Review on Biocompatibility and Prospect Biomedical Applications of Novel Functional Metallic Glasses
Abstract
:1. Introduction
2. Zr-Based Metallic Glasses
2.1. Mechanical Properties
2.2. Corrosion Resistance
- Ringer’s solution [31],
2.3. In Vitro Cellular Research
2.4. Antibacterial Properties
2.5. In Vivo Research
2.6. Summary
3. Ti-Based Metallic Glasses
3.1. Mechanical Properties
3.2. Corrosion Resistance
- Borate Buffered Solution with 0.1 M NaCl (BBS) [137],
3.3. In Vitro Cellular Research
3.4. Antibacterial Properties
3.5. In Vivo Research
3.6. Summary
4. Other Metallic Glasses
4.1. Mg-Based Metallic Glasses
4.2. Ta-Based Metallic Glasses
4.3. Pd-Based Metallic Glasses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.; Thouas, G.A. Metallic Implant Biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Ibrahim, M.Z.; Sarhan, A.A.D.; Yusuf, F.; Hamdi, M. Biomedical Materials and Techniques to Improve the Tribological, Mechanical and Biomedical Properties of Orthopedic Implants—A Review Article. J. Alloy. Compd. 2017, 714, 636–667. [Google Scholar] [CrossRef]
- Navarro, M.; Michiardi, A.; Castaño, O.; Planell, J.A. Biomaterials in Orthopaedics. J. R. Soc. Interface 2008, 5, 1137–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huiskes, R.; Weinans, H.; van Rietbergen, B. The Relationship between Stress Shielding and Bone Resorption around Total Hip Stems and the Effects of Flexible Materials. Clin. Orthop. Relat. Res. 1992, 274, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int. J. Biomater. 2011, 2011, 836587. [Google Scholar] [CrossRef] [Green Version]
- Capizzani, R. Magnetic Resonance Imaging Hazards and Safety Guidelines. Strateg. Outcomes Pract.-Tech. Advis. Bull. 2009, 1–11. [Google Scholar]
- Chockattu, S.J.; Suryakant, D.B.; Thakur, S. Unwanted Effects Due to Interactions between Dental Materials and Magnetic Resonance Imaging: A Review of the Literature. Restor. Dent. Endod. 2018, 43, e39. [Google Scholar] [CrossRef]
- Buckwalter, K.; Lin, C.; Ford, J. Managing Postoperative Artifacts on Computed Tomography and Magnetic Resonance Imaging. Semin. Musculoskelet. Radiol. 2011, 15, 309–319. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, B.; Rodríguez-Viejo, J.; Wu, M.; Schick, C.; Zhai, Q.; Gao, Y. Bridging the Local Configurations and Crystalline Counterparts of Bulk Metallic Glass by Nanocalorimetry. J. Mater. Res. Technol. 2019, 8, 3603–3611. [Google Scholar] [CrossRef]
- Kramer, J. The Amorphous State of Metals. Z. Für Phys. 1936, 106, 675–691. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Johnson, W.L. Disordered Materials: A Survey of Amorphous Solids. Science 1987, 235, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Klement, W.; Willens, R.H.; Duwez, P. Non-Crystalline Structure in Solidified Gold–Silicon Alloys. Nature 1960, 187, 869–870. [Google Scholar] [CrossRef]
- Schroers, J. Bulk Metallic Glasses. Phys. Today 2013, 66, 32–37. [Google Scholar] [CrossRef]
- Chen, H.S. Thermodynamic Considerations on the Formation and Stability of Metallic Glasses. Acta Metall. 1974, 22, 1505–1511. [Google Scholar] [CrossRef]
- Gu, J.-L.; Shao, Y.; Yao, K.-F. The Novel Ti-Based Metallic Glass with Excellent Glass Forming Ability and an Elastic Constant Dependent Glass Forming Criterion. Materialia 2019, 8, 100433. [Google Scholar] [CrossRef]
- Nishiyama, N.; Takenaka, K.; Miura, H.; Saidoh, N.; Zeng, Y.; Inoue, A. The World’s Biggest Glassy Alloy Ever Made. Intermetallics 2012, 30, 19–24. [Google Scholar] [CrossRef]
- Digital Science & Research Solutions Inc. Dimensions. Available online: https://app.dimensions.ai/discover/publication?search_mode=content (accessed on 1 October 2022).
