Effects of Anisotropy, Convection, and Relaxation on Nonlinear Reaction-Diffusion Systems
Abstract
:1. Introduction
2. Formulation
2.1. One-Variable Formulation
2.2. Multi–Variable Formulation
3. Numerical Method
Accuracy Assessment
4. Results
4.1. The Effects of Anisotropy in the Absence of the Velocity Field
4.2. The Effects of Anisotropy in the Presence of Velocity Field
4.3. The Effects of Relaxation Times on Wave Propagation
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon Press: New York, NY, USA, 1987. [Google Scholar]
- Joseph, D.D.; Preziosi, L. Heat waves. Rev. Mod. Phys. 1989, 61, 41–73. [Google Scholar] [CrossRef]
- Joseph, D.D.; Preziosi, L. Addendum to the paper “Heat waves” [Rev. Mod. Phys. 61, 41 (1989)]. Rev. Mod. Phys. 1990, 62, 375–391. [Google Scholar] [CrossRef]
- Murray, J.D. Mathematical Biology II: Spatial Models and Biomedical Applications; Springer: New York, NY, USA, 2003. [Google Scholar]
- Ritchie, J.S.; Krause, A.L.; Van Gorder, R.A. Turing and wave instabilities in hyperbolic reaction–diffusion systems: The role of second-order time derivatives and cross–diffusion terms on pattern formation. Ann. Phys. 2022, 444, 169033. [Google Scholar] [CrossRef]
- Pourasghar, A.; Chen, Z. Hyperbolic heat conduction and thermoelastic solution of functionally graded CNT reinforced cylindrical panel subjected to heat pulse. Int. J. Solids Struct. 2019, 163, 117–129. [Google Scholar] [CrossRef]
- Rubin, M.A. Hyperbolic heat conduction and the second law. Int. J. Engng Sci. 1992, 30, 1665–1676. [Google Scholar] [CrossRef]
- Christov, C.I. On frame indifferent formulation of the Maxwell–Cattaneo model of finite–speed heat conduction. Mech. Res. Commun. 2009, 36, 481–486. [Google Scholar] [CrossRef]
- Christov, C.I. On the material invariant formulation of Maxwell’s displacement current. Found. Phys. 2006, 36, 1701–1717. [Google Scholar] [CrossRef]
- Truesdell, C. A First Course in Rational Continuum Mechanics; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Zhmakin, A.I. Non–Fourier Heat Conduction: From Phase-Lag Models to Relativistic and Quantum Transport; Springer Switzerland AG: New York, NY, USA, 2023. [Google Scholar]
- Williams, F.A. Combustion Theory, 2nd ed.; Addison–Wesley Publishing Company: New York, NY, USA, 1985. [Google Scholar]
- Vanag, V.K.; Epstein, I.R. Cross–diffusion and pattern formation in reaction–diffusion systems. Phys. Chem. Chem. Phys. 2009, 11, 897–912. [Google Scholar] [CrossRef]
- Shi, J.; Xie, Z.; Little, K. Cross–diffusion induced instability and stability in reaction–diffusion systems. J. Appl. Anal. Comput. 2010, 24, 95–119. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Oxford University Press: New York, NY, USA, 1959. [Google Scholar]
- Bertaglia, G.; Pareschi, L. Hyperbolic models for the spread of epidemics on networks: Kinetic description and numerical methods. ESAIM Math. Model. Numer. Anal. 2021, 55, 381–407. [Google Scholar] [CrossRef]
- Barbera, E.; Currò, C.; Valenti, G. A hyperbolic reaction–diffusion model for the hantavirus infection. Math. Methods Appl. Sci. 2008, 31, 481–499. [Google Scholar] [CrossRef]
