Morphological Characteristics of the Osteoplastic Potential of Synthetic CaSiO3/HAp Powder Biocomposite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Biocomposite
2.2. Biocompatibility Tests
2.3. Visualization and Morphometric
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, B.P.; Venkatesh, V.; Kumar, K.A.J.; Yadav, B.Y.; Mohan, S.R. Mandibular Reconstruction: Overview. J. Maxillofac. Oral Surg. 2016, 15, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Messina, A.M.; Marini, L.; Oh, D.S.; Marini, E. A Step-by-Step Procedure for Bone Regeneration Using Calcium Phosphate Scaffolds: From Site Preparation to Graft Placement. J. Craniofac. Surg. 2019, 30, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, W.; Qian, C.; Xiao, W.; Zhu, H.; Guo, J.; Meng, Z.; Zhu, J.; Ge, Z.; Cui, W. Advanced biomaterials for repairing and reconstruction of mandibular defects. Mater. Sci. Eng. C. 2019, 103, 109858. [Google Scholar] [CrossRef] [PubMed]
- Ramanauskaite, A.; Borges, T.; Almeida, B.L.; Correia, A. Dental Implant Outcomes in Grafted Sockets: A Systematic Review and Meta-Analysis. J. Oral Maxillofac. Res. 2019, 10, e8. [Google Scholar] [CrossRef] [Green Version]
- Hamed, M.T.; Abdullah Mously, H.; Khalid Alamoudi, S.; Hossam Hashem, A.B.; Hussein Naguib, G.A. Systematic Review of Screw versus Cement-Retained Fixed Implant Supported Reconstructions. Clin. Cosmet. Investig. Dent. 2020, 12, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Ferreiroa, A.; Peñarrocha-Diago, M.; Pradíes, G.; Sola-Ruiz, M.F.; Agustín-Panadero, R. Cemented and screw-retained implant-supported single-tooth restorations in the molar mandibular region: A retrospective comparison study after an observation period of 1 to 4 years. J. Clin. Exp. Dent. 2015, 7, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Tsigarida, A.; Chochlidakis, K.; Fraser, D.; Lampraki, E.; Einarsdottir, E.R.; Barmak, A.B.; Papaspyridakos, P.; Ercoli, C. Peri-Implant Diseases and Biologic Complications at Implant-Supported Fixed Dental Prostheses in Partially Edentulous Patients. J. Prosthodont. 2020, 29, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Tallarico, M.; Xhanari, E.; Pisano, M.; De Riu, G.; Tullio, A.; Meloni, S.M. Single post-extractive ultra-wide 7 mm-diameter implants versus implants placed in molar healed sites after socket preservation for molar replacement: 6-month post-loading results from a randomised controlled trial. Eur. J. Oral Implantol. 2016, 9, 263–275. [Google Scholar] [PubMed]
- Barone, A.; Orlando, B.; Cingano, L.; Marconcini, S.; Derchi, G.; Covani, U. A randomized clinical trial to evaluate and compare implants placed in augmented versus non-augmented extraction sockets: 3-year results. J. Periodontol. 2012, 83, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, A.; Prein, J. (Eds.) Craniomaxillofascial Reconstructive and Corrective Bone Surgery: Principles of Inernal Fixation Using the AO/ASIF Technique; Springer: New York, NY, USA, 2002; p. 784. [Google Scholar] [CrossRef]
- de Moraes Ferreira, A.C.; Muñoz, X.M.; Okamoto, R.; Pellizer, E.P.; Garcia, I.R., Jr. Postoperative Complications in Craniomaxillofacial Reconstruction With Medpor. J. Craniofac. Surg. 2016, 27, 425–428. [Google Scholar] [CrossRef]
