Human Coronary Plaque Optical Coherence Tomography Image Repairing, Multilayer Segmentation and Impact on Plaque Stress/Strain Calculations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Processing
2.2. Multilayer Automatic Segmentation
2.3. Surface Repairing
2.4. Multilayer 3D Thin-Slice Models
2.5. Data Extraction and Analysis
3. Results
3.1. Comparison of Layer Thickness between Automatic and Manual Segmentations
3.2. Point-to-Point Manual and Automatic Contour Distances of Lumen, IEM, EEM and ADV
3.3. Impact of Multilayer Segmentation on Plaque Stress/Strain Calculations
4. Discussion
4.1. Multilayer Automatic Coronary Plaque OCT Segmentation, Repairing and Its Significance to Vulnerable Plaque Research
4.2. Limitations
4.3. Future Challenges and Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutiérrez-Chico, J.L.; Alegría-Barrero, E.; Teijeiro-Mestre, R.; Chan, P.H.; Tsujioka, H.; De Silva, R.; Viceconte, N.; Lindsay, A.; Patterson, T.; Foin, N.; et al. Optical coherence tomography: From research to practice. Eur. Hear. J. Cardiovasc. Imaging 2012, 13, 370–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, T.; Akasaka, T.; Shite, J.; Suzuki, T.; Uemura, S.; Yu, B.; Kozuma, K.; Kitabata, H.; Shinke, T.; Habara, M.; et al. OCT Compared With IVUS in a Coronary Lesion Assessment. JACC Cardiovasc. Imaging 2013, 6, 1095–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Giddens, D.P.; Molony, D.; Yang, C.; Samady, H.; Zheng, J.; Matsumura, M.; Mintz, G.S.; Maehara, A.; Wang, L.; et al. A Multimodality Image-Based Fluid–Structure Interaction Modeling Approach for Prediction of Coronary Plaque Progression Using IVUS and Optical Coherence Tomography Data With Follow-Up. J. Biomech. Eng. 2019, 141, 091003. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Maehara, A.; Matsumura, M.; Wang, L.; Zhang, C.; Huang, M.; Guo, X.; Samady, H.; Giddens, D.P.; Zheng, J.; et al. Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models. Front. Bioeng. Biotechnol. 2021, 9, 713525. [Google Scholar] [CrossRef] [PubMed]
- Tearney, G.J.; Regar, E.; Akasaka, T.; Adriaenssens, T.; Barlis, P.; Bezerra, H.G.; Bouma, B.; Bruining, N.; Cho, J.-M.; Chowdhary, S.; et al. Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies: A Report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 2012, 59, 1058–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, Z.A.; Maehara, A.; Généreux, P.; Shlofmitz, R.A.; Fabbiocchi, F.; Nazif, T.M.; Guagliumi, G.; Meraj, P.M.; Alfonso, F.; Samady, H.; et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): A randomised controlled trial. Lancet 2016, 388, 2618–2628. [Google Scholar] [CrossRef]
- Eikendal, A.L.; Groenewegen, K.A.; Anderson, T.J.; Britton, A.R.; Engström, G.; Evans, G.W.; de Graaf, J.; Grobbee, D.E.; Hedblad, B.; Holewijn, S.; et al. Common Carotid Intima-Media Thickness Relates to Cardiovascular Events in Adults Aged <45 Years. Hypertension 2015, 65, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Alvarez, V.; Sánchez, M.L.; Alvarez, F.L.; Nieto, C.S.; Mäkitie, A.A.; Olsen, K.D.; Ferlito, A. Evaluation of Intima-Media Thickness and Arterial Stiffness as Early Ultrasound Biomarkers of Carotid Artery Atherosclerosis. Cardiol. Ther. 2022, 11, 231–247. [Google Scholar] [CrossRef]
