Three-Dimensional-Printed Scaffolds for Meniscus Tissue Engineering: Opportunity for the Future in the Orthopaedic World
Abstract
:1. Introduction
2. Principles of Meniscal Substitution
3. Applications of 3D-Printing Scaffolds for Meniscal Tissue Engineering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doral, M.N.; Bilge, O.; Huri, G.; Turhan, E.; Verdonk, R. Modern treatment of meniscal tears. EFORT Open Rev. 2018, 3, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Zhuang, T.; Qinyu, T.; Liqing, P.; Kun, L.; Xujiang, L.; Diaodiao, W.; Zhen, Y.; Shuangpeng, J.; Xiang, S.; et al. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact. Mater. 2021, 6, 1711–1726. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Alfonso, V.; Dye, S.F. How to Deal With Anterior Knee Pain in the Active Young Patient. Sports Health Multidiscip. Approach 2017, 9, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Kopf, S.; Beaufils, P.; Hirschmann, M.T.; Rotigliano, N.; Ollivier, M.; Pereira, H.; Verdonk, R.; Darabos, N.; Ntagiopoulos, P.; DeJour, D.; et al. Management of traumatic meniscus tears: The 2019 ESSKA meniscus consensus. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1177–1194. [Google Scholar] [CrossRef] [Green Version]
- Bhan, K. Meniscal Tears: Current Understanding, Diagnosis, and Management. Cureus 2020, 12, e8590. [Google Scholar] [CrossRef] [PubMed]
- DePhillipo, N.N.; LaPrade, R.F.; Zaffagnini, S.; Mouton, C.; Seil, R.; Beaufils, P. The future of meniscus science: International expert consensus. J. Exp. Orthop. 2021, 8, 24. [Google Scholar] [CrossRef]
- Rijk, P.C. Meniscal allograft transplantation—Part I: Background, results, graft selection and preservation, and surgical considerations. J. Arthrosc. Relat. Surg. 2004, 29, 728–743. [Google Scholar] [CrossRef]
- Winkler, P.W.; Rothrauff, B.B.; Buerba, R.A.; Shah, N.; Zaffagnini, S.; Alexander, P.; Musahl, V. Meniscal substitution, a developing and long-awaited demand. J. Exp. Orthop. 2020, 7, 155. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, Y.; Wan, X.; Zhao, C.; Qiu, P.; Lin, X.; Zhang, J.; Huang, Y. Preparation and Characterization of an Optimized Meniscal Extracellular Matrix Scaffold for Meniscus Transplantation. Front. Bioeng. Biotechnol. 2020, 8, 779. [Google Scholar] [CrossRef]
- Milenin, O.; Strafun, S.; Sergienko, R.; Baranov, K. Lateral Meniscus Replacement Using Peroneus Longus Tendon Autograft. Arthrosc. Tech. 2020, 9, e1163–e1169. [Google Scholar] [CrossRef]
- Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Wendel, B.; Rietzel, D.; Kühnlein, F.; Feulner, R.; Hülder, G.; Schmachtenberg, E. Additive Processing of Polymers. Macromol. Mater. Eng. 2008, 293, 799–809. [Google Scholar] [CrossRef]
- Aimar, A.; Palermo, A.; Innocenti, B. The Role of 3D Printing in Medical Applications: A State of the Art. J. Healthc. Eng. 2019, 2019, 5340616. [Google Scholar] [CrossRef] [Green Version]
- Zaszczyńska, A.; Moczulska-Heljak, M.; Gradys, A.; Sajkiewicz, P. Advances in 3D Printing for Tissue Engineering. Materials 2021, 14, 3149. [Google Scholar] [CrossRef] [PubMed]
