10th Anniversary of Computation—Computational Heat and Mass Transfer (ICCHMT 2023)

A special issue of Computation (ISSN 2079-3197). This special issue belongs to the section "Computational Engineering".

Deadline for manuscript submissions: closed (31 July 2024) | Viewed by 32213

Special Issue Editors


E-Mail Website
Guest Editor
Center of Flow Simulation (CFS), Department of Mechanical and Process Engineering, Duesseldorf University of Applied Sciences, D-40476 Duesseldorf, Germany
Interests: computational methods; combustion; fire; turbulence; multi-phase flows; environmental flow; fluid machinery; biofluid dynamics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
CNRS (Centre National de la Recherche Scientifique), LMT (Laboratoire de Mécanique et Technologie—Labo. Méca. Tech.), Université Paris-Saclay, ENS (Ecole National Supérieure) Paris-Saclay, 91190 Gif-sur-Yvette, France
Interests: convective heat transfer; porous media; biomaterials; energy/building
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Thermal Power Engineering, Politechnika Krakowska, 31-155 Krakow, Poland
Interests: power engineering; thermodynamics; heat transfer; inverse heat transfer problems; steam boiler dynamics; thermal stresses
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
School of Mechanical Engineering, Soongsil University, Seoul 06978, Republic of Korea
Interests: turbomachinery; biofluid dynamics; fluid mechanics

E-Mail Website
Guest Editor
Institute of Thermal Power Engineering, Politechnika Krakowska, 31-864 Krakow, Poland
Interests: inverse problems of heat conduction; measurement of heat flux and heat transfer coefficient; modelling of slagging and fouling processes of power boiler heating surfaces; dynamics of large steam boilers; numerical modelling of steam super-heaters in transient states; thermal stresses; monitoring of energy machinery and equipment including residual strength; heat exchangers; heat pumps; photovoltaic cells; renewable energy; renewable energy sources
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue will publish a set of selected papers from the 14. International Conference on Computational Heat, Mass, and Momentum Transfer (ICCHMT 2023), which will be held 4–8 September 2023, in Düsseldorf, Germany (the deadline for abstract submissions is 26 May 2023). The selected papers will be published free of charge. There will also be an ICCHMT-Computation Best Paper Award. You are invited to submit a contribution to the conference for consideration and possible publication in this Special Issue.

Topics of the conferences include, but are not limited to, the following:

  • Advanced numerical methods;
  • Aeronautical and space applications;
  • Bio-fluidics and biomedical engineering;
  • Bio-inspired flow and heat transfer;
  • Building-integrated energy and power systems;
  • Complex chemical reaction modeling;
  • Compressible flows;
  • Computational thermal fluid dynamics;
  • Convection and buoyancy-driven flows;
  • Double diffusive convetion;
  • Energy-saving process;
  • Fluid flow and heat transfer in biomedical devices and biotechnology;
  • Fluid machinery;
  • Granular flows;
  • Heat and mass transfer in energy systems;
  • Heat and mass transfer in manufacturing and materials processing;
  • Heat and mass transfer in nuclear applications;
  • Heat and mass transfer in particle-laden flows;
  • Heat exchangers/heat pipe;
  • Internal flow and heat transfer;
  • Micro-/nano-heat and mass transfer;
  • Mixing devices and phenomena;
  • Multi-phase flows;
  • Optimization in thermal engineering;
  • Reactive flows and combustion;
  • Thermal flow visualization;
  • Thermal fluid machinery;
  • Thermal heat fluxes;
  • Transport phenomena in porous media;
  • Urban energy flows.

For detailed information on all further aspects of the conference, including the dates, keynote speakers, committes, registration, and accomodation, please check the conference website at http://www.icchmt2023.de/.

(in alphabetic order)

Prof. Dr. Ali Cemal Benim
Prof. Dr. Rachid Bennacer
Prof. Dr. Abdulmajeed A. Mohamad
Prof. Dr. Paweł Oclon
Prof. Dr. Sang-Ho Suh
Prof. Dr. Jan Taler
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Computation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • numerical methods
  • engineering applications
  • fluid flow
  • heat transfer
  • mass transfer

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (23 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 3196 KiB  
Article
Finite Difference Methods Based on the Kirchhoff Transformation and Time Linearization for the Numerical Solution of Nonlinear Reaction–Diffusion Equations
by Juan I. Ramos
Computation 2024, 12(11), 218; https://doi.org/10.3390/computation12110218 - 1 Nov 2024
Viewed by 494
Abstract
Four formulations based on the Kirchhoff transformation and time linearization for the numerical study of one-dimensional reaction–diffusion equations, whose heat capacity, thermal inertia and reaction rate are only functions of the temperature, are presented. The formulations result in linear, two-point boundary-value problems for [...] Read more.
Four formulations based on the Kirchhoff transformation and time linearization for the numerical study of one-dimensional reaction–diffusion equations, whose heat capacity, thermal inertia and reaction rate are only functions of the temperature, are presented. The formulations result in linear, two-point boundary-value problems for the temperature, energy or heat potential, and may be solved by either discretizing the second-order spatial derivative or piecewise analytical integration. In both cases, linear systems of algebraic equations are obtained. The formulation for the temperature is extended to two-dimensional, nonlinear reaction–diffusion equations where the resulting linear two-dimensional operator is factorized into a sequence of one-dimensional ones that may be solved by means of any of the four formulations developed for one-dimensional problems. The multidimensional formulation is applied to a two-dimensional, two-equation system of nonlinearly coupled advection–reaction–diffusion equations, and the effects of the velocity and the parameters that characterize the nonlinear heat capacities and thermal conductivity are studied. It is shown that clockwise-rotating velocity fields result in wave stretching for small vortex radii, and wave deceleration and thickening for counter-clockwise-rotating velocity fields. It is also shown that large-core, clockwise-rotating velocity fields may result in large transient periods, followed by time intervals of apparent little activity which, in turn, are followed by the propagation of long-period waves. Full article
Show Figures