- Pahkala, K.; Heinonen, O.J.; Simell, O.; Viikari, J.S.; Rönnemaa, T.; Niinikoski, H.; Raitakari, O.T. Association of Physical Activity With Vascular Endothelial Function and Intima-Media Thickness. Circulation 2011, 124, 1956–1963. [Google Scholar] [CrossRef] [Green Version]
- Holzapfel, G.A.; Sommer, G.; Regitnig, P. Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques. J. Biomech. Eng. 2004, 126, 657–665. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Sommer, G.; Gasser, C.T.; Regitnig, P. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Circ. Physiol. 2005, 289, H2048–H2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, Z.; Zhang, Y.; Huang, Y.; Feng, J.; Yuan, J.; Lu, Q.; Sutcliffe, M.P.; Brown, A.J.; Jing, Z.; Gillard, J.H. Material properties of components in human carotid atherosclerotic plaques: A uniaxial extension study. Acta Biomater. 2014, 10, 5055–5063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holzapfel, G.A.; Mulvihill, J.J.; Cunnane, E.M.; Walsh, M.T. Computational approaches for analyzing the mechanics of atherosclerotic plaques: A review. J. Biomech. 2014, 47, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yang, F.; Gutiérrez-Chico, J.L.; Xu, T.; Wu, J.; Wang, L.; Lv, R.; Lai, Y.; Liu, X.; Onuma, Y.; et al. Optical Coherence Tomography-Derived Changes in Plaque Structural Stress Over the Cardiac Cycle: A New Method for Plaque Biomechanical Assessment. Front. Cardiovasc. Med. 2021, 8, 715995. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, L.S.; Bourantas, C.V.; Rigas, G.; Sakellarios, A.; Exarchos, T.P.; Siogkas, P.K.; Ricciardi, A.; Naka, K.; Papafaklis, M.; Michalis, L.K.; et al. Methodology for fully automated segmentation and plaque characterization in intracoronary optical coherence tomography images. J. Biomed. Opt. 2014, 19, 026009. [Google Scholar] [CrossRef]
- Olender, M.L.; Athanasiou, L.S.; Hernandez, J.M.D.L.T.; Ben-Assa, E.; Nezami, F.R.; Edelman, E.R. A Mechanical Approach for Smooth Surface Fitting to Delineate Vessel Walls in Optical Coherence Tomography Images. IEEE Trans. Med. Imaging 2018, 38, 1384–1397. [Google Scholar] [CrossRef] [PubMed]
- Zahnd, G.; Hoogendoorn, A.; Combaret, N.; Karanasos, A.; Péry, E.; Sarry, L.; Motreff, P.; Niessen, W.; Regar, E.; van Soest, G.; et al. Contour segmentation of the intima, media, and adventitia layers in intracoronary OCT images: Application to fully automatic detection of healthy wall regions. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1923–1936. [Google Scholar] [CrossRef] [Green Version]
