Open-Cell Tizr-Based Bulk Metallic Glass Scaffolds with Excellent Biocompatibility and Suitable Mechanical Properties for Biomedical Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Fabrication
2.2. Real Porosity
2.3. Morphology
2.4. Structure Analysis
2.5. Biocompatibility Tests
2.6. Mechanical Properties
3. Results and Discussion
3.1. Removing Al Spacer Particles
3.2. Real Porosity and Morphology of TiZr-Based BMG Scaffolds
3.3. Structure Characterization of TiZr-Based BMG Scaffolds
3.4. Biocompatibility by Using the Direct Contact Method
3.4.1. Cell Viability
3.4.2. Extracellular-Matrix Calcium Deposition
3.5. Mechanical Properties
3.5.1. Young’s Modulus, Compressive Strength and Bending Strength of Tizr-Based Bmg Scaffolds
3.5.2. Predicting Young’s Modulus and Compressive Strength
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akahori, T.; Niinomi, M.; Nakai, M.; Fukuda, H.; Fukui, H.; Ogawa, M. Bioactive ceramic surface modification of β-type Ti-Nb-Ta-Zr system alloy by alkali solution treatment. Mater. Trans. 2007, 48, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Gepreel, M.A.-H.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wong, P.; Chang, S.; Tsai, P.; Jang, J.; Huang, J. Biocompatibility study on Ni-free Ti-based and Zr-based bulk metallic glasses. Mater. Sci. Eng. C 2017, 75, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, Y.; Lin, Y.; Lin, C.; Huang, J.; Chen, C.; Li, J.; Chen, Y.; Jang, J. Electrochemical and biocompatibility response of newly developed TiZr-based metallic glasses. Mater. Sci. Eng. C 2014, 43, 343–349. [Google Scholar] [CrossRef]
- Cameron, H.; Macnab, I.; Pilliar, R. A porous metal system for joint replacement surgery. Int. J. Artif. Organs 1978, 1, 104–109. [Google Scholar]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Head, W.C.; Bauk, D.J.; Emerson, J.R. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin. Orthop. Relat. Res. 1995, 311, 85–90. [Google Scholar]
- Zysset, P.K.; Guo, X.E.; Hoffler, C.E.; Moore, K.E.; Goldstein, S.A. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 1999, 32, 1005–1012. [Google Scholar] [CrossRef]
- Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 2002, 33, 477. [Google Scholar] [CrossRef]
- Lin, C.; Huang, C.; Chuang, J.; Huang, J.; Jang, J.; Chen, C. Rapid screening of potential metallic glasses for biomedical applications. Mater. Sci. Eng. C 2013, 33, 4520–4526. [Google Scholar] [CrossRef]
- Huang, C.; Lai, J.; Huang, J.; Lin, C.; Jang, J. Effects of Cu content on electrochemical response in Ti-based metallic glasses under simulated body fluid. Mater. Sci. Eng. C 2016, 62, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zheng, Y. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 2016, 36, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Kujala, S.; Ryhänen, J.; Danilov, A.; Tuukkanen, J. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute. Biomaterials 2003, 24, 4691–4697. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Pan, C.; Lin, C.; Yang, T.; Huang, Y.; Ou, C.; Chen, L.; Lin, D.; Lin, H. Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting. J. Alloys Compd. 2017, 713, 248–254. [Google Scholar] [CrossRef]
