Increased Elasticity Modulus of Polymeric Materials Is a Source of Surface Alterations in the Human Body
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meshes
2.2. Investigation of Swelling and Surface Alteration
2.3. Infrared Spectroscopy (IR)
2.4. Isolation of Extracts from Alloplastic Materials
2.5. Characterization of the Extractable Material
2.6. Statistical Analysis
3. Results
3.1. Fiber Thickness
3.2. Infrared Spectroscopy
3.3. NMR Spectroscopy
4. Discussion
4.1. Alloplastic Materials and Foreign Body Reaction in the Host
4.2. Swelling and FT-IR
4.3. Oxidative Stress and Polymer Additives
4.4. Connection between Chemical and Physical Alteration Processes
4.5. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henriksen, N.A.; Montgomery, A.; Kaufmann, R.; Berrevoet, F.; East, B.; Fischer, J.; Hope, W.; Klassen, D.; Lorenz, R.; Renard, Y.; et al. Guidelines for treatment of umbilical and epigastric hernias from the European Hernia Society and Americas Hernia Society. Br. J. Surg. 2020, 107, 171–190. [Google Scholar] [CrossRef]
- Lockhart, K.; Dunn, D.; Teo, S.; Ng, J.Y.; Dhillon, M.; Teo, E.; van Driel, M.L. Mesh versus non-mesh for inguinal and femoral hernia repair. Cochrane Database Syst. Rev. 2018, 9, CD011517. [Google Scholar] [CrossRef] [Green Version]
- Kapischke, M.; Prinz, K.; Tepel, J.; Tensfeldt, J.; Schulz, T. Comparative investigation of alloplastic materials for hernia repair with improved methodology. Surg. Endosc. 2005, 19, 1260–1265. [Google Scholar] [CrossRef]
- Gahleitner, M.; Paulik, C. Polypropylene. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley Online Library, Wiley & Sons Ltd.: Bridgewater, NY, USA, 2014; pp. 1–44. [Google Scholar] [CrossRef]
- Coda, A.; Bendavid, R.; Botto-Micca, F.; Bossotti, M.; Bona, A. Structural alterations of prosthetic meshes in humans. Hernia 2003, 7, 29–34. [Google Scholar] [CrossRef]
- Cozad, M.J.; Grant, D.A.; Bachman, S.L.; Grant, D.N.; Ramshaw, B.J.; Grant, S.A. Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: Spectral and thermal analysis. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Costello, C.R.; Bachman, S.L.; Grant, S.A.; Cleveland, D.S.; Loy, T.S.; Ramshaw, B.J. Characterization of heavyweight and lightweight polypropylene prosthetic mesh explants from a single patient. Surg. Innov. 2007, 14, 168–176. [Google Scholar] [CrossRef]
- Costello, C.R.; Bachman, S.L.; Ramshaw, B.J.; Grant, S.A. Materials characterization of explanted polypropylene hernia meshes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 83, 44–49. [Google Scholar] [CrossRef]
- Gil, D.; Rex, J.; Reukov, V.; Vertegel, A. In vitro study on the deterioration of polypropylene hernia repair meshes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2225–2234. [Google Scholar] [CrossRef]
- Fayolle, B.; Audouin, L.; Verdu, J. Oxidation induced embrittlement in polypropylene—A tensile testing study. Polym. Degrad. Stab. 2000, 70, 333–340. [Google Scholar] [CrossRef]
- Fayolle, B.; Colin, X.; Audouin, L.; Verdu, J. Mechanism of degradation induced embrittlement in polyethylene. Polym. Degrad. Stab. 2007, 92, 231–238. [Google Scholar] [CrossRef]
- Ehrenstein, G.W.; Pongratz, S. Grundlagen der Alterung. In Beständigkeit von Kunststoffen; Carl Hanser Ltd.: Munic, Germany, 2007; pp. 1–137. [Google Scholar]
- Fayolle, B.; Richaud, E.; Colin, X.; Verdu, J. Review: Degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state. J. Mater. Sci. 2008, 43, 6999–7012. [Google Scholar] [CrossRef]
- Nosal, H.; Moser, K.; Warzała, M.; Holzer, A.; Stańczyk, D.; Sabura, E. Selected Fatty Acids Esters as Potential PHB-V Bioplasticizers: Effect on Mechanical Properties of the Polymer. J. Polym. Environ. 2021, 29, 38–53. [Google Scholar] [CrossRef]