Figure 1

18 pages, 6818 KiB  
Article
Optimization of the Small Wind Turbine Design—Performance Analysis
by Marek Jaszczur, Marek Borowski, Joanna Halibart, Klaudia Zwolińska-Glądys and Patryk Marczak
Computation 2024, 12(11), 215; https://doi.org/10.3390/computation12110215 - 25 Oct 2024
Viewed by 610
Abstract
In recent decades, the intensive development of renewable energy technology has been observed as a great alternative to conventional energy sources. Solutions aimed at individual customers, which can be used directly in places where electricity is required, are of particular interest. Small wind [...] Read more.
In recent decades, the intensive development of renewable energy technology has been observed as a great alternative to conventional energy sources. Solutions aimed at individual customers, which can be used directly in places where electricity is required, are of particular interest. Small wind turbines pose a special challenge because their design must be adapted to environmental conditions, including low wind speed or variability in its direction. The research study presented in this paper considers the energy efficiency of a small wind turbine with a horizontal axis of rotation. Three key design parameters were analyzed: the shape and inclination of the turbine blades and additional confusor–diffuser shape casings. The tests were carried out for three conceptual variants: a confusor before the turbine, a diffuser after the turbine, and a confusor–diffuser combination. Studies have shown that changing the shape of the blade can increase the analyzed wind turbine power by up to 35%, while changing the blade inclination can cause an increase of up to 16% compared to the initial installation position and a 66% increase in power when comparing the extreme inclination of the blades of the tested turbine. The study has shown that to increase the wind speed, the best solution is to use a confusor–diffuser configuration, which, with increased length, can increase the air velocity by up to 21%. Full article
Show Figures

Figure 1

21 pages, 1612 KiB  
Article
Effects of Anisotropy, Convection, and Relaxation on Nonlinear Reaction-Diffusion Systems
by Juan I. Ramos
Computation 2024, 12(11), 214; https://doi.org/10.3390/computation12110214 - 25 Oct 2024
Viewed by 401
Abstract
The effects of relaxation, convection, and anisotropy on a two-dimensional, two-equation system of nonlinearly coupled, second-order hyperbolic, advection–reaction–diffusion equations are studied numerically by means of a three-time-level linearized finite difference method. The formulation utilizes a frame-indifferent constitutive equation for the heat and mass [...] Read more.
The effects of relaxation, convection, and anisotropy on a two-dimensional, two-equation system of nonlinearly coupled, second-order hyperbolic, advection–reaction–diffusion equations are studied numerically by means of a three-time-level linearized finite difference method. The formulation utilizes a frame-indifferent constitutive equation for the heat and mass diffusion fluxes, taking into account the tensorial character of the thermal diffusivity of heat and mass diffusion. This approach results in a large system of linear algebraic equations at each time level. It is shown that the effects of relaxation are small although they may be noticeable initially if the relaxation times are smaller than the characteristic residence, diffusion, and reaction times. It is also shown that the anisotropy associated with one of the dependent variables does not have an important role in the reaction wave dynamics, whereas the anisotropy of the other dependent variable results in transitions from spiral waves to either large or small curvature reaction fronts. Convection is found to play an important role in the reaction front dynamics depending on the vortex circulation and radius and the anisotropy of the two dependent variables. For clockwise-rotating vortices of large diameter, patterns similar to those observed in planar mixing layers have been found for anisotropic diffusion tensors. Full article
Show Figures

Figure 1

15 pages, 3423 KiB  
Article
Comparative Study of Deflector Configurations under Variable Vertical Angle of Incidence and Wind Speed through Transient 3D CFD Modeling of Savonius Turbine
by Hady Aboujaoude, Guillaume Polidori, Fabien Beaumont, Sébastien Murer, Yessine Toumi and Fabien Bogard
Computation 2024, 12(10), 204; https://doi.org/10.3390/computation12100204 - 14 Oct 2024
Viewed by 837
Abstract
The demand for clean and sustainable energy has led to the exploration of innovative technologies for renewable energy generation. The Savonius turbine has emerged as a promising solution for harnessing wind energy in urban environments due to its unique design, simplicity, structural stability, [...] Read more.
The demand for clean and sustainable energy has led to the exploration of innovative technologies for renewable energy generation. The Savonius turbine has emerged as a promising solution for harnessing wind energy in urban environments due to its unique design, simplicity, structural stability, and ability to capture wind energy from any direction. However, the efficiency of Savonius turbines poses a challenge that affects their overall performance. Extensive research efforts have been dedicated to enhancing their efficiency and optimizing their performance in urban settings. For instance, an axisymmetric omnidirectional deflector (AOD) was introduced to improve performance in all wind directions. Despite these advancements, the effect of wind incident angles on Savonius turbine performance has not been thoroughly investigated. This study aims to fill this knowledge gap by examining the performance of standard Savonius configurations (STD) compared to the basic configuration of the deflector (AOD1) and to the optimized one (AOD2) under different wind incident angles and wind speeds. One key finding was the consistent superior performance of this AOD2 configuration across all incident angles and wind speeds. It consistently outperformed the other configurations, demonstrating its potential as an optimized configuration for wind turbine applications. For instance, at an incident angle of 0°, the power coefficient of the configuration of AOD2 was 61% more than the STD configuration. This ratio rose to 88% at an incident angle of 20° and 125% at an incident angle of 40°. Full article
Show Figures

