Polyelectrolyte Multilayers Composed of Polyethyleneimine-Grafted Chitosan and Polyacrylic Acid for Controlled-Drug-Delivery Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PEI-Grafted Chitosan
2.3. Preparation of Multilayer (LBL) Films
2.4. Methylene Blue Loading and Release
2.5. Instrumentation
3. Results and Discussion
3.1. Synthesis and Characterizations
3.2. Loading of Methylene Blue
3.3. Release Studies of Methylene Blue
3.3.1. Effect of pH Value on Release
3.3.2. Ionic-Strength Effect on Release of MB
3.4. Reversibility of MB Loading into and Release from (Chi-g-PEI/PAA)10 Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Chan, H.F.; Leong, K.W. Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 2013, 65, 104–120. [Google Scholar] [CrossRef] [PubMed]
- Perrie, Y.; Rades, T. Pharmaceutics–Drug Delivery and Targeting; Pharmaceutical Press: London, UK, 2012. [Google Scholar]
- Hofmann, F.B. Drug Delivery; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Morton, S.W.; Poon, Z.; Hammond, P.T. The arChitecture and biological performance of drug-loaded LBL nanoparticles. Biomaterials 2013, 34, 5328–5335. [Google Scholar] [CrossRef] [PubMed]
- Borges, J.; Rodrigues, L.C.; Reis, R.L.; Mano, J.F. Layer-by-Layer Assembly of Light-Responsive Polymeric Multilayer Systems. Adv. Funct. Mater. 2014, 24, 5624–5648. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Sun, J. Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem. Soc. Rev. 2012, 41, 5998–6009. [Google Scholar] [CrossRef]
- Wertz, C.F.; Santore, M.M. Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces. Langmuir 2002, 18, 1190. [Google Scholar] [CrossRef]
- Borges, J.; Mano, J.F. Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers. Chem. Rev. 2014, 114, 8883–8942. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef]
- Yalçıner, F.; Çevik, E.; Şenel, M.; Baykal, A. Development of an Amperometric Hydrogen Peroxide Biosensor based on the Immobilization of Horseradish Peroxidase onto Nickel Ferrite Nanoparticle-Chitosan Composite. Nano-Micro Lett. 2011, 3, 91–98. [Google Scholar] [CrossRef]
- Akmammedov, R.; Huysal, M.; Isik, S.; Senel, M. Preparation and Characterization of Novel Chitosan/Zeolite Scaffolds for Bone Tissue Engineering Applications. Int. J. Polym. Mater. 2017, 67, 110–118. [Google Scholar] [CrossRef]
- Şenel, M.; Ebru Koç, F. Controlled release of methylene blue from layer-by-layer assembled chitosan/polyacrylic acid. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 258–262. [Google Scholar] [CrossRef]
- Bayram, A.; Özbek, C.; Senel, M.; Okur, S. CO gas sorption properties of ferrocene branched chitosan derivatives. Sens. Actuators B Chem. 2017, 241, 308–313. [Google Scholar] [CrossRef]
- Senel, M.; Dervisevic, M.; Esser, L.; Dervisevic, E.; Dyson, J.; Easton, C.D.; Cadarso, V.J.; Voelcker, N.H. Enhanced electrochemical sensing performance by insitu electrocopolymerization of pyrrole and thiophene-grafted chitosan. Int. J. Biol. Macromol. 2020, 143, 582–593. [Google Scholar] [CrossRef]
- Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr. Polym. 2005, 62, 142–158. [Google Scholar] [CrossRef]
- Chung, A.J.; Rubner, M.F. Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films. Langmuir 2002, 18, 1176–1183. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Yan, H.; Zhang, J.; Thomas, R.K. Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values. Langmuir 2006, 22, 1526–1533. [Google Scholar] [CrossRef]
- Burgess, R.R. The use of polyethyleneimine in the purification of DNA binding proteins. Methods Enzymol. 1991, 208, 3–10. [Google Scholar]
- Ariga, K.; McShane, M.; Lvov, Y.M.; Ji, Q.; Hill, J.P. Layer-by-layer assembly for drug delivery and related applications. Expert Opin. Drug Deliv. 2011, 8, 633–644. [Google Scholar] [CrossRef]
- RKurapati, R.; Groth, T.W.; Raichur, A.M. Recent Developments in Layer-by-Layer Technique for Drug Delivery Applications. ACS Appl. Bio Mater. 2019, 2, 5512–5527. [Google Scholar] [CrossRef]
