat Transfer within a Trapezoidal Cavity. Energies 2023, 16, 5031. [Google Scholar] [CrossRef]
- Princevac, M.; Fernando, H.J.S. Morning breakup of cold pools in complex terrain. J. Fluid Mech. 2008, 616, 99–109. [Google Scholar] [CrossRef]
- Asan, H.; Namli, L. Laminar natural convection in a pitched roof of triangular cross-section: Summer day boundary conditions. Energy Build. 2000, 33, 69–73. [Google Scholar] [CrossRef]
- Asan, H.; Namli, L. Numerical simulation of buoyant flow in a roof of triangular cross-section under winter day boundary conditions. Energy Build. 2001, 33, 753–757. [Google Scholar] [CrossRef]
- Salmun, H. Convection patterns in a triangular domain. Int. J. Heat Mass Transf. 1995, 38, 351–362. [Google Scholar] [CrossRef]
- Salmun, H. The stability of a single-cell steady-state solution in a triangular enclosure. Int. J. Heat Mass Transf. 1995, 18, 363–369. [Google Scholar] [CrossRef]
- Poulikakos, D.; Bejan, A. The fluid dynamics of an attic space. J. Fluid Mech. 1983, 131, 251–269. [Google Scholar] [CrossRef]
- Poulikakos, D.; Bejan, A. Natural convection experiments in a triangular enclosure. J. Heat Transf. 1983, 105, 652–655. [Google Scholar] [CrossRef]
- Flack, R.D. The experimental measurement of natural convection heat transfer in triangular enclosures heated or cooled from below. J. Heat Transf. 1980, 102, 770–772. [Google Scholar] [CrossRef]
- Holtzman, G.A.; Hill, R.W.; Ball, K.S. Laminar natural convection in isosceles triangular enclosures heated from below and symmetrically cooled from above. J. Heat Transf. 2000, 122, 485–491. [Google Scholar] [CrossRef]
- Lei, C.; Armfield, S.W.; Patterson, J.C. Unsteady natural convection in a water-filled isosceles triangular enclosure heated from below. Int. J. Heat Mass Transf. 2008, 51, 2637–2650. [Google Scholar] [CrossRef]
- Saha, S.C.; Lei, C.; Patterson, J.C. Natural convection in a triangular enclosure subject to periodic thermal forcing. In Proceedings of the 13th International Heat Transfer Conference, Sydney, Australia, 13–18 August 2006. [Google Scholar]
- Saha, S.C.; Lei, C.; Patterson, J.C. Effect of aspect ratio on natural convection in attics subject to periodic thermal forcing. Anziam J. 2007, 48, C618–C632. [Google Scholar] [CrossRef]
- Saha, S.C.; Patterson, J.C.; Lei, C. Natural convection in attic-shaped spaces subject to sudden and ramp heating boundary conditions. Heat Mass Transf. 2010, 46, 621–638. [Google Scholar] [CrossRef]
- Saha, S.C.; Patterson, J.C.; Lei, C. Natural convection in attics subject to instantaneous and ramp cooling boundary conditions. Energy Build. 2010, 42, 1192–1204. [Google Scholar] [CrossRef]
- Saha, S.C.; Patterson, J.C.; Lei, C. Natural convection and heat transfer in attics subject to periodic thermal forcing. International J. Therm. Sci. 2010, 49, 1899–1910. [Google Scholar] [CrossRef]
- Lei, C.; Patterson, J.C. Natural convection in a reservoir sidearm subject to solar radiation: Experimental observations. Exp. Fluids 2002, 32, 590–599. [Google Scholar] [CrossRef]
- Lei, C.; Patterson, J.C. Unsteady natural convection in a triangular enclosure induced by absorption of radiation. J. Fluid Mech. 2002, 460, 181–209. [Google Scholar] [CrossRef]