Figure 1

13 pages, 2938 KiB  
Article
Numerical Method for Predicting Transient Aerodynamic Heating in Hemispherical Domes
by Arif Cem Gözükara and Uygar Ateş Ceylan
Computation 2024, 12(8), 162; https://doi.org/10.3390/computation12080162 - 12 Aug 2024
Viewed by 675
Abstract
In this research, a streamlined numerical approach designed for the quick estimation of temperature profiles across the finite thickness of a hemispherical dome subjected to aerodynamic heating is introduced. Hemispherical domes, with their advantageous aerodynamic, structural, and optical properties, are frequently utilized in [...] Read more.
In this research, a streamlined numerical approach designed for the quick estimation of temperature profiles across the finite thickness of a hemispherical dome subjected to aerodynamic heating is introduced. Hemispherical domes, with their advantageous aerodynamic, structural, and optical properties, are frequently utilized in the front sections of objects traveling at supersonic velocities, including missiles or vehicles. The proposed method relies on one-dimensional analyses of fluid dynamics and flow characteristics to approximate the local heat flux across the exterior surface of the dome. By calculating these local heat flux values, it is also possible to predict the temperature variations within the thickness of the dome by employing the finite difference technique, to solve the heat conduction equation in spherical coordinates. This process is iterated over successive time intervals, to simulate the entire flight duration. Unlike traditional Computational Fluid Dynamics (CFD) simulations, the proposed strategy offers the benefits of significantly lower computational time and resource demands. The primary objective of this work is to provide an efficient numerical tool for evaluating aerodynamic heating impact and temperature gradients on hemispherical domes under specific conditions. The effectiveness of the proposed method will be validated by comparing the temperature profiles derived for a standard flight scenario against those obtained from 2-D axisymmetric transient CFD simulations performed using ANSYS-Fluent 2022 R2. Full article
Show Figures

Figure 1

25 pages, 9886 KiB  
Article
Natural Convection Fluid Flow and Heat Transfer in a Valley-Shaped Cavity
by Sidhartha Bhowmick, Laxmi Rani Roy, Feng Xu and Suvash C. Saha
Computation 2024, 12(7), 146; https://doi.org/10.3390/computation12070146 - 14 Jul 2024
Viewed by 880
Abstract
The phenomenon of natural convection is the subject of significant research interest due to its widespread occurrence in both natural and industrial contexts. This study focuses on investigating natural convection phenomena within triangular enclosures, specifically emphasizing a valley-shaped configuration. Our research comprehensively analyses [...] Read more.
The phenomenon of natural convection is the subject of significant research interest due to its widespread occurrence in both natural and industrial contexts. This study focuses on investigating natural convection phenomena within triangular enclosures, specifically emphasizing a valley-shaped configuration. Our research comprehensively analyses unsteady, non-dimensional time-varying convection resulting from natural fluid flow within a valley-shaped cavity, where the inclined walls serve as hot surfaces and the top wall functions as a cold surface. We explore unsteady natural convection flows in this cavity, utilizing air as the operating fluid, considering a range of Rayleigh numbers from Ra = 100 to 108. Additionally, various non-dimensional times τ, spanning from 0 to 5000, are examined, with a fixed Prandtl number (Pr = 0.71) and aspect ratio (A = 0.5). Employing a two-dimensional framework for numerical analysis, our study focuses on identifying unstable flow mechanisms characterized by different non-dimensional times, including symmetric, asymmetric, and unsteady flow patterns. The numerical results reveal that natural convection flows remain steady in the symmetric state for Rayleigh values ranging from 100 to 7 × 103. Asymmetric flow occurs when the Ra surpasses 7 × 103. Under the asymmetric condition, flow arrives in an unsteady stage before stabilizing at the fully formed stage for 7 × 103 < Ra < 107. This study demonstrates that periodic unsteady flows shift into chaotic situations during the transitional stage before transferring to periodic behavior in the developed stage, but the chaotic flow remains predominant in the unsteady regime with larger Rayleigh numbers. Furthermore, we present an analysis of heat transfer within the cavity, discussing and quantifying its dependence on the Rayleigh number. Full article
Show Figures

Figure 1

18 pages, 576 KiB  
Article
The Theory and Computation of the Semi-Linear Reaction–Diffusion Equation with Dirichlet Boundaries
by Pius W. M. Chin
Computation 2024, 12(7), 142; https://doi.org/10.3390/computation12070142 - 11 Jul 2024
Viewed by 671
Abstract
In this article, we study the semi-linear two-dimensional reaction–diffusion equation with Dirichlet boundaries. A reliable numerical scheme is designed, coupling the nonstandard finite difference method in the time together with the Galerkin in combination with the compactness method in the space variables. The [...] Read more.
In this article, we study the semi-linear two-dimensional reaction–diffusion equation with Dirichlet boundaries. A reliable numerical scheme is designed, coupling the nonstandard finite difference method in the time together with the Galerkin in combination with the compactness method in the space variables. The aforementioned equation is analyzed to show that the weak or variational solution exists uniquely in specified space. The a priori estimate obtained from the existence of the weak or variational solution is used to show that the designed scheme is stable and converges optimally in specified norms. Furthermore, we show that the scheme preserves the qualitative properties of the exact solution. Numerical experiments are presented with a carefully chosen example to validate our proposed theory. Full article
Show Figures

Figure 1

14 pages, 2795 KiB  
Article
Hybrid Nanofluid Flow over a Shrinking Rotating Disk: Response Surface Methodology
by Rusya Iryanti Yahaya, Norihan Md Arifin, Ioan Pop, Fadzilah Md Ali and Siti Suzilliana Putri Mohamed Isa
Computation 2024, 12(7), 141; https://doi.org/10.3390/computation12070141 - 10 Jul 2024
Viewed by 852
Abstract
For efficient heating and cooling applications, minimum wall shear stress and maximum heat transfer rate are desired. The current study optimized the local skin friction coefficient and Nusselt number in Al2O3-Cu/water hybrid nanofluid flow over a permeable shrinking rotating [...] Read more.
For efficient heating and cooling applications, minimum wall shear stress and maximum heat transfer rate are desired. The current study optimized the local skin friction coefficient and Nusselt number in Al2O3-Cu/water hybrid nanofluid flow over a permeable shrinking rotating disk. First, the governing equations and boundary conditions are solved numerically using the bvp4c solver in MATLAB. Von Kármán’s transformations are used to reduce the partial differential equations into solvable non-linear ordinary differential equations. The augmentation of the mass transfer parameter is found to reduce the local skin friction coefficient and Nusselt number. Higher values of these physical quantities of interest are observed in the injection case than in the suction case. Meanwhile, the increase in the magnitude of the shrinking parameter improved and reduced the local skin friction coefficient and Nusselt number, respectively. Then, response surface methodology (RSM) is conducted to understand the interactive impacts of the controlling parameters in optimizing the physical quantities of interest. With a desirability of 66%, the local skin friction coefficient and Nusselt number are optimized at 1.528780016 and 0.888353037 when the shrinking parameter (λ) and mass transfer parameter (S) are −0.8 and −0.6, respectively. Full article
Show Figures