- Kafieh, R.; Rabbani, H.; Abramoff, M.D.; Sonka, M. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map. Med. Image Anal. 2013, 17, 907–928. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.; Jia, H.; Gutiérrez-Chico, J.L.; Maehara, A.; Ali, Z.A.; Zeng, X.; He, L.; Zhao, C.; Matsumura, M.; Wu, P.; et al. Artificial intelligence and optical coherence tomography for the automatic characterisation of human atherosclerotic plaques. EuroIntervention 2021, 17, 41–50. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Guo, X.; Molony, D.; Guo, X.; Samady, H.; Giddens, D.P.; Athanasiou, L.; Nie, R.; Cao, J.; et al. Convolution Neural Networks and Support Vector Machines for Automatic Segmentation of Intracoronary Optical Coherence Tomography. Mol. Cell. Biomech. 2019, 16, 153–161. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Scale Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef] [PubMed]
- Schurer, F.; Cheney, E. On Interpolating Cubic Splines with Equally-Spaced Nodes 1. Indag. Math. Proc. 1968, 71, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Bach, R.G.; Zheng, J.; Naqa, I.E.; Woodard, P.K.; Teng, Z.; Billiar, K.; Tang, D. In Vivo IVUS-Based 3-D Fluid–Structure Interaction Models With Cyclic Bending and Anisotropic Vessel Properties for Human Atherosclerotic Coronary Plaque Mechanical Analysis. IEEE Trans. Biomed. Eng. 2009, 56, 2420–2428. [Google Scholar] [CrossRef] [PubMed]
- Kural, M.H.; Cai, M.; Tang, D.; Gwyther, T.; Zheng, J.; Billiar, K.L. Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. J. Biomech. 2012, 45, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Tang, D.; Wang, L.; Canton, G.; Wu, Z.; Hatsukami, T.S.; Billiar, K.L.; Yuan, C. Combining morphological and biomechanical factors for optimal carotid plaque progression prediction: An MRI-based follow-up study using 3D thin-layer models. Int. J. Cardiol. 2019, 293, 266–271. [Google Scholar] [CrossRef]
- Fracassi, F.; Crea, F.; Sugiyama, T.; Yamamoto, E.; Uemura, S.; Vergallo, R.; Porto, I.; Lee, H.; Fujimoto, J.; Fuster, V.; et al. Healed Culprit Plaques in Patients With Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2019, 73, 2253–2263. [Google Scholar] [CrossRef]
- Shimokado, A.; Matsuo, Y.; Kubo, T.; Nishiguchi, T.; Taruya, A.; Teraguchi, I.; Shiono, Y.; Orii, M.; Tanimoto, T.; Yamano, T.; et al. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques. Atherosclerosis 2018, 275, 35–42. [Google Scholar] [CrossRef]
- Thondapu, V.; Mamon, C.; Poon, E.K.W.; Kurihara, O.; Kim, H.O.; Russo, M.; Araki, M.; Shinohara, H.; Yamamoto, E.; Dijkstra, J.; et al. High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion. Cardiovasc. Res. 2020, 117, 1974–1985. [Google Scholar] [CrossRef]
- Terashima, M.; Kaneda, H.; Honda, Y.; Shimura, T.; Kodama, A.; Habara, M.; Suzuki, T. Current status of hybrid intravascular ultrasound and optical coherence tomography catheter for coronary imaging and percutaneous coronary intervention. J. Cardiol. 2021, 77, 435–443. [Google Scholar] [CrossRef]
Patient | Age | Sex | Vessel Segment | BP (mmHg) | Number of Slices | Comorbidities |
---|---|---|---|---|---|---|
P1 | 80 | F | RCA | 138/71 | 75 | HT DM |
P2 | 65 | F | RCA | 149/63 | 90 | DM |
