Physically Crosslinked Chitosan/PVA Hydrogels Containing Honey and Allantoin with Long-Term Biocompatibility for Skin Wound Repair: An In Vitro and In Vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Hydrogels
2.3. Macroscopic Visualization and Colorimetric Analysis
2.4. Characterization
2.5. Thermal Behavior
2.6. Swelling Ratio
2.7. Gel Content
2.8. In Vitro Degradation
2.9. Mechanical Properties
2.10. Allantoin Release Measurement
2.11. Cytocompatibility
2.12. Wound Closure
2.13. Antibacterial Activity Test
2.14. Statistical Analysis
3. Results and Discussion
3.1. Macroscopic Visualization and Colorimetric Analysis of the Hydrogels
3.2. Structural Characterization of the Hydrogels
3.3. Thermal Behavior
3.4. Swelling, Gel Content, Mass Loss and Mechanical Properties
3.5. Antibacterial Efficiency
3.6. Release Study
3.7. Cytocompatibility
3.8. In Vivo Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shamloo, A.; Sarmadi, M.; Aghababaie, Z.; Vossoughi, M. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. Int. J. Pharm. 2018, 537, 278. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Yang, H.; Yang, J.; Peng, M.; Hu, J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr. Polym. 2016, 146, 427. [Google Scholar] [PubMed]
- Zahedi, P.; Rezaeian, I.; Ranaei-Siadat, S.O.; Jafari, S.H.; Supaphol, P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol. 2010, 21, 77. [Google Scholar]
- Kamoun, E.A.; Chen, X.; Eldin, M.S.M.; Kenawy, E.-R.S. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab. J. Chem. 2015, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xing, X.; Tan, H.; Jia, Y.; Zhou, T.; Chen, Y.; Ling, Z.; Hu, X. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater. Sci. Eng. C 2017, 70, 287. [Google Scholar]
- Yang, S.; Lei, P.; Shan, Y.; Zhang, D. Preparation and characterization of antibacterial electrospun chitosan/poly (vinyl alcohol)/graphene oxide composite nanofibrous membrane. Appl. Surf. Sci. 2018, 435, 832. [Google Scholar] [CrossRef]
- Chevrier, A.; Darras, V.; Picard, G.; Nelea, M.; Veilleux, D.; Lavertu, M.; Hoemann, C.D.; Buschman, M.D. Injectable chitosan-platelet-rich plasma implants to promote tissue regeneration: In vitro properties, in vivo residence, degradation, cell recruitment and vascularization. J. Tissue Eng. Regen. Med. 2018, 12, 217. [Google Scholar]
- Prasathkumar, M.; Sadhasivam, S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. Int. J. Biol. Macromol. 2021, 186, 656–685. [Google Scholar] [CrossRef]
- Fathollahipour, S.; Mehrizi, A.A.; Ghaee, A.; Koosha, M. Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system. J. Biomed. Mater. Res. Part A 2015, 103, 3852. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, R.; Auriemma, F.; de Rosa, C.; Laupretre, F. X-ray Diffraction Analysis of Poly(vinyl alcohol) Hydrogels Obtained by Freezing and Thawing Techniques. Macromolecules 2004, 37, 1921–1927. [Google Scholar] [CrossRef]
- Gupta, S.; Goswami, S.; Sinh, A. A combined effect of freeze–thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels. Biomed. Mater. 2012, 7, 015006. [Google Scholar] [CrossRef]
- Shestopalov, A.; Shkurat, T.; Mikashinovich, Z.; Kryzhanovskaya, I.; Bogacheva, M.A.; Lomteva, S.V.; Prokof’Ev, V.N.; Gus’Kov, E.P. Biological functions of allantoin. Biol. Bull. 2006, 33, 437. [Google Scholar] [CrossRef]