Figure 1

32 pages, 10061 KiB  
Article
Residential Sizing of Solar Photovoltaic Systems and Heat Pumps for Net Zero Sustainable Thermal Building Energy
by Shafquat Rana, Uzair Jamil, Nima Asgari, Koami S. Hayibo, Julia Groza and Joshua M. Pearce
Computation 2024, 12(6), 126; https://doi.org/10.3390/computation12060126 - 17 Jun 2024
Cited by 1 | Viewed by 1601
Abstract
To enable net zero sustainable thermal building energy, this study develops an open-source thermal house model to couple solar photovoltaic (PV) and heat pumps (HPs) for grid-connected residential housing. The calculation of both space heating and cooling thermal loads and the selection of [...] Read more.
To enable net zero sustainable thermal building energy, this study develops an open-source thermal house model to couple solar photovoltaic (PV) and heat pumps (HPs) for grid-connected residential housing. The calculation of both space heating and cooling thermal loads and the selection of HP is accomplished with a validated Python model for air-source heat pumps. The capacity of PV required to supply the HPs is calculated using a System Advisor Model integrated Python model. Self-sufficiency and self-consumption of PV and the energy imported/exported to the grid for a case study are provided, which shows that simulations based on the monthly load profile have a significant reduction of 43% for energy sent to/from the grid compared to the detailed hourly simulation and an increase from 30% to 60% for self-consumption and self-sufficiency. These results show the importance of more granular modeling and also indicate mismatches of PV generation and HP load based on hourly simulation datasets. The back-calculation PV sizing algorithm combined with HP and thermal loads presented in this study exhibited robust performance. The results indicate this approach can be used to accelerate the solar electrification of heating and cooling to offset the use of fossil fuels in northern climates. Full article
Show Figures

Figure 1

17 pages, 3016 KiB  
Article
Implications of Using Scalar Forcing to Sustain Reactant Mixture Stratification in Direct Numerical Simulations of Turbulent Combustion
by Peter Brearley, Umair Ahmed and Nilanjan Chakraborty
Computation 2024, 12(6), 114; https://doi.org/10.3390/computation12060114 - 3 Jun 2024
Viewed by 749
Abstract
A recently proposed scalar forcing scheme that maintains the mixture fraction mean, root-mean-square and probability density function in the unburned gas can lead to a statistically quasi-stationary state in direct numerical simulations of turbulent stratified combustion when combined with velocity forcing. Scalar forcing [...] Read more.
A recently proposed scalar forcing scheme that maintains the mixture fraction mean, root-mean-square and probability density function in the unburned gas can lead to a statistically quasi-stationary state in direct numerical simulations of turbulent stratified combustion when combined with velocity forcing. Scalar forcing alongside turbulence forcing leads to greater values of turbulent burning velocity and flame surface area in comparison to unforced simulations for globally fuel-lean mixtures. The sustained unburned gas mixture inhomogeneity changes the percentage shares of back- and front-supported flame elements in comparison to unforced simulations, and this effect is particularly apparent for high turbulence intensities. Scalar forcing does not significantly affect the heat release rates due to different modes of combustion and the micro-mixing rate within the flame characterised by scalar dissipation rate of the reaction progress variable. Thus, scalar forcing has a significant potential for enabling detailed parametric studies as well as providing well-converged time-averaged statistics for stratified-mixture combustion using Direct Numerical Simulations in canonical configurations. Full article
Show Figures

Figure 1

18 pages, 7832 KiB  
Article
Accelerating Conjugate Heat Transfer Simulations in Squared Heated Cavities through Graphics Processing Unit (GPU) Computing
by César Augusto Borges da Silva Reis, Daniel Botezelli, Arthur Mendonça de Azevedo, Elisan dos Santos Magalhães and Aristeu da Silveira Neto
Computation 2024, 12(5), 106; https://doi.org/10.3390/computation12050106 - 19 May 2024
Viewed by 1085
Abstract
This research develops an innovative framework for accelerating Conjugate Heat Transfer (CHT) simulations within squared heated cavities through the application of Graphics Processing Units (GPUs). Although leveraging GPUs for computational speed improvements is well recognized, this study distinguishes itself by formulating a tailored [...] Read more.
This research develops an innovative framework for accelerating Conjugate Heat Transfer (CHT) simulations within squared heated cavities through the application of Graphics Processing Units (GPUs). Although leveraging GPUs for computational speed improvements is well recognized, this study distinguishes itself by formulating a tailored optimization strategy utilizing the CUDA-C programming language. This approach is specifically designed to tackle the inherent challenges of modeling squared cavity configurations in thermal simulations. Comparative performance evaluations reveal that our GPU-accelerated framework reduces computation times by up to 99.7% relative to traditional mono-core CPU processing. More importantly, it demonstrates an increase in accuracy in heat transfer predictions compared to existing CPU-based models. These results highlight not only the technical feasibility but also the substantial enhancements in simulation efficiency and accuracy, which are crucial for critical engineering applications such as aerospace component design, electronic device cooling, and energy system optimization. By advancing GPU computational techniques, this work contributes significantly to the field of thermal management, offering a potential for broader application and paving the way for more efficient, sustainable engineering solutions. Full article
Show Figures