- Sakkas, A.; Schramm, A.; Winter, K.; Wilde, F. Risk factors for post-operative complications after procedures for autologous bone augmentation from different donor sites. J. Craniomaxillofac. Surg. 2018, 46, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Figliuzzi, M.M.; De Fazio, R.; Tiano, R.; Franceschi, S.; Pacifico, D.; Mangano, F.; Fortunato, L. Histological evaluation of a biomimetic material in bone regeneration after one year from graft. Ann. Stomatol. 2014, 5, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Khoury, F.; Keller, P.; Keeve, P.L. Stability of Grafted Implant Placement Sites After Sinus Floor Elevation Using a Layering. Int. J. Oral Maxillofac. Implants. 2017, 32, 1086–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunelli, G.; Carinci, F.; Palmieri, A.; Girardi, A.; Zollino, I.; Vazzoler, G.; Magnabosco, F.; Sollazzo, V. Effects of Engipore® treatment on adipose tissue-derived stem cells: An in vitro study. Eur. J. Inflamm. 2011, 9, 95–99. [Google Scholar] [CrossRef]
- Sollazzo, V.; Palmieri, A.; Girardi, A.; Farinella, F.; Carinci, F. Engipore acts on human bone marrow stem cells. Saudi Dent. J. 2010, 22, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Girardi, A.; Palmieri, A.; Cura, F.; Carinci, F.; Zollino, I.; Hassanipour, A.; Saggese, V.; Piras, A.; Zamboni, P.; Brunelli, G. Bio-Oss® acts on bone marrow-derived stem cells promoting osteoblast differentiation. Eur. J. Inflamm. 2011, 10, 71–76. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Orangi, J.; Tanideh, N.; Asatourian, A.; Janghorban, K.; Garcia-Godoy, F.; Sheibani, N. Repair of bone defect by nano-modified white mineral trioxide aggregates in rabbit: A histopathological study. Med. Oral Patol. Oral Cir. Bucal 2015, 20, 525–531. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Asatourian, A.; Garcia-Godoy, F.; Sheibani, N. The role of angiogenesis in implant dentistry part II: The effect of bone-grafting and barrier membrane materials on angiogenesis. Med. Oral Patol. Oral Cir. Bucal 2016, 21, 526–537. [Google Scholar] [CrossRef]
- Mellonig, J.T.; Bowers, G.M.; Bailey, R.C. Comparison of bone graft materials. Part I. New bone formation with autografts and allografts determined by Strontium-85. J. Periodontol. 1981, 52, 291–296. [Google Scholar] [CrossRef]
- Khoury, F.; Doliveux, R. The Bone Core Technique for the Augmentation of Limited Bony Defects: Five-Year Prospective Study with a New Minimally Invasive Technique. Int. J. Periodontics Restor. Dent. 2018, 38, 199–207. [Google Scholar] [CrossRef]
- Santos, P.S.; Cestari, T.M.; Paulin, J.B.; Martins, R.; Rocha, C.A.; Arantes, R.V.N.; Costa, B.C.; Dos Santos, C.M.; Assis, G.F.; Taga, R. Osteoinductive porous biphasic calcium phosphate ceramic as an alternative to autogenous bone grafting in the treatment of mandibular bone critical-size defects. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 1546–1557. [Google Scholar] [CrossRef] [PubMed]
- Tettamanti, L.; Bassi, M.A.; Trapella, G.; Candotto, V.; Tagliabue, A. Applications of biomaterials for bone augmentation of jaws: Clinical outcomes and in vitro studies. Oral Implantol. 2017, 10, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Montazerian, M.; Zanotto, E.D. Bioactive and inert dental glass-ceramics. J. Biomed. Mater. Res. A 2017, 105, 619–639. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, C.A.; Lemos, C.A.A.; Santiago-Júnior, J.F.; Faverani, L.P.; Pellizzer, E.P. Bone augmentation using autogenous bone versus biomaterial in the posterior region of atrophic mandibles: A systematic review and meta-analysis. J. Dent. 2018, 76, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, W.T.; de Almeida, K.V.; de Lima, G.G.; Rodriguez, M.A.; Lia Fook, M.V.; García-Carrodeguas, R.; Amaro da Silva Junior, V.; de Sousa Segundo, F.A.; de Sá, M.J.C. Synthesis and in vivo evaluation of a scaffold containing wollastonite/β TCP for bone repair in a rabbit tibial defect model. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Chiu, Y.C.; Shen, Y.F.; Wu, Y.A.; Shie, M.Y. Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering. J. Mater. Sci. Mater. Med. 2017, 29, 11. [Google Scholar] [CrossRef]