- Jarić, S.; Kostić, O.; Mataruga, Z.; Pavlović, D.; Pavlović, M.; Mitrović, M.; Pavlović, P. Traditional wound-healing plants used in the Balkan region (Southeast Europe). J. Ethnopharmacol. 2018, 211, 311. [Google Scholar] [CrossRef] [PubMed]
- Araújo, L.U.; Grabe-Guimarães, A.; Mosqueira, V.C.F.; Carneiro, C.M.; Silva-Barcellos, N.M. Profile of wound healing process induced by allantoin. Acta Cir. Bras. 2010, 25, 460. [Google Scholar] [PubMed]
- Da Silva, D.M.; Martins, J.L.R.; de Oliveira, D.R.; Florentino, I.F.; da Silva, D.P.B.; Dos Santos, F.C.A.; Costa, E.A. Effect of allantoin on experimentally induced gastric ulcers: Pathways of gastroprotection. Eur. J. Pharmacol. 2018, 821, 68. [Google Scholar] [PubMed]
- Greenbaum, F.R. Allantoin: A new granulation tissue stimulating substance with especial emphasis on allantoin in ointment form. Am. J. Surg. 1936, 34, 259. [Google Scholar] [CrossRef]
- Saikaly, S.K.; Khachemoune, A. Honey and wound healing: An update. Am. J. Clin. Dermatol. 2017, 18, 237. [Google Scholar] [CrossRef]
- Sweeney, I.R.; Miraftab, M.; Collyer, G. A critical review of modern and emerging absorbent dressings used to treat exuding wounds. Int. Wound J. 2012, 9, 601. [Google Scholar] [CrossRef]
- Molan, P.C.; Rhodes, T. Honey: A biologic wound dressing. Wounds 2015, 27, 141. [Google Scholar]
- Nazeri, S.; Ardakani, E.M.; Babavalian, H.; Latifi, A.M. Evaluation of Effectiveness of Honey-Based Alginate Hyrogel on Wound Healing in a Mouse Model of Rat. J. Appl. Biotechnol. Rep. 2015, 2, 293. [Google Scholar]
- Lahooti, B.; Khorram, M.; Karimi, G.; Emami, A. Production of chitosan–PVA–gelatin–honey sheets with antibacterial activity. In Proceedings of the 11th Iran Seminar on Polymer Science and Technology (ISPST), Tehran, Iran, 6–9 October 2014. [Google Scholar]
- Wang, T.; Zhu, X.-K.; Xue, X.-T.; Wu, D.-Y. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr. Polym. 2012, 88, 75. [Google Scholar] [CrossRef]
- Fathollahipour, S.; Koosha, M.; Tavakoli, J.; Maziarfar, S.; Mehrabadi, J.F. Erythromycin releasing PVA/sucrose and PVA/honey hydrogels as wound dressings with antibacterial activity and enhanced bio-adhesion. Iran. J. Pharm. Res. 2019, 19, 448. [Google Scholar]
- Movassaghi, S.; Sharifi, Z.N.; Abdollahifar, M.A.; Fathollahipour, S.; Tavakoli, J.; Abdi, S. Effect of Honey/PVA Hydrogel Loaded by Erythromycin on Full-Thickness Skin Wound Healing in Rats. Galen Med. J. 2019, 8, e1362. [Google Scholar] [CrossRef]
- Afshari, M.J.; Sheikh, N.; Afarideh, H. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing. Radiat. Phys. Chem. 2015, 113, 28. [Google Scholar] [CrossRef]
- Koosha, M.; Ebrahimi, N.; Jahani, Y.; Sajjadi, S.A.S. Degradation kinetics of electron beam irradiated poly(propylene-co-ethylene) heterophasic copolymer. Radiat. Phys. Chem. 2011, 80, 810. [Google Scholar] [CrossRef]
- Koosha, M.; Jahani, Y.; Mirzadeh, H. The effect of electron beam irradiation on dynamic shear rheological behavior of a poly (propylene-co-ethylene) heterophasic copolymer. Polym. Adv. Technol. 2011, 22, 2039. [Google Scholar] [CrossRef]
- Fricke, H. Effect of Ionizing Radiation on Protein Denaturation. Nature 1952, 169, 965. [Google Scholar] [CrossRef]
- Cieśla, K.; Roos, Y.; Głuszewski, W. Denaturation processes in gamma irradiated proteins studied by differential scanning calorimetry. Radiat. Phys. Chem. 2000, 58, 233. [Google Scholar] [CrossRef]