Figure 1

19 pages, 8290 KiB  
Article
Numerical Estimation of Nonlinear Thermal Conductivity of SAE 1020 Steel
by Ariel Flores Monteiro de Oliveira, Elisan dos Santos Magalhães, Kahl Dick Zilnyk, Philippe Le Masson and Ernandes José Gonçalves do Nascimento
Computation 2024, 12(5), 92; https://doi.org/10.3390/computation12050092 - 4 May 2024
Cited by 1 | Viewed by 1393
Abstract
Thermally characterizing high-thermal conductivity materials is challenging, especially considering high temperatures. However, the modeling of heat transfer processes requires specific material information. The present study addresses an inverse approach to estimate the thermal conductivity of SAE 1020 relative to temperature during an autogenous [...] Read more.
Thermally characterizing high-thermal conductivity materials is challenging, especially considering high temperatures. However, the modeling of heat transfer processes requires specific material information. The present study addresses an inverse approach to estimate the thermal conductivity of SAE 1020 relative to temperature during an autogenous LASER Beam Welding (LBW) experiment. The temperature profile during LBW is computed with the aid of an in-house CUDA-C algorithm. Here, the governing three-dimensional heat diffusion equation is discretized through the Finite Volume Method (FVM) and solved using the Successive Over-Relaxation (SOR) parallelized iterative solver. With temperature information, one may employ a minimization procedure to assess thermal properties or process parameters. In this work, the Quadrilateral Optimization Method (QOM) is applied to perform estimations because it allows for the simultaneous optimization of variables with no quantity restriction and renders the assessment of parameters in unsteady states valid, thereby preventing the requirement for steady-state experiments. We extended QOM’s prior applicability to account for more parameters concurrently. In Case I, the optimization of the three parameters that compose the second-degree polynomial function model of thermal conductivity is performed. In Case II, the heat distribution model’s gross heat rate (Ω) is also estimated in addition to the previous parameters. Ω [W] quantifies the power the sample receives and is related to the process’s efficiency. The method’s suitability for estimating the parameters was confirmed by investigating the reduced sensitivity coefficients, while the method’s stability was corroborated by performing the estimates with noisy data. There is a good agreement between the reference and estimated values. Hence, this study introduces a proper methodology for estimating a temperature-dependent thermal property and an LBW parameter. As the performance of the present algorithm is increased using parallel computation, a pondered solution between estimation reliability and computational cost is achieved. Full article
Show Figures

Figure 1

14 pages, 375 KiB  
Article
Analysis of a Novel Method for Generating 3D Mesh at Contact Points in Packed Beds
by Daniel F. Szambien, Maximilian R. Ziegler, Christoph Ulrich and Roland Scharf
Computation 2024, 12(5), 89; https://doi.org/10.3390/computation12050089 - 30 Apr 2024
Viewed by 1057
Abstract
This study comprehensively analyzes the impact of the novel HybridBridge method, developed by the authors, for generating a 3D mesh at contact points within packed beds within the effective thermal conductivity. It compares HybridBridge with alternative methodologies, highlights its superiority and outlines potential [...] Read more.
This study comprehensively analyzes the impact of the novel HybridBridge method, developed by the authors, for generating a 3D mesh at contact points within packed beds within the effective thermal conductivity. It compares HybridBridge with alternative methodologies, highlights its superiority and outlines potential applications. The HybridBridge employs two independent geometry parameters to facilitate optimal flow mapping while maintaining physically accurate effective thermal conductivity and ensuring high mesh quality. A method is proposed to estimate the HybridBridge radius for a defined packed bed and cap height, enabling a presimulative determination of a suitable radius. Numerical analysis of a body-centered-cubic unit cell with varied HybridBridges is conducted alongside previous simulations involving a simple-cubic unit cell. Additionally, a physically based resistance model is introduced, delineating effective thermal conductivity as a function of the HybridBridge geometry and porosity. An equation for the HybridBridge radius, tailored to simulation parameters, is derived. Comparison with the unit cells and a randomly packed bed reveals an acceptable average deviation between the calculated and utilized radii, thereby streamlining and refining the implementation of the HybridBridge methodology. Full article
Show Figures

Figure 1

18 pages, 6787 KiB  
Article
An Implementation of LASER Beam Welding Simulation on Graphics Processing Unit Using CUDA
by Ernandes Nascimento, Elisan Magalhães, Arthur Azevedo, Luiz E. S. Paes and Ariel Oliveira
Computation 2024, 12(4), 83; https://doi.org/10.3390/computation12040083 - 17 Apr 2024
Cited by 1 | Viewed by 1381
Abstract
The maximum number of parallel threads in traditional CFD solutions is limited by the Central Processing Unit (CPU) capacity, which is lower than the capabilities of a modern Graphics Processing Unit (GPU). In this context, the GPU allows for simultaneous processing of several [...] Read more.
The maximum number of parallel threads in traditional CFD solutions is limited by the Central Processing Unit (CPU) capacity, which is lower than the capabilities of a modern Graphics Processing Unit (GPU). In this context, the GPU allows for simultaneous processing of several parallel threads with double-precision floating-point formatting. The present study was focused on evaluating the advantages and drawbacks of implementing LASER Beam Welding (LBW) simulations using the CUDA platform. The performance of the developed code was compared to that of three top-rated commercial codes executed on the CPU. The unsteady three-dimensional heat conduction Partial Differential Equation (PDE) was discretized in space and time using the Finite Volume Method (FVM). The Volumetric Thermal Capacitor (VTC) approach was employed to model the melting-solidification. The GPU solutions were computed using a CUDA-C language in-house code, running on a Gigabyte Nvidia GeForce RTX 3090 video card and an MSI 4090 video card (both made in Hsinchu, Taiwan), each with 24 GB of memory. The commercial solutions were executed on an Intel® Core i9-12900KF CPU (made in Hillsboro, Oregon, United States of America) with a 3.6 GHz base clock and 16 cores. The results demonstrated that GPU and CPU processing achieve similar precision, but the GPU solution exhibited significantly faster speeds and greater power efficiency, resulting in speed-ups ranging from 75.6 to 1351.2 times compared to the CPU solutions. The in-house code also demonstrated optimized memory usage, with an average of 3.86 times less RAM utilization. Therefore, adopting parallelized algorithms run on GPU can lead to reduced CFD computational costs compared to traditional codes while maintaining high accuracy. Full article
Show Figures