P3 | 74 | F | RCA | 151/62 | 76 | HT DM HL |
P4 | 62 | F | RCA | 117/79 | 75 | HL |
P5 | 72 | M | LCX | 143/80 | 60 | HT DM HL |
P6 | 67 | F | LAD | 113/60 | 60 | Not available |
Patient | Intima (mm) | Media (mm) | ||||
---|---|---|---|---|---|---|
Auto | Manual | Error | Auto | Manual | Error | |
P1 | 0.6298 ± 0.0948 | 0.6661 ± 0.1009 | −4.82 ± 4.30% | 0.2585 ± 0.0455 | 0.2655 ± 0.0335 | −5.27 ± 5.20% |
P2 | 0.7262 ± 0.2575 | 0.7794 ± 0.2346 | −4.09 ± 5.71% | 0.2662 ± 0.0270 | 0.2880 ± 0.0203 | −7.38± 7.58% |
P3 | 0.7763 ± 0.2151 | 0.8183 ± 0.1945 | −5.04 ± 7.21% | 0.2613 ± 0.0215 | 0.2871 ± 0.0241 | −8.76 ± 5.24% |
P4 | 0.4268 ± 0.1478 | 0.3963 ± 0.1416 | 9.00 ± 5.11% | 0.2146 ± 0.0472 | 0.2386 ± 0.0565 | −9.30 ± 4.11% |
P5 | 0.6439 ± 0.0935 | 0.6246 ± 0.0989 | 4.37 ± 5.13% | 0.1934 ± 0.0102 | 0.1845 ± 0.0237 | 7.03 ± 14.65% |
P6 | 0.4973 ± 0.1740 | 0.5390 ± 0.1674 | −7.25 ± 6.40% | 0.1493 ± 0.0082 | 0.1526 ± 0.0279 | 1.80 ± 16.93% |
Patient-Averaged Mean ± SD | 0.6240 ± 0.2174 | 0.6464 ± 0.2222 | −1.40 ± 8.13% | 0.2290 ± 0.0519 | 0.2426 ± 0.0596 | −4.34 ± 11.17% |
Patient | Adventitia (mm) | Total Vessel (mm) | ||||
auto | manual | error | auto | manual | error | |
P1 | 0.2429 ± 0.0325 | 0.2151 ± 0.0319 | 13.49 ± 5.55% | 1.1312 ± 0.1227 | 1.1467 ± 0.1225 | −1.32 ± 3.24% |
P2 | 0.2377 ± 0.0451 | 0.2231 ± 0.0563 | 8.96 ± 10.87% | 1.2301 ± 0.2968 | 1.2904 ± 0.2713 | −5.29 ± 4.55% |
P3 | 0.2217 ± 0.0441 | 0.2073 ± 0.0429 | 8.63 ± 11.00% | 1.2593 ± 0.2115 | 1.3127 ± 0.2028 | −4.16 ± 3.94% |
P4 | 0.2097 ± 0.0465 | 0.2037 ± 0.0641 | 7.76 ± 9.87% | 0.8510 ± 0.2310 | 0.8386 ± 0.2409 | −1.91 ± 3.21% |
P5 | 0.2745 ± 0.0402 | 0.2994 ± 0.0428 | −5.64 ± 16.01% | 1.1119 ± 0.0857 | 1.1085 ± 0.1003 | 0.53 ± 4.70% |
P6 | 0.2112 ± 0.0531 | 0.2036 ± 0.0531 | 5.37 ± 9.19% | 0.8578 ± 0.1952 | 0.8952 ± 0.1794 | −4.49 ± 5.50% |
Patient-Averaged Mean ± SD | 0.2324 ± 0.0477 | 0.2234 ± 0.0587 | 6.97 ± 12.00% | 1.0855 ± 0.2650 | 1.1124 ± 0.2711 | −2.26 ± 5.00% |
Patients | IEM (mm) | EEM (mm) | ADV (mm) |
---|---|---|---|
P1 | 9.78% | 12.84% | 18.08% |
P2 | 11.65% | 13.16% | 20.34% |
P3 | 17.68% | 13.19% | 20.00% |
P4 | 14.90% | 13.06% | 19.33% |
P5 | 11.47% | 32.58% | 29.12% |
P6 | 14.57% | 28.42% | 16.54% |
Patient | Lumen (mm) | IEM (mm) | EEM (mm) | ADV (mm) |
---|---|---|---|---|
P1 | −0.0037 ± 0.0421 | −0.1075 ± 0.0660 | −0.1423 ± 0.0790 | 0.0147 ± 0.0626 |
P2 | 0.0140 ± 0.0279 | −0.0392 ± 0.0453 | −0.1164 ± 0.1021 | −0.0690 ± 0.0668 |
P3 | 0.0160 ± 0.0312 | −0.0259 ± 0.0479 | −0.0942 ± 0.0777 | −0.0302 ± 0.0449 |
P4 | 0.0377 ± 0.0412 | 0.0613 ± 0.1438 | −0.0104 ± 0.1346 | 0.0117 ± 0.1147 |
P5 | −0.0547 ± 0.0484 | −0.0213 ± 0.0360 | −0.0123 ± 0.0304 | −0.0372 ± 0.0571 |
P6 | 0.0177 ± 0.0547 | −0.0348 ± 0.0542 | −0.0381 ± 0.0655 | 0.0184 ± 0.0859 |
Mean ± SD | −0.0081 ± 0.0310 | −0.0279 ± 0.0539 | −0.0689 ± 0.0563 | −0.0153 ± 0.0356 |
Slice | Lumen | Out Boundary | ||||
---|---|---|---|---|---|---|
Multilayer (kPa) | Single-Layer (kPa) | Error | Multilayer (kPa) | Single-Layer (kPa) | Error | |