- Tamay, D.G.; Usal, T.D.; Alagoz, A.S.; Yucel, D.; Hasirci, N.; Hasirci, V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Front. Bioeng. Biotechnol. 2019, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Placone, J.K.; Mahadik, B.; Fisher, J.P. Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential. APL Bioeng. 2020, 4, 010901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, A.-V.; Khorsand, B.; Geary, S.M.; Salem, A.K. 3D Printing of Scaffolds for Tissue Regeneration Applications. Adv. Healthc. Mater. 2015, 4, 1742–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, S.; Lee, S.-S.; Choi, Y.-J.; Hong, D.H.; Gao, G.; Wang, J.H.; Cho, D.-W. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink. Biomaterials 2021, 267, 120466. [Google Scholar] [CrossRef] [PubMed]
- Auricchio, F.; Marconi, S. 3D printing: Clinical applications in orthopaedics and traumatology. EFORT Open Rev. 2016, 1, 121–127. [Google Scholar] [CrossRef]
- Li, H.; Liao, Z.; Yang, Z.; Gao, C.; Fu, L.; Li, P.; Zhao, T.; Cao, F.; Chen, W.; Yuan, Z.; et al. 3D printed poly(ε-caprolactone)/meniscus extracellular matrix composite scaffold functionalized with kartogenin-releasing PLGA microspheres for meniscus tissue engineering. Front. Bioeng. Biotechnol. 2021, 9, 662381. [Google Scholar] [CrossRef]
- Cengiz, I.; Pitikakis, M.; Cesario, L.; Parascandolo, P.; Vosilla, L.; Viano, G.; Oliveira, J.; Reis, R. Building the basis for patient-specific meniscal scaffolds: From human knee MRI to fabrication of 3D printed scaffolds. Bioprinting 2016, 1–2, 1–10. [Google Scholar] [CrossRef]
- Filardo, G.; Petretta, M.; Cavallo, C.; Roseti, L.; Durante, S.; Albisinni, U.; Grigolo, B. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Jt. Res. 2019, 8, 101–106. [Google Scholar] [CrossRef]
- Li, Z.; Wu, N.; Cheng, J.; Sun, M.; Yang, P.; Zhao, F.; Zhang, J.; Duan, X.; Fu, X.; Zhang, J.; et al. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Theranostics 2020, 10, 5090–5106. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sharma, A.; Kumar, J.V.; Sharma, V.; Gupta, P.K.; Verma, R.S. Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel. Int. J. Biol. Macromol. 2020, 162, 1358–1371. [Google Scholar] [CrossRef] [PubMed]
- Rey-Rico, A.; Cucchiarini, M.; Madry, H. Hydrogels for precision eniscus tissue engineering: A comprehensive review. Connect Tissue Res. 2017, 58, 317–328. [Google Scholar] [CrossRef]
- Huang, J.; Xiong, J.; Wang, D.; Zhang, J.; Yang, L.; Sun, S.; Liang, Y. 3D Bioprinting of Hydrogels for Cartilage Tissue Engineering. Gels 2021, 7, 144. [Google Scholar] [CrossRef]
- Lamparelli, E.P.; Lovecchio, J.; Ciardulli, M.C.; Giudice, V.; Dale, T.P.; Selleri, C.; Forsyth, N.; Giordano, E.; Maffulli, N.; Della Porta, G. Chondrogenic commitment of human bone marrow mesenchymal stem cells in a perfused collagen hydrogel functionalized with hTGF-b1-releasing PLGA microcarrier. Pharmaceutics 2021, 13, 399. [Google Scholar] [CrossRef]
- Li, X.; Shou, Y.; Tay, A. Hydrogels for Engineering the Immune System. Adv. Nanobiomed Res. 2021, 7, 2000073. [Google Scholar] [CrossRef]
- Wang, Y. Programmable hydrogels. Biomaterials 2018, 178, 663–680. [Google Scholar] [CrossRef]
