Healing Abutment Distortion in Implant Prostheses: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Implant Insertion
2.3. Placement of Healing Abutment
2.4. Scanning Electron Microscope (SEM)
2.5. Distortion Measurements
2.6. Statistics Analysis
3. Result
3.1. Healing Abutment Screw Thread
3.2. Healing Abutment Screw Head
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amornvit, P.; Rokaya, D.; Bajracharya, S.; Keawcharoen, K.; Supavanich, W. Management of obstructive sleep apnea with implant retained mandibular advancement device. World J. Dent. 2014, 5, 184–189. [Google Scholar] [CrossRef]
- Cochran, D.L.; Morton, D.; Weber, H.P. Consensus statements and recommended clinical procedures regarding loading protocols for endosseous dental implants. Int. J. Oral Maxillofac. Implant. 2004, 19, 109–113. [Google Scholar]
- Suphangul, S.; Rokaya, D.; Kanchanasobhana, C.; Rungsiyakull, P.; Chaijareenont, P. Peek biomaterial in long-term provisional implant restorations: A review. J. Funct. Biomater. 2022, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.T.; Buser, D. Clinical and esthetic outcomes of implants placed in postextraction sites. Int. J. Oral Maxillofac. Implant. 2009, 24, 186–217. [Google Scholar]
- Cakan, U.; Delilbasi, C.; Er, S.; Kivanc, M. Is it safe to reuse dental implant healing abutments sterilized and serviced by dealers of dental implant manufacturers? An in vitro sterility analysis. Implant. Dent. 2015, 24, 174–179. [Google Scholar] [CrossRef]
- Wadhwani, C.; Schonnenbaum, T.R.; Audia, F.; Chung, K.H. In-vitro study of the contamination remaining on used healing abutments after cleaning and sterilizing in dental practice. Clin. Implant Dent. Relat. Res. 2016, 18, 1069–1074. [Google Scholar] [CrossRef]
- Stacchi, C.; Berton, F.; Porrelli, D.; Lombardi, T. Reuse of implant healing abutments: Comparative evaluation of the efficacy of two cleaning procedures. Int. J. Prosthodont. 2018, 31, 161–162. [Google Scholar] [CrossRef] [Green Version]
- Park, I.S.; Won, S.; Bae, T.; Song, K.; Park, C.; Eom, T.; Jeong, C. Fatigue characteristics of five types of implant-abutment joint designs. Met. Mater. Int. 2008, 14, 133–138. [Google Scholar] [CrossRef]
- Jorge, J.R.; Barao, V.A.; Delben, J.A.; Assuncao, W.G. The role of implant/abutment system on torque maintenance of retention screws and vertical misfit of implant-supported crowns before and after mechanical cycling. Int. J. Oral Maxillofac. Implant. 2013, 28, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Binon, P.P. The effect of implant/abutment hexagonal misfit on screw joint stability. Int. J. Prosthodont. 1996, 9, 149–160. [Google Scholar]
- Lopes, P.A.; Carreiro, A.F.P.; Nascimento, R.M.; Vahey, B.R.; Henriques, B.; Souza, J.C.M. Physicochemical and microscopic characterization of implant-abutment joints. Eur. J. Dent. 2018, 12, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Tzenakis, G.K.; Nagy, W.W.; Fournelle, R.A.; Dhuru, V.B. The effect of repeated torque and salivary contamination on the preload of slotted gold implant prosthetic screws. J. Prosthet. Dent. 2002, 88, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Chew, M.; Tompkins, G.; Tawse-Smith, A.; Waddell, J.N.; Ma, S. Reusing titanium healing abutments: Comparison of two decontamination methods. Int. J. Prosthodont. 2018, 31, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Kyaw, T.T.; Hanawa, T.; Kasugai, S. Investigation of different electrochemical cleaning methods on contaminated healing abutments in vitro: An approach for metal surface decontamination. Int. J. Implant Dent. 2020, 6, 64. [Google Scholar] [CrossRef] [PubMed]