1 | 134.07 | 115.97 | −13.50% | 20.49 | 48.09 | 134.69% |
2 | 138.01 | 120.51 | −12.68% | 21.97 | 51.38 | 133.87% |
3 | 114.53 | 105.99 | −7.46% | 16.57 | 42.31 | 155.33% |
4 | 140.41 | 121.70 | −13.33% | 21.91 | 53.86 | 145.78% |
5 | 135.68 | 119.49 | −11.93% | 20.05 | 51.69 | 157.84% |
6 | 134.47 | 119.16 | −11.39% | 18.91 | 50.80 | 168.59% |
7 | 138.08 | 122.93 | −10.97% | 20.17 | 53.35 | 164.51% |
8 | 136.50 | 122.96 | −9.92% | 20.39 | 54.05 | 165.14% |
9 | 131.47 | 119.76 | −8.91% | 19.80 | 52.31 | 164.16% |
10 | 120.03 | 110.68 | −7.79% | 17.13 | 46.74 | 172.94% |
Mean ± SD | 132.33 ± 8.40 | 117.91 ± 5.55 | −10.79 ± 2.20% | 19.74 ± 1.78 | 50.46 ± 37.20 | 156.28 ± 13.82% |
Slice | Lumen | Out-Boundary | ||||
---|---|---|---|---|---|---|
Multilayer | Single-Layer | Error | Multilayer | Single-Layer | Error | |
1 | 0.2022 | 0.1895 | −6.26% | 0.1202 | 0.1027 | −14.56% |
2 | 0.2039 | 0.1922 | −5.76% | 0.1248 | 0.1075 | −13.88% |
3 | 0.1903 | 0.1843 | −3.14% | 0.1087 | 0.0941 | −13.41% |
4 | 0.2046 | 0.1925 | −5.91% | 0.1296 | 0.1116 | −13.86% |
5 | 0.2032 | 0.1921 | −5.46% | 0.1267 | 0.1095 | −13.60% |
6 | 0.2036 | 0.1929 | −5.25% | 0.1254 | 0.1087 | −13.36% |
7 | 0.2058 | 0.1954 | −5.08% | 0.1277 | 0.1113 | −12.83% |
8 | 0.2047 | 0.1953 | −4.58% | 0.1272 | 0.1113 | −12.45% |
9 | 0.2019 | 0.1938 | −4.02% | 0.1236 | 0.1078 | −12.79% |
10 | 0.1949 | 0.1883 | −3.37% | 0.1146 | 0.0994 | −13.24% |
Mean ± SD | 0.2015 ± 0.0050 | 0.1916 ± 0.0034 | −4.88 ± 1.07% | 0.1228 ± 0.0066 | 0.1064 ± 0.0058 | −13.40 ± 0.62% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Maehara, A.; Tang, D.; Zhu, J.; Wang, L.; Lv, R.; Zhu, Y.; Zhang, X.; Matsumura, M.; Chen, L.; et al. Human Coronary Plaque Optical Coherence Tomography Image Repairing, Multilayer Segmentation and Impact on Plaque Stress/Strain Calculations. J. Funct. Biomater. 2022, 13, 213. https://doi.org/10.3390/jfb13040213
Huang M, Maehara A, Tang D, Zhu J, Wang L, Lv R, Zhu Y, Zhang X, Matsumura M, Chen L, et al. Human Coronary Plaque Optical Coherence Tomography Image Repairing, Multilayer Segmentation and Impact on Plaque Stress/Strain Calculations. Journal of Functional Biomaterials. 2022; 13(4):213. https://doi.org/10.3390/jfb13040213
Chicago/Turabian StyleHuang, Mengde, Akiko Maehara, Dalin Tang, Jian Zhu, Liang Wang, Rui Lv, Yanwen Zhu, Xiaoguo Zhang, Mitsuaki Matsumura, Lijuan Chen, and et al. 2022. "Human Coronary Plaque Optical Coherence Tomography Image Repairing, Multilayer Segmentation and Impact on Plaque Stress/Strain Calculations" Journal of Functional Biomaterials 13, no. 4: 213. https://doi.org/10.3390/jfb13040213
APA StyleHuang, M., Maehara, A., Tang, D., Zhu, J., Wang, L., Lv, R., Zhu, Y., Zhang, X., Matsumura, M., Chen, L., Ma, G., & Mintz, G. S. (2022). Human Coronary Plaque Optical Coherence Tomography Image Repairing, Multilayer Segmentation and Impact on Plaque Stress/Strain Calculations. Journal of Functional Biomaterials, 13(4), 213. https://doi.org/10.3390/jfb13040213