- Şenel, M.; Coşkun, A.; Abasıyanık, M.F.; Bozkurt, A. Immobilization of urease in poly (1-vinyl imidazole)/poly (acrylic acid) network. Chem. Pap. 2010, 64, 1–7. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Kim, Y.-K.; Arote, R.; Nah, J.-W.; Cho, M.-H.; Choi, Y.-J.; Akaike, T.; Cho, C.-S. Chitosan-graft-polyethylenimine as a gene carrier. J. Control Release 2007, 117, 273–280. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Kim, Y.-K.; Arote, R.; Nah, J.-W.; Cho, M.-H.; Choi, Y.-J.; Akaike, T.; Cho, C.-S. Cross-linked and shapeable porous 3D substrates from freeze-linked cellulose nanofibrils. Biomacromolecules 2019, 20, 728–737. [Google Scholar]
- Jiang, J.; Zhang, J.; Li, T.; Zhang, X.; Wang, Y.; Xia, B.; Huang, J.; Fan, Y.; Dong, W. Facile route to tri-carboxyl chitin nanocrystals from di-aldehyde chitin modified by selective periodate oxidation. Int. J. Biol. Macromol. 2022, 211, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.L.; Resende, C.X.; Tavares, D.S.; Soares, G.A.; Castro, L.O.; Granjeiro, J. Cytocompatibility of Chitosan and collagen-Chitosan scaffolds for tissue engineering. Polímeros 2011, 21, 1–6. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, S.J.; Park, S.Y. Thermally stable nonlinear optical polymer from rosin derivative. J. Ind. Eng. Chem. 1998, 4, 238–244. [Google Scholar]
- Sengül, G. Preparation and Investigation of Structure, Surface Properties of Hydroxypropylcellulose/Poly(Ethylenimine) Interpolymer Complexes. Master’s Thesis, Gazi University, Chemistry Department, Ankara, Türkiye, 2006. [Google Scholar]
- Vold, I.M.; Christensen, B.E. Periodate oxidation of Chitosans with different chemical compositions. Carbohydr. Res. 2005, 340, 679–684. [Google Scholar] [CrossRef]
- Sarkar, K.; Debnath, M.; Kundu, P.P. Recyclable crosslinked O-carboxymethyl chitosan for removal of cationic dye from aqueous solutions. Hydrol. Curr. Res. 2012, 3, 138. [Google Scholar]
- Şenel, M. Simple method for preparing glucose biosensor based on in-situ polypyrrole cross-linked chitosan/glucose oxidase/gold bionanocomposite film. Mater. Sci. Eng. C 2015, 48, 287–293. [Google Scholar] [CrossRef]
- Zhang, C.; Ping, Q.; Zhang, H.; Shen, J. Synthesis and characterization of water-soluble O-succinyl-chitosan. J. Eur. Polym. J. 2003, 39, 1629–1634. [Google Scholar] [CrossRef]
- Choi, J.; Rubner, M.F. Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 2004, 38, 116–124. [Google Scholar] [CrossRef]
- Burke, S.E.; Barrett, C.J. pH-dependent loading and release behavior of small hydrophilic molecules in weak polyelectrolyte multilayer films. Macromolecules 2004, 37, 5375–5384. [Google Scholar] [CrossRef]
- Sato, H.; Takano, Y.; Sato, K.; Anzai, J. Electrochemically controlled release of alpha,beta,gamma,delta-tetrakis(4-N-methylpyridyl)porphine from layer-by-layer thin films. J. Colloid Interface Sci. 2009, 333, 141–144. [Google Scholar] [CrossRef]
- Ding, C.; Xu, S.; Wang, J.; Liu, Y.; Chen, P.; Feng, S. Controlled loading and release of methylene blue in layer-by-layer assembled polyelectrolyte films. Mater. Sci. Eng. C 2012, 32, 670–673. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paker, E.S.; Senel, M. Polyelectrolyte Multilayers Composed of Polyethyleneimine-Grafted Chitosan and Polyacrylic Acid for Controlled-Drug-Delivery Applications. J. Funct. Biomater. 2022, 13, 131. https://doi.org/10.3390/jfb13030131
Paker ES, Senel M. Polyelectrolyte Multilayers Composed of Polyethyleneimine-Grafted Chitosan and Polyacrylic Acid for Controlled-Drug-Delivery Applications. Journal of Functional Biomaterials. 2022; 13(3):131. https://doi.org/10.3390/jfb13030131
Chicago/Turabian StylePaker, Eliz Selmin, and Mehmet Senel. 2022. "Polyelectrolyte Multilayers Composed of Polyethyleneimine-Grafted Chitosan and Polyacrylic Acid for Controlled-Drug-Delivery Applications" Journal of Functional Biomaterials 13, no. 3: 131. https://doi.org/10.3390/jfb13030131
APA StylePaker, E. S., & Senel, M. (2022). Polyelectrolyte Multilayers Composed of Polyethyleneimine-Grafted Chitosan and Polyacrylic Acid for Controlled-Drug-Delivery Applications. Journal of Functional Biomaterials, 13(3), 131. https://doi.org/10.3390/jfb13030131