- Méndez, V.; Casas–Vázquez, J. Hyperbolic reaction–diffusion model for virus infection. Int. J. Thermodyn. 2008, 11, 35–38. [Google Scholar]
- Méndez, V.; Llebot, J.E. Hyperbolic reaction–diffusion model for a forest fire model. Phys. Rev. E 1997, 56, 35–38. [Google Scholar] [CrossRef]
- Consolo, G.; Curró, C.; Grifó, G.; Valenti, G. Oscillatory periodic pattern dynamics in hyperbolic reaction–advection–diffusion models. Phys. Rev. E 2022, 105, 034206. [Google Scholar] [CrossRef] [PubMed]
- Cho, U.-I.; Eu, B.C. Hyperbolic reaction–diffusion equations and chemical oscillations in the Brussellator. Phys. D 1993, 68, 351–363. [Google Scholar] [CrossRef]
- Al–Ghoul, M.; Eu, B.C. Hyperbolic reaction–diffusion equations and irreversible thermodynamics: Cubic reversible reaction model. Phys. D 1996, 90, 119–153. [Google Scholar] [CrossRef]
- Al–Ghoul, M.; Eu, B.C. Hyperbolic reaction–diffusion equations, patterns, and phase speeds for the Brusselator. J. Phys. Chem. 1996, 100, 18900–18910. [Google Scholar] [CrossRef]
- Zemskov, E.P.; Horsthemke, W. Diffusive instabilities in hyperbolic reaction–diffusion equations. Phys. Rev. E 2016, 93, 032211. [Google Scholar] [CrossRef]
- Ramos, J.I. Numerical methods for nonlinear second-order hyperbolic partial differential equations. I. Time–linearized finite difference methods for 1-D problems. Appl. Math. Comput. 2007, 190, 722–756. [Google Scholar] [CrossRef]
- Greenbaum, A. Iterative Methods for Solving Linear Systems; SIAM: Philadelphia, PA, USA, 1997. [Google Scholar]
- Meurant, G. Computer Solution of Large Linear Systems; North-Holland: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Philadelphia, PA, USA, 2003. [Google Scholar]
- Simoncini, V.; Szyld, D.B. Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra Appl. 2007, 14, 1–82. [Google Scholar] [CrossRef]
- Ramos, J.I. Propagation of spiral waves in anisotropic media: From waves to stripes. Chaos Solitons Fractals 2001, 12, 1057–1064. [Google Scholar] [CrossRef]
- Bernal, L.P.; Roshko, A. Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 1986, 170, 499–525. [Google Scholar] [CrossRef]
- Kevorkian, J.; Cole, J.D. Perturbation Methods in Applied Mathematics; Springer: New York, NY, USA, 1981. [Google Scholar]
- Kevorkian, J.; Cole, J.D. Multiple Scale and Singular Perturbation Methods; Springer: New York, NY, USA, 1996. [Google Scholar]
- Butuzov, V.F. The angular boundary layer in mixed singularly perturbed problems for hyperbolic equations. Math. USSR Sb. 1997, 33, 403–425. [Google Scholar] [CrossRef]
Set No. | R | Period | Shape | |||
---|---|---|---|---|---|---|
1000 | 0.0 | 0.5 | 0.0 | 0.0 | 1.68 | sw |
1001 | 0.0 | 0.5 | 0.1 | 0.0 | 1.68 | sw |
1002 | 0.0 | 0.5 | 0.0 | 0.1 | 4.21 | scf |
1003 | 0.0 | 0.5 | 0.1 | 0.1 | 4.21 | scf |
1004 | 0.5 | 1.0 | 0.0 | 0.0 | 1.68 | sw |
1005 | 0.5 | 1.0 | 0.1 | 0.0 | 1.68 | sw |
1006 | 0.5 | 1.0 | 0.0 | 0.1 | 4.21 | lcf |
1007 | 0.5 | 1.0 | 0.1 | 0.1 | 4.21 | lcf |
2004 | 0.5 | 1.0 | 0.05 | 0.0 | 1.68 | sw |
2005 | 0.5 | 1.0 | 0.0 | 0.05 | 4.21 | scf |
2006 | 0.5 | 1.0 | 0.05 | 0.05 | 4.21 | scf |
3004 | 0.5 | 2.5 | 0.05 | 0.0 | 1.68 | sw |
3005 | 0.5 | 2.5 | 0.0 | 0.05 | 4.21 | scf |
3006 | 0.5 | 2.5 | 0.05 | 0.05 | 4.21 | scf |