- Lei, C.; Patterson, J.C. Natural convection in a reservoir sidearm subject to solar radiation: A two-dimensional simulation. Numer. Heat Transf. 2002, 42, 13–32. [Google Scholar] [CrossRef]
- Mao, Y.; Lei, C.; Patterson, J.C. Unsteady natural convection in a triangular enclosure induced by absorption of radiation—A revisit by improved scaling analysis. J. Fluid Mech. 2009, 622, 75–102. [Google Scholar] [CrossRef]
- Mao, Y.; Lei, C.; Patterson, J.C. Unsteady near-shore natural convection induced by surface cooling. J. Fluid Mech. 2010, 642, 213–233. [Google Scholar] [CrossRef]
- Mao, Y.; Lei, C.; Patterson, J.C. Characteristics of instability of radiation-induced natural convection in shallow littoral waters. Int. J. Therm. Sci. 2010, 49, 170–181. [Google Scholar] [CrossRef]
- Bednarz, T.P.; Lei, C.; Patterson, J.C. A numerical study of unsteady natural convection induced by iso-flux surface cooling in a reservoir model. Int. J. Heat Mass Transf. 2009, 52, 56–66. [Google Scholar] [CrossRef]
- Whiteman, C.D. Breakup of temperature inversions in deep mountain valleys: Part I. Observations. J. Appl. Meteorol. 1982, 21, 270–289. [Google Scholar] [CrossRef]
- Roach, W.T.; Brown, R.; Caughey, S.J.; Garland, J. The physics of radiation fog: Part I: A field study. Q. J. R. Meteorol. Soc. 1976, 102, 313–333. [Google Scholar]
- Pilie, R.J.; Mack, E.J.; Kocmond, W.C.; Rogers, C.W.; Eadie, W.J. The life cycle of valley fog. Part I: Micrometeorological characteristics. J. Appl. Meteorol. 1975, 14, 347–363. [Google Scholar] [CrossRef]
- Fuzzi, S.; Facchini, M.C. The Po Valley fog experiment 1989, an overview. Tellus 1992, 44B, 448–468. [Google Scholar] [CrossRef]
- Jiusto, J.E.; Lala Grieser, J.G.G. Radiation Fog Field Programs Recent Studies; Publication no. 869; Atmospheric Sciences Research Center, State University of New York (ASRC, SUNY): New York, NY, USA, 1983. [Google Scholar]
- Zihua, L.; Limin, Z.; Qinghong, Z. The physical structure of the winter fog in Chongqing metropolitan area and its formation process. Acta Meteorol. Sin. 1994, 8, 316–328. [Google Scholar]
- Haiden, T.; Whiteman, C.D. Katabatic flow mechanisms on a low-angle slope. J. Appl. Meteorol. 2005, 44, 113–126. [Google Scholar] [CrossRef]
- Catalano, F.; Cenedese, A. High-resolution numerical modeling of thermally driven slope winds in a valley with strong capping. Am. Meteorol. Soc. 2010, 49, 1859–1880. [Google Scholar] [CrossRef]
- Clark, P.A.; Hopwood, W.P. One-dimensional site-specific forecasting of radiation fog. Part 1: Model formulation and idealized sensitivity studies. Meteorol. Appl. 2001, 8, 279–286. [Google Scholar] [CrossRef]
- Baumbach, G.; Vogt, U. Experimental determination of the effect of mountain-valley breeze circulation on air pollution in the vicinity of Freiburg. Atmos. Environ. 1999, 33, 4019–4027. [Google Scholar] [CrossRef]
- Lehner, M.; Gohm, A. Idealized simulations of daytime pollution transport in a steep valley and its sensitivity to thermal stratification and surface albedo. Bound.-Layer Meteorol. 2010, 134, 327–351. [Google Scholar] [CrossRef]