- Rokaya, D.; Srimaneepong, V.; Wisitrasameewon, W.; Humagain, M.; Thunyakitpisal, P. Peri-implantitis update: Risk indicators, diagnosis, and treatment. Eur. J. Dent. 2020, 14, 672–682. [Google Scholar] [CrossRef]
- Delben, J.A.; Gomes, E.A.; Barão, V.A.; Assunção, W.G. Evaluation of the effect of retightening and mechanical cycling on preload maintenance of retention screws. Int. J. Oral Maxillofac. Implant. 2011, 26, 251–256. [Google Scholar]
- Cardoso, M.; Torres, M.F.; Lourenço, E.J.; de Moraes Telles, D.; Rodrigues, R.C.; Ribeiro, R.F. Torque removal evaluation of prosthetic screws after tightening and loosening cycles: An in vitro study. Clin. Oral Implant. Res. 2012, 23, 475–480. [Google Scholar] [CrossRef]
- Masa, R.; Braunitzer, G. Titanium and its alloys in dental implantology. Implants 2017, 18, 6–10. [Google Scholar]
- Nicholson, J.W. Titanium alloys for dental implants: A review. Prosthesis 2020, 2, 100–116. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Tsoi, J.; Matinlinna, J. Binary titanium alloys as dental implant materials—A review. Regen. Biomater. 2017, 4, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Monjo, M.; Petzold, C.; Ramis, J.M.; Lyngstadaas, S.P.; Ellingsen, J.E. In vitro osteogenic properties of two dental implant surfaces. Int. J. Biomater. 2012, 2012, 181024. [Google Scholar] [CrossRef] [PubMed]
- Laino, L.; La Noce, M.; Fiorillo, L.; Cervino, G.; Nucci, L.; Russo, D.; Herford, A.S.; Crimi, S.; Bianchi, A.; Biondi, A.; et al. Dental pulp stem cells on implant surface: An in vitro study. BioMed Res. Int. 2021, 2021, 3582342. [Google Scholar] [CrossRef]
- Arshad, M.; Mahgoli, H.; Payaminia, L. Effect of repeated screw joint closing and opening cycles and cyclic loading on abutment screw removal torque and screw thread morphology: Scanning electron microscopy evaluation. Int. J. Oral Maxillofac. Implant. 2018, 33, 31–40. [Google Scholar] [CrossRef]
- Mlikota, M.; Schmauder, S. On the critical resolved shear stress and its importance in the fatigue performance of steels and other metals with different crystallographic structures. Metals 2018, 8, 883. [Google Scholar] [CrossRef] [Green Version]
- Weiss, E.I.; Kozak, D.; Gross, M.D. Effect of repeated closures on opening torque values in seven abutment-implant systems. J. Prosthet. Dent. 2000, 84, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi Coppedê, A.; de Mattos Mda, G.; Rodrigues, R.C.; Ribeiro, R.F. Effect of repeated torque/mechanical loading cycles on two different abutment types in implants with internal tapered connections: An in vitro study. Clin. Oral Implant. Res. 2009, 20, 624–632. [Google Scholar] [CrossRef]