Figure 1

14 pages, 2643 KiB  
Article
Air–Water Two-Phase Flow Dynamics Analysis in Complex U-Bend Systems through Numerical Modeling
by Ergin Kükrer and Nurdil Eskin
Computation 2024, 12(4), 81; https://doi.org/10.3390/computation12040081 - 12 Apr 2024
Viewed by 1710
Abstract
This study aims to provide insights into the intricate interactions between gas and liquid phases within flow components, which are pivotal in various industrial sectors such as nuclear reactors, oil and gas pipelines, and thermal management systems. Employing the Eulerian–Eulerian approach, our computational [...] Read more.
This study aims to provide insights into the intricate interactions between gas and liquid phases within flow components, which are pivotal in various industrial sectors such as nuclear reactors, oil and gas pipelines, and thermal management systems. Employing the Eulerian–Eulerian approach, our computational model incorporates interphase relations, including drag and non-drag forces, to analyze phase distribution and velocities within a complex U-bend system. Comprising two horizontal-to-vertical bends and one vertical 180-degree elbow, the U-bend system’s behavior concerning bend geometry and airflow rates is scrutinized, highlighting their significant impact on multiphase flow dynamics. The study not only presents a detailed exposition of the numerical modeling techniques tailored for this complex geometry but also discusses the results obtained. Detailed analyses of local void fraction and phase velocities for each phase are provided. Furthermore, experimental validation enhances the reliability of our computational findings, with close agreement observed between computational and experimental results. Overall, the study underscores the efficacy of the Eulerian approach with interphase relations in capturing the complex behavior of the multiphase flow in U-bend systems, offering valuable insights for hydraulic system design and optimization in industrial applications. Full article
Show Figures

Figure 1

21 pages, 8544 KiB  
Article
Performance Rating and Flow Analysis of an Experimental Airborne Drag-Type VAWT Employing Rotating Mesh
by Doğan Güneş and Ergin Kükrer
Computation 2024, 12(4), 77; https://doi.org/10.3390/computation12040077 - 8 Apr 2024
Viewed by 1804
Abstract
This paper presents the results of a performance analysis conducted on an experimental airborne vertical axis wind turbine (VAWT), specifically focusing on the MAGENN Air Rotor System (MARS) project. During its development phase, the company claimed that MARS could generate a power output [...] Read more.
This paper presents the results of a performance analysis conducted on an experimental airborne vertical axis wind turbine (VAWT), specifically focusing on the MAGENN Air Rotor System (MARS) project. During its development phase, the company claimed that MARS could generate a power output of 100 kW under wind velocities of 12 m/s. However, no further information or numerical models supporting this claim were found in the literature. Extending our prior conference work, the main objective of our study is to assess the accuracy of the stated rated power output and to develop a comprehensive numerical model to analyze the airflow dynamics around this unique airborne rotor configuration. The innovative design of the solid model, resembling yacht sails, was developed using images in the related web pages and literature, announcing the power coefficient (Cp) as 0.21. In this study, results cover 12 m/s wind and flat terrain wind velocities (3, 5, 6, and 9 m/s) with varying rotational velocities. Through meticulous calculations for the atypical blade design, optimal rotational velocities and an expected Tip Speed Ratio (TSR) of around 1.0 were determined. Introducing the Centroid Speed Ratio (CSR), which is the ratio of the sail blade centroid and the superficial wind velocities for varied wind speeds, the findings indicate an average power generation potential of 90 kW at 1.4 rad/s for 12 m/s and approximately 16 kW at a 300 m altitude for a 6 m/s wind velocity. Full article
Show Figures

Figure 1

27 pages, 853 KiB  
Article
Overlapping Grid-Based Spectral Collocation Technique for Bioconvective Flow of MHD Williamson Nanofluid over a Radiative Circular Cylindrical Body with Activation Energy
by Musawenkosi Patson Mkhatshwa
Computation 2024, 12(4), 75; https://doi.org/10.3390/computation12040075 - 5 Apr 2024
Cited by 2 | Viewed by 1227
Abstract
The amalgamation of motile microbes in nanofluid (NF) is important in upsurging the thermal conductivity of various systems, including micro-fluid devices, chip-shaped micro-devices, and enzyme biosensors. The current scrutiny focuses on the bioconvective flow of magneto-Williamson NFs containing motile microbes through a horizontal [...] Read more.
The amalgamation of motile microbes in nanofluid (NF) is important in upsurging the thermal conductivity of various systems, including micro-fluid devices, chip-shaped micro-devices, and enzyme biosensors. The current scrutiny focuses on the bioconvective flow of magneto-Williamson NFs containing motile microbes through a horizontal circular cylinder placed in a porous medium with nonlinear mixed convection and thermal radiation, heat sink/source, variable fluid properties, activation energy with chemical and microbial reactions, and Brownian motion for both nanoparticles and microbes. The flow analysis has also been considered subject to velocity slips, suction/injection, and heat convective and zero mass flux constraints at the boundary. The governing equations have been converted to a non-dimensional form using similarity variables, and the overlapping grid-based spectral collocation technique has been executed to procure solutions numerically. The graphical interpretation of various pertinent variables in the flow profiles and physical quantities of engineering attentiveness is provided and discussed. The results reveal that NF flow is accelerated by nonlinear thermal convection, velocity slip, magnetic fields, and variable viscosity parameters but decelerated by the Williamson fluid and suction parameters. The inclusion of nonlinear thermal radiation and variable thermal conductivity helps to enhance the fluid temperature and heat transfer rate. The concentration of both nanoparticles and motile microbes is promoted by the incorporation of activation energy in the flow system. The contribution of microbial Brownian motion along with microbial reactions on flow quantities justifies the importance of these features in the dynamics of motile microbes. Full article
Show Figures