- Wahyuningtyas, E.S.; Iswara, A.; Sari, Y.; Kamal, S.; Santosa, B.; Ishijima, T.; Nakatani, T.; Putri, I.K.; Nasruddin, N. Comparative study on Manuka and Indonesian honeys to support the application of plasma jet during proliferative phase on wound healing. Clin. Plasma Med. 2018, 12, 1. [Google Scholar]
- Rathinamoorthy, R.; Sasikala, L. In vivo—Wound healing studies of Leptospermum scoparium honey loaded chitosan bioactive wound dressing. Wound Med. 2019, 26, 100162. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Siengchin, S.; Parameswaranpillai, J. A low cost and eco-friendly membrane from polyvinyl alcohol, chitosan and honey: Synthesis, characterization and antibacterial property. J. Polym. Res. 2021, 28, 82. [Google Scholar] [CrossRef]
- Sung, J.H.; Hwang, M.-R.; Kim, J.O.; Lee, J.H.; Kim, Y.I.; Kim, J.H.; Chang, S.W.; Jin, S.G.; Kim, J.A.; Lyoo, W.S. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int. J. Pharm. 2010, 392, 232. [Google Scholar]
- Krishnaiah, Y.S.R.; Satyanarayana, V.; Bhaskar, P. Influence of menthol and pressure-sensitive adhesives on the in vivo performance of membrane-moderated transdermal therapeutic system of nicardipine hydrochloride in human volunteers. Eur. J. Pharm. Biopharm. 2003, 55, 329. [Google Scholar] [CrossRef]
- Koosha, M.; Mirzadeh, H.; Shokrgozarb, M.A.; Farokhib, M. Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Adv. 2015, 5, 10479. [Google Scholar] [CrossRef]
- Le, X.; Fan, Y.-F. Healing effect of Sanguisorba officinalis L extract on second-degree burns in rats. Trop. J. Pharm. Res. 2017, 16, 1045. [Google Scholar] [CrossRef] [Green Version]
- Haghighi, Z.; Asadi, M. The Effects of Chitosan-based nanofibers /PEO/ henna extract on recovery of superficial second-degree burn in rat. Medbiotech J. 2019, 3, 26. [Google Scholar]
- Pinho, E.; Magalhães, L.; Henriques, M.; Oliveira, R. Antimicrobial activity assessment of textiles: Standard methods comparison. Ann. Microbiol. 2011, 61, 493. [Google Scholar] [CrossRef] [Green Version]
- Tretinnikov, O.N.; Zagorskaya, S.A. Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. J. Appl. Spectrosc. 2012, 79, 521. [Google Scholar] [CrossRef]
- Abdel-Mohsen, A.; Aly, A.; Hrdina, R.; Montaser, A.; Hebeish, A. Eco-synthesis of PVA/chitosan hydrogels for biomedical application. J. Polym. Environ. 2011, 19, 1005. [Google Scholar]
- Annaidh, A.N.; Bruyère, K.; Destrade, M.; Gilchrist, M.D.; Otténio, M. Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 2012, 5, 139. [Google Scholar]
- Sakthiguru, N.; Sithique, M.A. Fabrication of bioinspired chitosan/gelatin/allantoin biocomposite film for wound dressing application. Int. J. Biol. Macromol. 2020, 152, 873. [Google Scholar] [CrossRef] [PubMed]
- Vagenende, V.; Ching, T.-J.; Chua, R.-J.; Jiang, Q.Z.; Gagnon, P. Self-assembly of lipopolysaccharide layers on allantoin crystals. Colloids Surf. B Biointerfaces 2014, 120, 8. [Google Scholar] [PubMed]
- Tavakoli, J.; Tang, Y. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Mater. Sci. Eng. C 2017, 77, 318. [Google Scholar] [CrossRef]
- Koosha, M.; Hamedi, S. Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Prog. Org. Coat. 2019, 127, 338. [Google Scholar] [CrossRef]
- Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 2017, 105, 1358. [Google Scholar]