- Kim, K.S.; Lim, Y.J. Axial displacements and removal torque changes of five different implant-abutment connections under static vertical loading. Materials 2020, 13, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, D.; Jacobs, S.; O’Connell, B.; Houston, F.; Claffey, N. Preloads generated with repeated tightening in three types of screws used in dental implant assemblies. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2006, 15, 164–171. [Google Scholar] [CrossRef]
- Roux, S.L.; Boher, C.; Penazzi, L.; Dessain, C.; Tavernier, B. A methodology and new criteria to quantify the adhesive and abrasive wear damage on a die radius using white light profilometry. Tribol. Int. 2012, 52, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Hatos, I.; Hargitai, H.; Solecki, L. Study of 2d and 3d methods for worn surface analysis of tool materials. Acta Tech. Jaurinensis 2015, 8, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Subha, N.; Sikri, V.K. Comparative evaluation of surface changes in four ni-ti instruments with successive uses—An sem study. J. Conserv. Dent. 2011, 14, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Howes, M.A.H.; Johari, O. A scanning electron microscopic study of wear surfaces. J. Miner. Met. Mater. Soc. 1970, 22, 49–60. [Google Scholar] [CrossRef]
- Anh, J.W.; Park, J.M.; Chun, Y.S.; Kim, M.; Kim, M. A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: Effects of tooth irregularity and scanning direction. Korean J. Orthod. 2016, 46, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Torfeh, T.; Hammoud, R.; Perkins, G.; McGarry, M.; Aouadi, S.; Celik, A.; Hwang, K.P.; Stancanello, J.; Petric, P.; Al-Hammadi, N. Characterization of 3d geometric distortion of magnetic resonance imaging scanners commissioned for radiation therapy planning. Magn. Reson. Imaging 2016, 34, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, P.; Stachowiak, G.W. Characterization of surface topography of wear particles by sem stereoscopy. Wear 1997, 206, 39–52. [Google Scholar] [CrossRef]
- Amornvit, P.; Rokaya, D.; Keawcharoen, K.; Thongpulsawasdi, N. Stress distribution in implant retained finger prosthesis: A finite element study. J. Clin. Diagn. Res. 2013, 7, 2851–2854. [Google Scholar] [CrossRef]
- Assunção, W.G.; Delben, J.A.; Tabata, L.F.; Barão, V.A.; Gomes, E.A.; Garcia, I.R., Jr. Preload evaluation of different screws in external hexagon joint. Implant Dent. 2012, 21, 46–50. [Google Scholar] [CrossRef]
- Pardal-Peláez, B.; Montero, J. Preload loss of abutment screws after dynamic fatigue in single implant-supported restorations. A systematic review. J. Clin. Exp. Dent. 2017, 9, e1355–e1361. [Google Scholar] [CrossRef]
- Bernardes, S.R.; da Gloria Chiarello de Mattos, M.; Hobkirk, J.; Ribeiro, R.F. Loss of preload in screwed implant joints as a function of time and tightening/untightening sequences. Int. J. Oral Maxillofac. Implant. 2014, 29, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.; Ahn, K.M. Endoscopic removal of an aspirated healing abutment and screwdriver under conscious sedation. Implant Dent. 2014, 23, 250–252. [Google Scholar] [CrossRef]
Diameter | 4 mm |
Length | 14 mm |
Type | Bone type implant system |
Surface treatment | Laser-etched |
Titanium type | Grade IV |
Hex type | Internal hex with morse taper connection |
Properties | Implant | Healing Abutment | Screw Driver Ratchet |
---|---|---|---|
Materials | Titanium Grade 4 | Titanium Grade 4 | Stainless steel |