Figure 1

32 pages, 7198 KiB  
Article
Boundary Layer Stagnation Point Flow and Heat Transfer over a Nonlinear Stretching/Shrinking Sheet in Hybrid Carbon Nanotubes: Numerical Analysis and Response Surface Methodology under the Influence of Magnetohydrodynamics
by Nazrul Azlan Abdul Samat, Norfifah Bachok and Norihan Md Arifin
Computation 2024, 12(3), 46; https://doi.org/10.3390/computation12030046 - 3 Mar 2024
Cited by 2 | Viewed by 1899
Abstract
The present study aims to offer new numerical solutions and optimisation strategies for the fluid flow and heat transfer behaviour at a stagnation point through a nonlinear sheet that is expanding or contracting in water-based hybrid nanofluids. Most hybrid nanofluids typically use metallic [...] Read more.
The present study aims to offer new numerical solutions and optimisation strategies for the fluid flow and heat transfer behaviour at a stagnation point through a nonlinear sheet that is expanding or contracting in water-based hybrid nanofluids. Most hybrid nanofluids typically use metallic nanoparticles. However, we deliver a new approach by combining single- and multi-walled carbon nanotubes (SWCNTs-MWCNTs). The flow is presumptively steady, laminar, and surrounded by a constant temperature of the ambient and body walls. By using similarity variables, a model of partial differential equations (PDEs) with the magnetohydrodynamics (MHD) effect on the momentum equation is converted into a model of non-dimensional ordinary differential equations (ODEs). Then, the dimensionless first-order ODEs are solved numerically using the MATLAB R2022b bvp4C program. In order to explore the range of computational solutions and physical quantities, several dimensionless variables are manipulated, including the magnetic parameter, the stretching/shrinking parameter, and the volume fraction parameters of hybrid and mono carbon nanotubes. To enhance the originality and effectiveness of this study for practical applications, we optimise the heat transfer coefficient via the response surface methodology (RSM). We apply a face-centred central composite design (CCF) and perform the CCF using Minitab. All of our findings are presented and illustrated in tabular and graphic form. We have made notable contributions in the disciplines of mathematical analysis and fluid dynamics. From our observations, we find that multiple solutions appear when the magnetic parameter is less than 1. We also detect double solutions in the shrinking region. Furthermore, the increase in the magnetic parameter and SWCNTs-MWCNTs volume fraction parameter increases both the skin friction coefficient and the local Nusselt number. To compare the performance of hybrid nanofluids and mono nanofluids, we note that hybrid nanofluids work better than single nanofluids both in skin friction and heat transfer coefficients. Full article
Show Figures

Figure 1

17 pages, 5592 KiB  
Article
Computational Fluid Dynamics Analysis of Varied Cross-Sectional Areas in Sleep Apnea Individuals across Diverse Situations
by W. M. Faizal, C. Y. Khor, Suhaimi Shahrin, M. H. M. Hazwan, M. Ahmad, M. N. Misbah and A. H. M. Haidiezul
Computation 2024, 12(1), 16; https://doi.org/10.3390/computation12010016 - 17 Jan 2024
Viewed by 1947
Abstract
Obstructive sleep apnea (OSA) is a common medical condition that impacts a significant portion of the population. To better understand this condition, research has been conducted on inhaling and exhaling breathing airflow parameters in patients with obstructive sleep apnea. A steady-state Reynolds-averaged Navier–Stokes [...] Read more.
Obstructive sleep apnea (OSA) is a common medical condition that impacts a significant portion of the population. To better understand this condition, research has been conducted on inhaling and exhaling breathing airflow parameters in patients with obstructive sleep apnea. A steady-state Reynolds-averaged Navier–Stokes (RANS) approach and an SST turbulence model have been utilized to simulate the upper airway airflow. A 3D airway model has been created using advanced software such as the Materialize Interactive Medical Image Control System (MIMICS) and ANSYS. The aim of the research was to fill this gap by conducting a detailed computational fluid dynamics (CFD) analysis to investigate the influence of cross-sectional areas on airflow characteristics during inhale and exhale breathing in OSA patients. The lack of detailed understanding of how the cross-sectional area of the airways affects OSA patients and the airflow dynamics in the upper airway is the primary problem addressed by this research. The simulations revealed that the cross-sectional area of the airway has a notable impact on velocity, Reynolds number, and turbulent kinetic energy (TKE). TKE, which measures turbulence flow in different breathing scenarios among patients, could potentially be utilized to assess the severity of obstructive sleep apnea (OSA). This research found a vital correlation between maximum pharyngeal turbulent kinetic energy (TKE) and cross-sectional areas in OSA patients, with a variance of 29.47%. Reduced cross-sectional area may result in a significant TKE rise of roughly 10.28% during inspiration and 10.18% during expiration. Full article
Show Figures

Figure 1

16 pages, 7982 KiB  
Article
Hydraulic Performance Optimization of a Submersible Drainage Pump
by Md Rakibuzzaman, Sang-Ho Suh, Hyung-Woon Roh, Kyung Hee Song, Kwang Chul Song and Ling Zhou
Computation 2024, 12(1), 12; https://doi.org/10.3390/computation12010012 - 10 Jan 2024
Cited by 1 | Viewed by 2172
Abstract
Small submersible drainage pumps are used to discharge leaking water and rainwater in buildings. In an emergency (e.g., heavy rain or accident), advance monitoring of the flow rate is essential to enable optimal operation, considering the point where the pump operates abnormally when [...] Read more.
Small submersible drainage pumps are used to discharge leaking water and rainwater in buildings. In an emergency (e.g., heavy rain or accident), advance monitoring of the flow rate is essential to enable optimal operation, considering the point where the pump operates abnormally when the water level is increased rapidly. Moreover, pump performance optimization is crucial for energy-saving policy. Therefore, it is necessary to meet the challenges of submersible pump systems, including sustainability and pump efficiency. The final goal of this study was to develop an energy-saving and highly efficient submersible drainage pump capable of performing efficiently in emergencies. In particular, this paper targeted the hydraulic performance improvement of a submersible drainage pump model. Prior to the development of driving-mode-related technology capable of emergency response, a way to improve the performance characteristics of the existing submersible drainage pump was found. Disassembling of the current pump followed by reverse engineering was performed instead of designing a new pump. Numerical simulation was performed to analyze the flow characteristics and pump efficiency. An experiment was carried out to obtain the performance, and it was validated with numerical results. The results reveal that changing the cross-sectional shape of the impeller reduced the flow separation and enhanced velocity and pressure distributions. Also, it reduced the power and increased efficiency. The results also show that the pump’s efficiency was increased to 5.56% at a discharge rate of 0.17 m3/min, and overall average efficiency was increased to 6.53%. It was concluded that the submersible pump design method is suitable for the numerical designing of an optimized pump’s impeller and casing. This paper provides insight on the design optimization of pumps. Full article
Show Figures