- Ji, P.; Lu, D.; Zhang, S.; Zhang, W.; Wang, C.; Wang, H. Modification of Poly (Ethylene 2,5-Furandicarboxylate) with Poly (Ethylene glycol) for Biodegradable Copolyesters with Good Mechanical Properties and Spinnability. Polymers 2019, 11, 2105. [Google Scholar] [CrossRef] [Green Version]
- Manteghi, A.; Ahmadi, S.; Arabi, H. Polyolefin elastomer grafted unsaturated hindered phenol esters: Synthesis and antioxidant behavior. Des. Monomers Polym. 2016, 19, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Selke, S.E.; Culter, J.D.; Hernandez, R.J. Plastics Packaging: Properties, Processing, Applications and Regulations; Carl Hanser Ltd.: Munich, Germany, 2004. [Google Scholar]
- Joshy, K.S.; Pothen, L.A.; Thomas, S. Biomedical Applications of Polyolefins. In Polyolefin Compounds and Materials: Fundamentals and Industrial Applications; AlMa’adeed, M.A.-A., Krupa, I., Eds.; Springer International Publishing Switzerland: Cham, Switzerland, 2016; pp. 247–264. [Google Scholar]
- Begley, T.; Castle, L.; Feigenbaum, A.; Franz, R.; Hinrichs, K.; Lickly, T.; Mercea, P.; Milana, M.; O’Brien, A.; Rebre, S.; et al. Evaluation of migration models that might be used in support of regulations for food-contact plastics. Food Addit. Contam. 2005, 22, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Helmroth, E.; Rijk, R.; Dekker, M.; Jongen, W. Predictive modelling of migration from packaging materials into food products for regulatory purposes. Trends Food Sci. Technol. 2002, 13, 102–109. [Google Scholar] [CrossRef]
- Vermylen, V.; Lodefier, P.; Devaux, J.; Legras, R.; Donald, W.A.M.; Rozenberg, R.; De Hoffmann, E. Study of the thermal evolution of the cyclic-oligomer formation in a cyclic-oligomer-free PET. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 416–422. [Google Scholar] [CrossRef]
- Perovic, A. Morphological instability of poly (ethylene terephthalate) cyclic oligomer crystals. J. Mater. Sci. 1985, 20, 1370–1374. [Google Scholar] [CrossRef]
- Kapischke, M.; Pries, A. Theodor Billroth’s vision and Karl Ziegler’s action: Commemoration of the 40th day of death and the 50th anniversary of conferment of Nobel Prize for Chemistry of Karl Ziegler. Surgery 2014, 155, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Kalaba, S.; Gerhard, E.; Winder, J.S.; Pauli, E.M.; Haluck, R.S.; Yang, J. Design Strategies and Applications of Biomaterials and Devices for Hernia Repair. Bioact. Mater. 2016, 1, 2–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratner, B.D. The biocompatibility manifesto: Biocompatibility for the twenty-first century. J. Cardiovasc. Transl. Res. 2011, 4, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.N.; Badylak, S.F. Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions. Acta Biomater. 2013, 9, 4948–4955. [Google Scholar] [CrossRef]
- Henson, P.M. The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J. Immunol. 1971, 107, 1535–1546. [Google Scholar]
- Henson, P.M. The immunologic release of constituents from neutrophil leukocytes. II. Mechanisms of release during phagocytosis, and adherence to nonphagocytosable surfaces. J. Immunol. 1971, 107, 1547–1557. [Google Scholar]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and biodegradation of poly(lactide). Appl. Microbiol. Biotechnol. 2006, 72, 244–251. [Google Scholar] [CrossRef]
- Deng, H.; Reynolds, C.T.; Cabrera, N.O.; Barkoula, N.M.; Alcock, B.; Peijs, T. The water absorption behaviour of all-polypropylene composites and its effect on mechanical properties. Compos. Part. B Eng. 2010, 41, 268–275. [Google Scholar] [CrossRef]
- Sombatsompop, N.; Chaochanchaikul, K. Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly(vinyl chloride)/wood sawdust composites. Polym. Int. 2004, 53, 1210–1218. [Google Scholar] [CrossRef]
- Zhao, Q.; Casas-Bejar, J.; Urbanski, P.; Stokes, K. Glass wool-H2O2/CoCl2 test system for in vitro evaluation of biodegradative stress cracking in polyurethane elastomers. J. Biomed. Mater. Res. 1995, 29, 467–475. [Google Scholar] [CrossRef]