Tensile strength (MPa) | 550 | 550 | 520–670 |
Yield strength (0.2% offset; MPa) | 485 | 485 | 190 |
Elongation (%) | 15 | 15 | 45 Min % |
Poisson’s ratio | 0.37 | 0.37 | 0.265 |
Density | 4.51 g/cm3 | 4.51 g/cm3 | 8.00 g/cm3 |
Groups | Mean Score | Standard Deviation | Standard Error |
---|---|---|---|
Before | 0.00 | 0.000 | 0.000 |
4 | 0.00 | 0.000 | 0.000 |
8 | 0.00 | 0.000 | 0.000 |
16 | 0.00 | 0.000 | 0.000 |
24 | 1.00 | 0.000 | 0.000 |
32 | 2.00 | 0.000 | 0.000 |
40 | 2.00 | 0.000 | 0.000 |
80 | 2.00 | 0.000 | 0.000 |
160 | 2.17 | 0.408 | 0.167 |
320 | 2.17 | 0.408 | 0.167 |
400 | 2.33 | 0.516 | 0.211 |
(I) Groups | (J) Groups | Mean Difference (I−J) | Std. Error | p-Value |
---|---|---|---|---|
Before | 4 | 0.000 | 0.135 | 1.000 |
16 | 0.000 | 0.135 | 1.000 | |
32 | −2.000 * | 0.135 | <0.0001 * | |
80 | −2.000 * | 0.135 | <0.0001 * | |
320 | −2.167 * | 0.135 | <0.0001 * | |
4 | 16 | 0.000 | 0.135 | 1.000 |
32 | −2.000 * | 0.135 | <0.0001 * | |
80 | −2.000 * | 0.135 | <0.0001 * | |
320 | −2.167 * | 0.135 | <0.0001 * | |
16 | 32 | −2.000 * | 0.135 | <0.0001 * |
80 | −2.000 * | 0.135 | <0.0001 * | |
320 | −2.167 * | 0.135 | <0.0001 * | |
32 | 80 | 0.000 | 0.135 | 1.000 |
320 | −0.167 | 0.135 | 0.975 | |
80 | 320 | −0.167 | 0.135 | 0.975 |
(I) Groups | (J) Groups | Mean Difference (I−J) | Standard Error | p-Value |
---|---|---|---|---|
Before | 8 | 0.000 | 0.135 | 1.000 |
24 | −1.000 * | 0.135 | <0.0001 * | |
40 | −2.000 * | 0.135 | <0.0001 * | |
160 | −2.167 * | 0.135 | <0.0001 * | |
400 | −2.333 * | 0.135 | <0.0001 * | |
8 | 40 | −2.000 * | 0.135 | <0.0001 * |
160 | −2.167 * | 0.135 | <0.0001 * | |
320 | −2.167 * | 0.135 | <0.0001 * | |
400 | −2.333 * | 0.135 | <0.0001 * | |
24 | 40 | −1.000 * | 0.135 | <0.0001 * |
80 | −1.000 * | 0.135 | <0.0001 * | |
160 | −1.167 * | 0.135 | <0.0001 * | |
400 | −1.333 * | 0.135 | <0.0001 * | |
40 | 160 | −0.167 | 0.135 | 0.975 |
400 | −0.333 | 0.135 | 0.343 | |
160 | 400 | −0.167 | 0.135 | 0.975 |
Times of Screwing and Unscrewing the Healing Abutment | Number of Patients |
---|---|
4 | 1 patient |
8 | 2 patients |
16 | 4 patients |
24 | 6 patients |
32 | 8 patients |
40 | 10 patients |
80 | 20 patients |
160 | 40 patients |
320 | 80 patients |
400 | 100 patients |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, C.; Bhattarai, B.P.; Riddhabhaya, A.; Wongsirichat, N.; Rokaya, D. Healing Abutment Distortion in Implant Prostheses: An In Vitro Study. J. Funct. Biomater. 2022, 13, 85. https://doi.org/10.3390/jfb13030085
Pandey C, Bhattarai BP, Riddhabhaya A, Wongsirichat N, Rokaya D. Healing Abutment Distortion in Implant Prostheses: An In Vitro Study. Journal of Functional Biomaterials. 2022; 13(3):85. https://doi.org/10.3390/jfb13030085
Chicago/Turabian StylePandey, Chandrashekhar, Bishwa Prakash Bhattarai, Apiwat Riddhabhaya, Natthamet Wongsirichat, and Dinesh Rokaya. 2022. "Healing Abutment Distortion in Implant Prostheses: An In Vitro Study" Journal of Functional Biomaterials 13, no. 3: 85. https://doi.org/10.3390/jfb13030085
APA StylePandey, C., Bhattarai, B. P., Riddhabhaya, A., Wongsirichat, N., & Rokaya, D. (2022). Healing Abutment Distortion in Implant Prostheses: An In Vitro Study. Journal of Functional Biomaterials, 13(3), 85. https://doi.org/10.3390/jfb13030085