Figure 1

15 pages, 5308 KiB  
Article
Analytical and Numerical Investigation of Two-Dimensional Heat Transfer with Periodic Boundary Conditions
by İrem Bağlan and Erman Aslan
Computation 2024, 12(1), 11; https://doi.org/10.3390/computation12010011 - 10 Jan 2024
Viewed by 2049
Abstract
A two-dimensional heat diffusion problem with a heat source that is a quasilinear parabolic problem is examined analytically and numerically. Periodic boundary conditions are employed. As the problem is nonlinear, Picard’s successive approximation theorem is utilized. We demonstrate the existence, uniqueness, and constant [...] Read more.
A two-dimensional heat diffusion problem with a heat source that is a quasilinear parabolic problem is examined analytically and numerically. Periodic boundary conditions are employed. As the problem is nonlinear, Picard’s successive approximation theorem is utilized. We demonstrate the existence, uniqueness, and constant dependence of the solution on the data using the generalized Fourier method under specific conditions of natural regularity and consistency imposed on the input data. For the numerical solution, an implicit finite difference scheme is used. The results obtained from the analytical and numerical solutions closely match each other. Full article
Show Figures

Figure 1

16 pages, 5115 KiB  
Article
Modeling of Heat Flux in a Heating Furnace
by Augustín Varga, Ján Kizek, Miroslav Rimár, Marcel Fedák, Ivan Čorný and Ladislav Lukáč
Computation 2023, 11(7), 144; https://doi.org/10.3390/computation11070144 - 17 Jul 2023
Viewed by 1852
Abstract
Modern heating furnaces use combined modes of heating the charge. At high heating temperatures, more radiation heating is used; at lower temperatures, more convection heating is used. In large heating furnaces, such as pusher furnaces, it is necessary to monitor the heating of [...] Read more.
Modern heating furnaces use combined modes of heating the charge. At high heating temperatures, more radiation heating is used; at lower temperatures, more convection heating is used. In large heating furnaces, such as pusher furnaces, it is necessary to monitor the heating of the material zonally. Zonal heating allows the appropriate thermal regime to be set in each zone, according to the desired parameters for heating the charge. The problem for each heating furnace is to set the optimum thermal regime so that at the end of the heating, after the material has been cross-sectioned, there is a uniform temperature field with a minimum temperature differential. In order to evaluate the heating of the charge, a mathematical model was developed to calculate the heat fluxes of the moving charge (slabs) along the length of the pusher furnace. The obtained results are based on experimental measurements on a test slab on which thermocouples were installed, and data acquisition was provided by a TERMOPHIL-stor data logger placed directly on the slab. Most of the developed models focus only on energy balance assessment or external heat exchange. The results from the model created showed reserves for changing the thermal regimes in the different zones. The developed model was used to compare the heating evaluation of the slabs after the rebuilding of the pusher furnace. Changing the furnace parameters and altering the heat fluxes or heating regimes in each zone contributed to more uniform heating and a reduction in specific heat consumption. The developed mathematical heat flux model is applicable as part of the powerful tools for monitoring and controlling the thermal condition of the charge inside the furnace as well as evaluating the operating condition of such furnaces. Full article
Show Figures

Figure 1

17 pages, 3031 KiB  
Article
Mathematical Model and Numerical Method of Calculating the Dynamics of High-Temperature Drying of Milled Peat for the Production of Fuel Briquettes
by Natalia Sorokova, Miroslav Variny, Yevhen Pysmennyy and Yuliia Kol’chik
Computation 2023, 11(3), 53; https://doi.org/10.3390/computation11030053 - 6 Mar 2023
Viewed by 1591
Abstract
Milled peat must be dried for the production of peat fuel briquettes. The current trend in the creation of drying technologies is the intensification of the dehydration process while obtaining a high-quality final product. An increase in the temperature of the drying agent, [...] Read more.
Milled peat must be dried for the production of peat fuel briquettes. The current trend in the creation of drying technologies is the intensification of the dehydration process while obtaining a high-quality final product. An increase in the temperature of the drying agent, above 300 °C, significantly accelerates the reaching of the final moisture content of the peat. In the final stage, it is also accompanied by partial thermal decomposition of the solid phase. Its first stage, which is the decomposition of hemicellulose, contributes to a decrease in weight and an increase in the caloric content of the dry residue. The development of high-temperature drying modes consists of determining the temperature and velocity of the drying agent, wherein the duration of the material reaching the equilibrium moisture content will be minimal and the temperature of the material will not rise above the second-stage decomposition temperature of cellulose. This problem can be solved by the mathematical modeling of the dynamics of peat particles drying in the flow. The article presents a mathematical model of heat and mass transfer, phase transitions, and shrinkage during the dehydration of milled peat particles. The equations of the mathematical model were built based on the differential equation of mass transfer in open deformable systems, which, in the absence of deformations, turns into the known equation of state. A numerical method for implementing a mathematical model has been developed. The adequacy of the mathematical model is confirmed by comparing the results of numerical modeling with known experimental data. Full article
Show Figures

Figure 1

Back to TopTop