- Hamedi, S.; Koosha, M. Designing a pH-responsive drug delivery system for the release of black-carrot anthocyanins loaded in halloysite nanotubes for cancer treatment. Appl. Clay Sci. 2020, 197, 105770. [Google Scholar] [CrossRef]
- Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2006, 309, 44–50. [Google Scholar] [CrossRef]
Sample | Chitosan/PVA (wt.%) | Honey (wt.%) | Allantoin (wt.%) | Freeze–Thaw Cycles |
---|---|---|---|---|
H0 | 100% | 0 | 0 | 0 |
H1 | 100% | 0 | 0 | 3 |
H2 | 95% | 5% | 0 | 3 |
H3 | 96% | 0 | 4% | 3 |
H4 | 91% | 5% | 4% | 3 |
Sample | L* | a* | b* | YI | WI |
---|---|---|---|---|---|
H0 | 66.6 ± 0.1 | −1.3 ± 0.3 | 0.9 ± 0.1 | 1.1 ± 0.5 | 60.1 ± 0.1 |
H1 | 66.2 ± 0.1 | −1.1 ± 0.1 | 1.0 ± 0.1 | 1.5 ± 0.1 | 59.7 ± 0.1 |
H2 | 63.0 ± 0.2 | −1.5 ± 0.1 | 21.9 ± 0.9 | 48.8 ± 2.0 | 53.6 ± 0.4 |
H3 | 66.2 ± 0.1 | −2.1 ± 0.1 | 5.6 ± 0.1 | 12.0 ± 0.1 | 59.4 ± 0.1 |
H4 | 64.7 ± 0.1 | −1.4 ± 0.2 | 14.3 ± 0.1 | 32.8 ± 0.1 | 56.6 ± 0.1 |
Sample | Swelling Ratio (%) | Gel Content (%) | Tensile Strength (MPa) | Elongation at Breaking (%) | Mass Loss (%) | Antibacterial Efficiency, E(%) | |
---|---|---|---|---|---|---|---|
E. coli | S. aureus | ||||||
H0 | N/A | 3.96 ± 2.1 A* | 21.8 ± 2.1 A | 190.5 ± 21.7 A | 25.3 ± 5.9 | 13.2 ± 1.4 | 3.3 ± 0.6 |
H1 | 476 ± 24 A | 4.58 ± 1.2 B | 19.8 ± 4.8 A | 141.43 ± 95.0 A | 12.6 ± 1.7 | 15.2 ± 2.1 | 27.4 ± 2.9 |
H2 | 421 ± 11 B | 8.72 ± 1.9 C | 16.7 ± 0.3 A,B | 421.6 ± 45.8 B | 52.5 ± 4.8 | 82.0 ± 4.8 | 48.1 ± 3.7 |
H3 | 468 ± 30 A | 5.72 ± 2.5 A | 19.3 ± 4.6 A,B | 156.7 ± 82.4 A | 36.7 ± 9.1 | 85.0 ± 5.3 | 71.1 ± 6.2 |
H4 | 324 ± 18 C | 3.82 ± 1.1 A | 10.6 ± 4.8 B | 241.0 ± 64.5 A | 57.7 ± 8.8 | 88.7 ± 5.9 | 77.0 ± 5.2 |
Model | Parameter | Value | Units |
---|---|---|---|
Korsmeyer–Peppas | n | 0.38 ± 0.02 0.37 ± 0.04 0.99 ± 0.07 | |
Higuchi | 0.29 ± 0.04 0.96 ± 0.03 | ||
Weibull | a b | 2.38 ± 0.14 0.75 ± 0.05 0.99 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koosha, M.; Aalipour, H.; Sarraf Shirazi, M.J.; Jebali, A.; Chi, H.; Hamedi, S.; Wang, N.; Li, T.; Moravvej, H. Physically Crosslinked Chitosan/PVA Hydrogels Containing Honey and Allantoin with Long-Term Biocompatibility for Skin Wound Repair: An In Vitro and In Vivo Study. J. Funct. Biomater. 2021, 12, 61. https://doi.org/10.3390/jfb12040061
Koosha M, Aalipour H, Sarraf Shirazi MJ, Jebali A, Chi H, Hamedi S, Wang N, Li T, Moravvej H. Physically Crosslinked Chitosan/PVA Hydrogels Containing Honey and Allantoin with Long-Term Biocompatibility for Skin Wound Repair: An In Vitro and In Vivo Study. Journal of Functional Biomaterials. 2021; 12(4):61. https://doi.org/10.3390/jfb12040061
Chicago/Turabian StyleKoosha, Mojtaba, Hadis Aalipour, Mohammad Javad Sarraf Shirazi, Ali Jebali, Hong Chi, Sepideh Hamedi, Nianxing Wang, Tianduo Li, and Hamideh Moravvej. 2021. "Physically Crosslinked Chitosan/PVA Hydrogels Containing Honey and Allantoin with Long-Term Biocompatibility for Skin Wound Repair: An In Vitro and In Vivo Study" Journal of Functional Biomaterials 12, no. 4: 61. https://doi.org/10.3390/jfb12040061
APA StyleKoosha, M., Aalipour, H., Sarraf Shirazi, M. J., Jebali, A., Chi, H., Hamedi, S., Wang, N., Li, T., & Moravvej, H. (2021). Physically Crosslinked Chitosan/PVA Hydrogels Containing Honey and Allantoin with Long-Term Biocompatibility for Skin Wound Repair: An In Vitro and In Vivo Study. Journal of Functional Biomaterials, 12(4), 61. https://doi.org/10.3390/jfb12040061