- Kim, J.W.; Yang, B.E.; Hong, S.J.; Choi, H.G.; Byeon, S.J.; Lim, H.K.; Chung, S.M.; Lee, J.H.; Byun, S.H. Bone Regeneration Capability of 3D Printed Ceramic Scaffolds. Int. J. Mol. Sci. 2020, 21, 4837. [Google Scholar] [CrossRef]
- Tcacencu, I.; Rodrigues, N.; Alharbi, N.; Benning, M.; Toumpaniari, S.; Mancuso, E.; Marshall, M.; Bretcanu, O.; Birch, M.; McCaskie, A.; et al. Osseointegration of porous apatite-wollastonite and poly (lactic acid) composite structures created using 3D printing techniques. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 1–7. [Google Scholar] [CrossRef]
- Habibah, T.U.; Salisbury, H.G. Hydroxyapatite Dental Material; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Milazzo, M.; Contessi Negrini, N.; Scialla, S.; Marelli, B.; Farè, S.; Danti, S.; Buehler, M.J. Additive Manufacturing Approaches for Hydroxyapatite-Reinforced Composites. Adv. Funct. Mater. 2019, 29, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhao, M.; Lu, J.; Ma, J.; Wei, J.; Wei, S. Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities. Int. J. Nanomed. 2012, 7, 1239–1250. [Google Scholar] [CrossRef] [Green Version]
- Ni, S.; Chang, J. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. J. Biomater. Appl. 2009, 24, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Carbonari, D.; Campopiano, A.; Ramires, D.; Strafella, E.; Staffolani, S.; Tomasetti, M.; Curini, R.; Valentino, M.; Santarelli, L.; Amati, M. Angiogenic effect induced by mineral fibres. Toxicology 2011, 288, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Geng, Y.M.; Li, S.Y.; Yang, X.B.; Che, Y.J.; Pathak, J.L.; Wu, G. Nanocrystalline hydroxyapatite-based scaffold adsorbs and gives sustained release of osteoinductive growth factor and facilitates bone regeneration in mice ectopic model. J. Nanomater. 2019. [Google Scholar] [CrossRef] [Green Version]
- Oryan, A.; Meimandi Parizi, A.; Shafiei-Sarvestani, Z.; Bigham, A.S. Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: Radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank. 2012, 13, 639–651. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Buravlev, I.Y.; Belov, A.A.; Portnyagin, A.S.; Mayorov, V.Y.; Merkulov, E.B.; Kaydalova, T.I.; Skurikhina, Y.E.; Turkutyukov, V.B.; et al. CaSiO3-HAp Structural Bioceramic by Sol-Gel and SPS-RS Techniques: Bacteria Test Assessment. J. Funct. Bioceram. 2020, 11, 41. [Google Scholar] [CrossRef]
- Anghelescu, V.M.; Neculae, I.; Dincă, O.; Vlădan, C.; Socoliuc, C.; Cioplea, M.; Nichita, L.; Popp, C.; Zurac, S.; Bucur, A. Inflammatory-Driven Angiogenesis in Bone Augmentation with Bovine Hydroxyapatite, B-Tricalcium Phosphate, and Bioglasses: A Comparative Study. J. Immunol. Res. 2018, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Yu, H.; Deng, Y.; Yang, W.; Liao, L.; Long, Q. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics. Mater. Sci. Eng. C 2016, 59, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Papynov, E.K.; Shichalin, O.O.; Apanasevich, V.I.; Portnyagin, A.S.; Yu, M.V.; Yu, B.I.; Merkulov, E.B.; Kaidalova, T.A.; Modin, E.B.; Afonin, I.S.; et al. Sol-gel (template) synthesis of osteoplastic CaSiO3/HAp powder biocomposite: “In vitro” and “in vivo” biocompatibility assessment. Powd. Tech. 2020, 367, 762–773. [Google Scholar] [CrossRef]