1016 | −0.5 | 1.0 | 0.0 | 0.0 | 1.68 | sw |
1017 | −0.5 | 1.0 | 0.1 | 0.0 | 1.68 | sw |
1018 | −0.5 | 1.0 | 0.0 | 0.1 | 4.21 | scf |
1019 | −0.5 | 1.0 | 0.1 | 0.1 | 4.21 | lcf |
4004 | −0.5 | 1.0 | 0.05 | 0.0 | 1.68 | sw |
4005 | −0.5 | 1.0 | 0.0 | 0.05 | 4.21 | scf |
4006 | −0.5 | 1.0 | 0.05 | 0.05 | 4.21 | scf |
5004 | −0.5 | 2.5 | 0.05 | 0.0 | 1.68 | sw |
5005 | −0.5 | 2.5 | 0.0 | 0.05 | 4.21 | scf |
5006 | −0.5 | 2.5 | 0.05 | 0.05 | 4.21 | scf |
Set No. | R | Period | Shape | |||
---|---|---|---|---|---|---|
1000 | 0.0 | 0.5 | 0.0 | 0.0 | 1.68 | sw |
1001 | 0.0 | 0.5 | 0.1 | 0.0 | 1.68 | sw |
1002 | 0.0 | 0.5 | 0.0 | 0.1 | 4.21 | scf |
1003 | 0.0 | 0.5 | 0.1 | 0.1 | 4.21 | scf |
1011 | 2.5 | 1.0 | 0.0 | 0.0 | 1.68 | sw |
1008 | 2.5 | 1.0 | 0.1 | 0.0 | 1.68 | sw |
1009 | 2.5 | 1.0 | 0.0 | 0.1 | 4.21 | scf |
1010 | 2.5 | 1.0 | 0.1 | 0.1 | 4.21 | scf |
1015 | 2.5 | 2.5 | 0.0 | 0.0 | 4.21 | lcf |
1012 | 2.5 | 2.5 | 0.1 | 0.0 | 4.21 | lcf |
1013 | 2.5 | 2.5 | 0.0 | 0.1 | 4.21 | lcf |
1014 | 2.5 | 2.5 | 0.1 | 0.1 | 4.21 | lcf |
2008 | 2.5 | 1.0 | 0.05 | 0.0 | 1.68 | sw |
2009 | 2.5 | 1.0 | 0.0 | 0.05 | 4.21 | lcf |
2010 | 2.5 | 1.0 | 0.05 | 0.05 | 4.21 | lcf |
20008 | 2.5 | 1.0 | 0.01 | 0.0 | 1.66 | sw |
20009 | 2.5 | 1.0 | 0.0 | 0.01 | 4.28 | lcf |
20010 | 2.5 | 1.0 | 0.01 | 0.01 | 4.28 | lcf |
2012 | 2.5 | 2.5 | 0.01 | 0.0 | 4.28 | lcf |
2013 | 2.5 | 2.5 | 0.0 | 0.01 | 4.28 | lcf |
2014 | 2.5 | 2.5 | 0.01 | 0.01 | 4.28 | lcf |
1023 | −2.5 | 1.0 | 0.0 | 0.0 | 1.82 | sw |
1020 | −2.5 | 1.0 | 0.1 | 0.0 | 1.82 | sw |
1021 | −2.5 | 1.0 | 0.0 | 0.1 | 4.19 | lcf |
1022 | −2.5 | 1.0 | 0.1 | 0.1 | 4.19 | lcf |
1027 | −2.5 | 2.5 | 0.0 | 0.0 | 2.27 | sw |
1024 | −2.5 | 2.5 | 0.1 | 0.0 | 2.27 | sw |
1025 | −2.5 | 2.5 | 0.0 | 0.1 | 4.19 | lcf |
1026 | −2.5 | 2.5 | 0.1 | 0.1 | 4.19 | lcf |
2020 | −2.5 | 1.0 | 0.05 | 0.0 | 1.82 | sw |
2021 | −2.5 | 1.0 | 0.0 | 0.05 | 4.19 | scf |
2022 | −2.5 | 1.0 | 0.05 | 0.05 | 4.19 | scf |
2024 | −2.5 | 2.5 | 0.05 | 0.0 | 2.27 | sw |
2025 | −2.5 | 2.5 | 0.0 | 0.05 | 2.27 | lcf |
2026 | −2.5 | 2.5 | 0.05 | 0.05 | 2.27 | lcf |
20020 | −2.5 | 1.0 | 0.05 | 0.0 | 1.88 | sw |
20021 | −2.5 | 1.0 | 0.0 | 0.05 | 1.88 | sw |
20022 | −2.5 | 1.0 | 0.05 | 0.05 | 1.88 | sw |
20024 | −2.5 | 2.5 | 0.01 | 0.0 | 2.28 | sw |
20025 | −2.5 | 2.5 | 0.0 | 0.01 | 2.28 | sw |
20026 | −2.5 | 2.5 | 0.01 | 0.01 | 2.28 | sw |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, J.I. Effects of Anisotropy, Convection, and Relaxation on Nonlinear Reaction-Diffusion Systems. Computation 2024, 12, 214. https://doi.org/10.3390/computation12110214
Ramos JI. Effects of Anisotropy, Convection, and Relaxation on Nonlinear Reaction-Diffusion Systems. Computation. 2024; 12(11):214. https://doi.org/10.3390/computation12110214
Chicago/Turabian StyleRamos, Juan I. 2024. "Effects of Anisotropy, Convection, and Relaxation on Nonlinear Reaction-Diffusion Systems" Computation 12, no. 11: 214. https://doi.org/10.3390/computation12110214
APA StyleRamos, J. I. (2024). Effects of Anisotropy, Convection, and Relaxation on Nonlinear Reaction-Diffusion Systems. Computation, 12(11), 214. https://doi.org/10.3390/computation12110214