- Li, J.; Lin, H.; Jang, J.; Kuo, C.; Huang, J. Novel open-cell bulk metallic glass foams with promising characteristics. Mater. Lett. 2013, 105, 140–143. [Google Scholar] [CrossRef]
- Nguyen, V.; Li, T.; Song, S.; Liao, Y.; Tsai, P.; Wong, P.; Nguyen, V.; Jang, J. Synthesis of biocompatible TiZr-based bulk metallic glass foams for bio-implant application. Mater. Lett. 2019, 256, 126650. [Google Scholar] [CrossRef]
- Li, T.; Liao, Y.; Song, S.; Nguyen, V.; Tsai, P.; Jang, J.; Huang, J. New method for determination of hidden supercooled liquid region of TiZr-based amorphous alloys. J. Non Cryst. Solids 2019, 510, 1–5. [Google Scholar] [CrossRef]
- Catelas, I.; Bobyn, J.D.; Medley, J.B.; Krygier, J.J.; Zukor, D.J.; Huk, O.L. Size, shape, and composition of wear particles from metal–metal hip simulator testing: Effects of alloy and number of loading cycles. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. 2003, 67, 312–327. [Google Scholar] [CrossRef]
- Milošev, I. CoCrMo alloy for biomedical applications. In Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–72. [Google Scholar]
- Pérez-Maceda, B.; López-Fernández, M.; Díaz, I.; Kavanaugh, A.; Billi, F.; Escudero Rincón, M.L.; García-Alonso, M.; Lozano, R. Osteoblasts mc3t3-e1 Response in 2d and 3d Cell Cultures Models to High Carbon Content Cocr Alloy Particles. Effect of Metallic Particles on Vimentin Expression. J. Mater. Sci. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Standard, A. C1161-13 (2013) Standard test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Kasten, P.; Beyen, I.; Niemeyer, P.; Luginbühl, R.; Bohner, M.; Richter, W. Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: An in vitro and in vivo study. Acta Biomater. 2008, 4, 1904–1915. [Google Scholar] [CrossRef]
- Wang, X.; Ni, Q. Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach. J. Orthop. Res. 2003, 21, 312–319. [Google Scholar] [CrossRef]
- Tsuruga, E.; Takita, H.; Itoh, H.; Wakisaka, Y.; Kuboki, Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 1997, 121, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standardization I.O.F. ISO-10993-5: Biological Evaluation of Medical Devices Part 5: Test for Cytotoxicity: In Vitro Methods; ANSI/AAMI: Arlington, VA, USA, 1999. [Google Scholar]
- Nicoara, M.; Raduta, A.; Parthiban, R.; Locovei, C.; Eckert, J.; Stoica, M. Low Young’s modulus Ti-based porous bulk glassy alloy without cytotoxic elements. Acta Biomater. 2016, 36, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Keller, T.; Mao, Z.; Spengler, D. Young’s modulus, bending strength, and tissue physical properties of human compact bone. J. Orthop. Res. 1990, 8, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Currey, J.D. What determines the bending strength of compact bone? J. Exp. Biol. 1999, 202, 2495–2503. [Google Scholar] [PubMed]
- Kutz, M. Standard Handbook of Biomedical Engineering and Design; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Ashby, M.F.; Evans, T.; Fleck, N.A.; Hutchinson, J.; Wadley, H.; Gibson, L. Metal Foams: A Design Guide; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