- Fazal, F.; Sanchez, F.J.D.; Waqas, M.; Koutsos, V.; Callanan, A.; Radacsi, N. A modified 3D printer as a hybrid bioprinting-electrospinning system for use in vascular tissue engineering applications. Med. Eng. Phys. 2021, 94, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Sovani, S.; Choi, W.; Jin, S.; Grogan, S.P.; D’Lima, D.D. Meniscal Tissue Engineering Using Aligned Collagen Fibrous Scaffolds: Comparison of Different Human Cell Sources. Tissue Eng. Part A 2018, 24, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Romanazzo, S.; Vedicherla, S.; Moran, C.; Kelly, D.J. Meniscus ECM-functionalised hydrogels containing infrapatellar fat pad-derived ste cells for bioprinting of regionally defines meniscal tissue. J. Tissue Eng. Regen. Med. 2018, 12, 1826–1835. [Google Scholar] [CrossRef]
- Bahcecioglu, G.; Hasirci, N.; Bilgen, B.; Hasirci, V. A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus. Biofabrication 2019, 11, 025002. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Feng, Z.; Guo, W.; Yang, D.; Gao, S.; Li, Y.; Shen, S.; Yuan, Z.; Huang, B.; Zhang, Y.; et al. PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model. ACS Appl. Mater. Interfaces 2019, 11, 41626–41639. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; You, Y.; Jiang, W.; Wu, Q.; Wang, B.; Dai, K. Generating ready-to-implant anisotropic menisci by 3D-bioprinting protein-releasing cell-laden hydrogel-polymer composite scaffold. Appl. Mater. Today 2020, 18, 100469. [Google Scholar] [CrossRef]
3D-Printing Scaffolds for Meniscus Tissue Engineering | |
---|---|
Advantages | Fabrication of complex structures |
Use of various types of biomaterials | |
Easy application of computer-assisted methods | |
Scaffold design using patient-specific data | |
Disadvantages | Specialized equipment |
Expensive materials | |
Production time (more precise and intricate scaffold) | |
Highly specific protocols |
Polymeric Materials | Types | |
---|---|---|
Natural polymers | Proteins | Collagen |
Silk fibroin | ||
Gelatin | ||
Polysaccharides | Hyaluronic acid | |
Sodium alginate | ||
Agarose | ||
Chitosan | ||
Synthetic polymers | Aliphatic polyesters | Polylactic acid (PLA) |
Polycaprolactone (PCL) | ||
Polylactic-co-glycolic acid (PLGA) | ||
Polyglycolic acid (PGA) | ||
Others | Polyurethane (PU) | |
Polyethylene glycol (PEG) | ||
Polycarbonate urethane (PCU) | ||
Polyvinyl alcohol (PVA) | ||
Polyethylene oxide (PEO) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasiliadis, A.V.; Koukoulias, N.; Katakalos, K. Three-Dimensional-Printed Scaffolds for Meniscus Tissue Engineering: Opportunity for the Future in the Orthopaedic World. J. Funct. Biomater. 2021, 12, 69. https://doi.org/10.3390/jfb12040069
Vasiliadis AV, Koukoulias N, Katakalos K. Three-Dimensional-Printed Scaffolds for Meniscus Tissue Engineering: Opportunity for the Future in the Orthopaedic World. Journal of Functional Biomaterials. 2021; 12(4):69. https://doi.org/10.3390/jfb12040069
Chicago/Turabian StyleVasiliadis, Angelo V., Nikolaos Koukoulias, and Konstantinos Katakalos. 2021. "Three-Dimensional-Printed Scaffolds for Meniscus Tissue Engineering: Opportunity for the Future in the Orthopaedic World" Journal of Functional Biomaterials 12, no. 4: 69. https://doi.org/10.3390/jfb12040069
APA StyleVasiliadis, A. V., Koukoulias, N., & Katakalos, K. (2021). Three-Dimensional-Printed Scaffolds for Meniscus Tissue Engineering: Opportunity for the Future in the Orthopaedic World. Journal of Functional Biomaterials, 12(4), 69. https://doi.org/10.3390/jfb12040069