- Ghavimi, S.A.A.; Allen, B.N.; Stromsdorfer, J.L.; Kramer, J.S.; Li, X.; Ulery, B.D. Calcium and Phosphate Ions as Simple Signaling Molecules with Versatile Osteoinductivity. Biomed. Mater. 2018, 13, 055005. [Google Scholar] [CrossRef] [PubMed]
- Renno, A.C.M.; Bossini, P.S.; Crovace, M.C.; Rodrigues, F.C.M.; Zanotto, E.D.; Parizotto, N.A. Characterization and In Vivo Biological Performance of Biosilicate. Biomed. Res. Int. 2013, 141427. [Google Scholar] [CrossRef]
- Hong, L.; Miyamoto, S.; Hashimoto, N.; Tabata, Y. Synergistic Effect of Gelatin Microspheres Incorporating TGF-beta1 and a Physical Barrier for Fibrous Tissue Infiltration on Skull Bone Formation. J Biomater. Sci. Polym. Ed. 2000, 11, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Domingues, J.A.; Motisuke, M.; Bertran, C.A.; Hausen, M.A.; de Rezende Duek, E.A.; Camilli, J.A. Addition of Wollastonite Fibers to Calcium Phosphate Cement Increases Cell Viability and Stimulates Differentiation of Osteoblast. Cells Sci. World J. 2017, 1–6. [Google Scholar] [CrossRef]
- Götz, W.; Tobiasch, E.; Witzleben, S.; Schulze, M. Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics 2019, 11, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henstock, J.R.; Canham, L.T.; Anderson, S.I. Silicon: The evolution of its use in biomaterials. Acta Biomater. 2015, 11, 17–26. [Google Scholar] [CrossRef] [PubMed]
Parameters | Alveolar Wall without Graft n = 8 | Alveolar Wall with Graft n = 8 |
---|---|---|
CW (the width of the cortical layer width, µm) | 231.2 ± 1.8 1 | 293.9 ± 0.9 1 |
TT (trabeculae thickness, µm) | 52.1 ± 3.9 1 | 68.5 ± 6.5 1 |
N.Ob (quantity of osteoblasts, mm2) | 1.1 ± 0.1 1 | 1.6 ± 0.12 1 |
OTh (osteoid thickness, µm) | 2.2 ± 1.6 2 | 3.1 ± 2.6 2 |
ES (surface erosion, %) | 11.3 ± 0.6 1 | 15.7 ± 1.2 1 |
N.Oc (quantity of osteoclasts, mm2) | 0.1 ± 0.05 2 | 0.4 ± 0.28 2 |
TbV (mineralized volume, %) | 53.5 ± 3.8 1 | 49.2 ± 4.3 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apanasevich, V.; Papynov, E.; Plekhova, N.; Zinoviev, S.; Kotciurbii, E.; Stepanyugina, A.; Korshunova, O.; Afonin, I.; Evdokimov, I.; Shichalin, O.; et al. Morphological Characteristics of the Osteoplastic Potential of Synthetic CaSiO3/HAp Powder Biocomposite. J. Funct. Biomater. 2020, 11, 68. https://doi.org/10.3390/jfb11040068
Apanasevich V, Papynov E, Plekhova N, Zinoviev S, Kotciurbii E, Stepanyugina A, Korshunova O, Afonin I, Evdokimov I, Shichalin O, et al. Morphological Characteristics of the Osteoplastic Potential of Synthetic CaSiO3/HAp Powder Biocomposite. Journal of Functional Biomaterials. 2020; 11(4):68. https://doi.org/10.3390/jfb11040068
Chicago/Turabian StyleApanasevich, Vladimir, Evgeniy Papynov, Nataliay Plekhova, Sergey Zinoviev, Evgeniy Kotciurbii, Alexandra Stepanyugina, Oksana Korshunova, Igor Afonin, Ivan Evdokimov, Oleg Shichalin, and et al. 2020. "Morphological Characteristics of the Osteoplastic Potential of Synthetic CaSiO3/HAp Powder Biocomposite" Journal of Functional Biomaterials 11, no. 4: 68. https://doi.org/10.3390/jfb11040068
APA StyleApanasevich, V., Papynov, E., Plekhova, N., Zinoviev, S., Kotciurbii, E., Stepanyugina, A., Korshunova, O., Afonin, I., Evdokimov, I., Shichalin, O., Bardin, A., Nevozhai, V., & Polezhaev, A. (2020). Morphological Characteristics of the Osteoplastic Potential of Synthetic CaSiO3/HAp Powder Biocomposite. Journal of Functional Biomaterials, 11(4), 68. https://doi.org/10.3390/jfb11040068