Alloys | Note | ||||||
---|---|---|---|---|---|---|---|
Ti42Zr40Ta3Si15 | 799 | 898 | 99 | 1728 | 0.355 | 0.577 | base component |
Ti42Zr40Ta3Si7.5Sn7.5 | 776 | 904 | 128 | 1738 | 0.360 | 0.594 | +Sn |
Ti42Zr42Ta3Si7.5Sn5.5 | 763 | 900 | 137 | 1709 | 0.364 | 0.607 | +Sn |
Ti42Zr40Ta3Si10Sn5 | 773 | 910 | 137 | 1728 | 0.364 | 0.606 | +Sn |
Ti42Zr42Ta3Si10Sn3 | 751 | 900 | 149 | 1703 | 0.367 | 0.616 | +Sn |
Ti42Zr32.5Ta3Si7.5Co15 | 777 | 834 | 57 | 1220 | 0.418 | 0.730 | +Co |
Ti42Zr35Ta3Si10Co10 | 798 | 844 | 46 | 1191 | 0.424 | 0.747 | +Co |
Ti42Zr35Ta3Si7.5Co12.5 | 758 | 826 | 68 | 1199 | 0.422 | 0.746 | +Co |
Ti42Zr35Ta3Si5Co15 | 745 | 817 | 72 | 1201 | 0.420 | 0.740 | +Co |
Ti42Zr35Ta3Si5Sn7.5Co7.5 | 803 | 874 | 71 | 1198 | 0.427 | 0.763 | +SnCo |
Ti42Zr35Ta3Si5Sn5Co10 | 809 | 873 | 64 | 1212 | 0.432 | 0.773 | +SnCo |
Ti42Zr35Ta3Si5Sn2.5Co12.5 | 761 | 842 | 81 | 1210 | 0.437 | 0.789 | +SnCo |
Al (vol. %) | Real Porosity (vol. %) | Young’s Modulus (E, GPa) | Compressive Strength (σ, MPa) | Bending Strength (S, MPa) | E/Es | σpl/σs | ρ/ρs | (ρ/ρs)3 | (ρ/ρs)4.5 |
---|---|---|---|---|---|---|---|---|---|
- | 0.0 | 112 | 1342 | - | 1 | 1 | 1 | 1 | 1 |
Free | 2.0 | 56.4 | 979 | - | 0.504 | 0.730 | 0.980 | 0.942 | 0.914 |
10 | 12.4 | - | - | 157 | - | - | - | - | - |
15 | 16.7 | 32.1 | 524 | - | 0.287 | 0.390 | 0.834 | 0.580 | 0.442 |
20 | 24.6 | - | - | 78 | - | - | - | - | - |
25 | 32.8 | 20.6 | 216 | 49 | 0.184 | 0.161 | 0.673 | 0.304 | 0.168 |
35 | 38.8 | 8.9 | 81 | - | 0.079 | 0.060 | 0.513 | 0.135 | 0.050 |
45 | 64.0 | 5.1 | 52 | - | 0.046 | 0.039 | 0.360 | 0.047 | 0.010 |
50 | 72.4 | 2.3 | 19 | - | - | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.T.; Wong, X.P.-C.; Song, S.-M.; Tsai, P.-H.; Jang, J.S.-C.; Tsao, I.-Y.; Lin, C.-H.; Nguyen, V.C. Open-Cell Tizr-Based Bulk Metallic Glass Scaffolds with Excellent Biocompatibility and Suitable Mechanical Properties for Biomedical Application. J. Funct. Biomater. 2020, 11, 28. https://doi.org/10.3390/jfb11020028
Nguyen VT, Wong XP-C, Song S-M, Tsai P-H, Jang JS-C, Tsao I-Y, Lin C-H, Nguyen VC. Open-Cell Tizr-Based Bulk Metallic Glass Scaffolds with Excellent Biocompatibility and Suitable Mechanical Properties for Biomedical Application. Journal of Functional Biomaterials. 2020; 11(2):28. https://doi.org/10.3390/jfb11020028
Chicago/Turabian StyleNguyen, Van Tai, Xavier Pei-Chun Wong, Sin-Mao Song, Pei-Hua Tsai, Jason Shian-Ching Jang, I-Yu Tsao, Che-Hsin Lin, and Van Cuong Nguyen. 2020. "Open-Cell Tizr-Based Bulk Metallic Glass Scaffolds with Excellent Biocompatibility and Suitable Mechanical Properties for Biomedical Application" Journal of Functional Biomaterials 11, no. 2: 28. https://doi.org/10.3390/jfb11020028
APA StyleNguyen, V. T., Wong, X. P. -C., Song, S. -M., Tsai, P. -H., Jang, J. S. -C., Tsao, I. -Y., Lin, C. -H., & Nguyen, V. C. (2020). Open-Cell Tizr-Based Bulk Metallic Glass Scaffolds with Excellent Biocompatibility and Suitable Mechanical Properties for Biomedical Application. Journal of Functional Biomaterials, 11(2), 28. https://doi.org/10.3390/jfb11020028