- Zhao, Q.H.; McNally, A.K.; Rubin, K.R.; Renier, M.; Wu, Y.; Rose-Caprara, V.; Anderson, J.M.; Hiltner, A.; Urbanski, P.; Stokes, K. Human plasma alpha 2-macroglobulin promotes in vitro oxidative stress cracking of Pellethane 2363-80A: In vivo and in vitro correlations. J. Biomed. Mater. Res. 1993, 27, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Verdu, J.; Rychly, J.; Audouin, L. Synergism between polymer antioxidants—Kinetic modelling. Polym. Degrad. Stab. 2003, 79, 503–509. [Google Scholar] [CrossRef]
- Reynier, A.; Dole, P.; Feigenbaum, A. Migration of additives from polymers into food simulants: Numerical solution of a mathematical model taking into account food and polymer interactions. Food Addit. Contam. 2002, 19, 89–102. [Google Scholar] [CrossRef]
- Jones, D.R.H.; Ashby, M.F. Chapter 3-Elastic Moduli. In Engineering Materials 1, 5th ed.; Jones, D.R.H., Ashby, M.F., Eds.; Butterworth-Heinemann, Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 31–47. [Google Scholar] [CrossRef]
- Cao, J.; Sharma, S. In Vitro Study: Synthetic Prosthetic Meshes for Inguinal Hernia Repair. AATCC Rev. 2011, 11, 52–59. [Google Scholar]
- Afonso, J.S.; Jorge, R.M.; Martins, P.S.; Soldi, M.D.S.; Alves, O.L.; Patricio, B.; Mascarenhas, T.; Sartori, M.G.; Girao, M.J. Structural and thermal properties of polypropylene mesh used in treatment of stress urinary incontinence. Acta Bioeng. Biomech. 2009, 11, 27–33. [Google Scholar] [PubMed]
- GaoMing, J.; Xuhong, M.; Dajun, L. Process of Warp Knitting Mesh for Hernia Repair and its Mechanical Properties. Fibres Text. East. Eur. 2005, 13, 44–46. [Google Scholar]
Mesh | Manufacturer | Material | Filament |
---|---|---|---|
Hertra 2 | Hernia mesh SRL Italy | PP Homopol. | Mono |
Parietene3 PP1510 | Medtronic/Covidien Germany | PP Homopol. | Mono |
Prolene PMN 3 | Ethicon Germany | PP Homopol. | Mono |
Surgipro Mesh | Medtronic/Covidien Germany | PP Homopol. | Multi |
Parietex PES TEC 1510 | Medtronic/Covidien Germany | PE Copol. | Multi |
Mesh | Before Incubation | After Three Weeks | ||||
---|---|---|---|---|---|---|
Aqua Bidest | Urea 50% | Saline Solution | Formalin 37% | H2O2 | ||
Hertra 2© | 0.112 ± 0.004 | 0.109 ± 0.003 | 0.109 ± 0.003 | 0.109 ± 0.005 | 0.109 ± 0.005 | 0.109 ± 0.004 |
Parietene 3 PP 1510© | 0.06 ± 0.000 | 0.06 ± 0.004 | 0.06 ± 0.007 | 0.06 ± 0.005 | 0.06 ± 0.005 | 0.006 ± 0.003 |
Prolene PMN 3© | 0.08 ± 0.005 | 0.08 ± 0.004 | 0.08 ± 0.003 | 0.09 ± 0.005 | 0.09 ± 0.004 | 0.008 ± 0.004 |
Surgipro Mesh© | 0.135 ± 0.019 | 0.137 ± 0.020 | 0.137 ± 0.018 | 0.141 ± 0.018 | 0.140 ± 0.020 | 0.135 ± 0.017 |
Parietex PES TEC 1510© | 0.184 ± 0.012 | 0.182 ± 0.012 | 0.184 ± 0.011 | 0.188 ± 0.011 | 0.185 ± 0.012 | 0.185 ± 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapischke, M.; Erlichman, I.; Pries, A. Increased Elasticity Modulus of Polymeric Materials Is a Source of Surface Alterations in the Human Body. J. Funct. Biomater. 2021, 12, 24. https://doi.org/10.3390/jfb12020024
Kapischke M, Erlichman I, Pries A. Increased Elasticity Modulus of Polymeric Materials Is a Source of Surface Alterations in the Human Body. Journal of Functional Biomaterials. 2021; 12(2):24. https://doi.org/10.3390/jfb12020024
Chicago/Turabian StyleKapischke, Matthias, Igor Erlichman, and Alexandra Pries. 2021. "Increased Elasticity Modulus of Polymeric Materials Is a Source of Surface Alterations in the Human Body" Journal of Functional Biomaterials 12, no. 2: 24. https://doi.org/10.3390/jfb12020024
APA StyleKapischke, M., Erlichman, I., & Pries, A. (2021). Increased Elasticity Modulus of Polymeric Materials Is a Source of Surface Alterations in the Human Body. Journal of Functional Biomaterials, 12(2), 24. https://doi.org/10.3390/jfb12020024