- Liu, H.; Liang, B.; Zhu, F.; Zhang, B.; Sang, J. Water-tank experiment on the thermal circulation induced by the bottom heating in an asymmetric valley. Adv. Atmos. Sci. 2004, 21, 536–546. [Google Scholar] [CrossRef]
- Kenjeres, S. Heat transfer enhancement induced by wall inclination in turbulent thermal convection. Phys. Rev. E 2015, 92, 053006. [Google Scholar] [CrossRef]
- Kimura, F.; Noguchi, T.; Kitamura, K. Fluid flow and heat transfer of natural convection around heated V-shaped cavity. Mech. Eng. J. 2016, 3, 16–00330. [Google Scholar] [CrossRef]
- Bhowmick, S.; Saha, S.C.; Qiao, M.; Xu, F. Transition to a chaotic flow in a V-shaped triangular cavity heated from below. Int. J. Heat Mass Transf. 2019, 128, 76–86. [Google Scholar] [CrossRef]
- Bhowmick, S.; Xu, F.; Molla, M.M.; Saha, S.C. Chaotic phenomena of natural convection for water in a V-shaped enclosure. Int. J. Therm. Sci. 2022, 176, 107526. [Google Scholar] [CrossRef]
- Bhowmick, S.; Xu, F.; Zhang, X.; Saha, S.C. Natural convection and heat transfer in a valley-shaped cavity filled with initially stratified water. Int. J. Therm. Sci. 2018, 128, 59–69. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: New York, NY, USA, 1980. [Google Scholar]
- Saha, S.C. Natural Convection Adjacent to an Inclined Flat Plate and in an Attic Space under Various Thermal Forcing Conditions. Ph.D. Thesis, School of Engineering and Physical Sciences, Townsville, Australia, 2009. [Google Scholar]
- Drazin, P.G. Introduction to Hydrodynamic Stability; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- McLaughlin, J.B.; Orszag, S.A. Transition from periodic to chaotic thermal convection. J. Fluid Mech. 1982, 122, 123–142. [Google Scholar] [CrossRef]
Mesh and Time Step | Average Nu | Difference |
---|---|---|
600 × 100 and Δτ = 0.0025 | 121.63 | 1.94% |
800 × 150 and Δτ = 0.00125 | 122.47 | 1.27% |
800 × 150 and Δτ = 0.0025 | 124.04 | - |
1200 × 200 and Δτ = 0.0025 | 122.95 | 0.87% |
Rayleigh Number | Velocity |
---|---|
101 | 0 |
102 | 0 |
103 | 0 |
7.5 × 103 | 0 |
7.6 × 103 | ±9.47 × 10−5 |
104 | ±0.00669 |
1.2 × 104 | ±0.0557 |
1.5 × 104 | ±0.09 |
105 | ±0.096 |
106 | ±0.0993 |
Rayleigh Number | Number of Cells |
---|---|
7 × 103 | 2 |
104 | 4 |
2 × 104 | 5 |
5 × 104 | 6 |
105 | 7 |
3 × 105 | 9 |
5 × 105 | 10 |
106 | 11 |
5 × 106 | 13 |
107 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhowmick, S.; Roy, L.R.; Xu, F.; Saha, S.C. Natural Convection Fluid Flow and Heat Transfer in a Valley-Shaped Cavity. Computation 2024, 12, 146. https://doi.org/10.3390/computation12070146
Bhowmick S, Roy LR, Xu F, Saha SC. Natural Convection Fluid Flow and Heat Transfer in a Valley-Shaped Cavity. Computation. 2024; 12(7):146. https://doi.org/10.3390/computation12070146
Chicago/Turabian StyleBhowmick, Sidhartha, Laxmi Rani Roy, Feng Xu, and Suvash C. Saha. 2024. "Natural Convection Fluid Flow and Heat Transfer in a Valley-Shaped Cavity" Computation 12, no. 7: 146. https://doi.org/10.3390/computation12070146
APA StyleBhowmick, S., Roy, L. R., Xu, F., & Saha, S. C. (2024). Natural Convection Fluid Flow and Heat Transfer in a Valley-Shaped Cavity. Computation, 12(7), 146. https://doi.org/10.3390/computation12070146