- Fornell, J.; van Steenberge, N.; Varea, A.; Rossinyol, E.; Pellicer, E.; Suriñach, S.; Baró, M.D.; Sort, J. Enhanced Mechanical Properties and in Vitro Corrosion Behavior of Amorphous and Devitrified Ti40Zr10Cu38Pd12 Metallic Glass. J. Mech. Behav. Biomed. Mater. 2011, 4, 1709–1717. [Google Scholar] [CrossRef]
- Hasiak, M.; Tkaczyk, M.; Łaszcz, A.; Olszewski, J. Effect of Alloying Additions on Microstructure, Mechanical and Magnetic Properties of Rapidly Cooled Bulk Fe-B-M-Cu (M = Ti, Mo and Mn) Alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2022, 53, 556–572. [Google Scholar] [CrossRef]
- Hasiak, M.; Świerczek, J. Some Thermomagnetic and Mechanical Properties of Amorphous Fe75Zr4Ti3Cu1B17 Ribbons. Materials 2022, 15, 368. [Google Scholar] [CrossRef]
- Liu, Y.; Hata, S.; Wada, K.; Shimokohbe, A. Thermal, Mechanical and Electrical Properties of Pd-Based Thin-Film Metallic Glass. Jpn. J. Appl. Phys. 2001, 40, 5382–5388. [Google Scholar] [CrossRef]
- Świerczek, J.; Kupczyk, A.; Hasiak, M. Impact of Annealing on Flattening of Magnetic Entropy Change versus Temperature Curves in Amorphous and Partially Crystallized Fe76Mo10Cu1B13 Alloy. Acta Phys. Pol. A 2019, 135, 212–214. [Google Scholar] [CrossRef]
- Xie, C.; Milošev, I.; Renner, F.U.; Kokalj, A.; Bruna, P.; Crespo, D. Corrosion Resistance of Crystalline and Amorphous CuZr Alloys in NaCl Aqueous Environment and Effect of Corrosion Inhibitors. J. Alloy. Compd. 2021, 879, 160464. [Google Scholar] [CrossRef]
- Telford, M. The Case for Bulk Metallic Glass. Mater. Today 2004, 7, 36–43. [Google Scholar] [CrossRef]
- Greer, A.L. Metallic Glasses…on the Threshold. Mater. Today 2009, 12, 14–22. [Google Scholar] [CrossRef]
- Ashby, M.; Greer, A. Metallic Glasses as Structural Materials. Scr. Mater. 2006, 54, 321–326. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Inoue, A. Bulk Metallic Glasses, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315153483. [Google Scholar]
- Green, B.A.; Liaw, P.; Buchanan, R.A. Corrosion Behavior. In Bulk Metallic Glasses; Miller, M., Liaw, P., Eds.; Springer: New York, NY, USA, 2008; pp. 205–234. [Google Scholar]
- Scully, J.R.; Gebert, A.; Payer, J.H. Corrosion and Related Mechanical Properties of Bulk Metallic Glasses. J. Mater. Res. 2007, 22, 302–313. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Yang, J.; Sun, J.; Xiong, L. Influence of Heat Treatment on the Mechanical Properties, Corrosion Behavior, and Biocompatibility of Zr56Al16Co28 Bulk Metallic Glass. J. Non Cryst. Solids 2015, 411, 45–52. [Google Scholar] [CrossRef]
- Khan, M.M.; Shabib, I.; Haider, W. A Combinatorially Developed Zr-Ti-Fe-Al Metallic Glass with Outstanding Corrosion Resistance for Implantable Medical Devices. Scr. Mater. 2019, 162, 223–229. [Google Scholar] [CrossRef]
- Gan, Z.; Zhang, C.; Zhang, Z.-R.; Chen, Z.-J.; Liu, L. Crystallization-Dependent Transition of Corrosion Resistance of an Fe-Based Bulk Metallic Glass under Hydrostatic Pressures. Corros. Sci. 2021, 179, 109098. [Google Scholar] [CrossRef]
- Schroers, J. Processing of Bulk Metallic Glass. Adv. Mater. 2010, 22, 1566–1597. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, S.; Jabed, A.; Theeda, S.; Meduri, C.S.; Hu, Z.; Hasan, M.; Kumar, G. Review of Thermoplastic Drawing with Bulk Metallic Glasses. Metals 2022, 12, 518. [Google Scholar] [CrossRef]
- Gibson, M.A.; Mykulowycz, N.M.; Shim, J.; Fontana, R.; Schmitt, P.; Roberts, A.; Ketkaew, J.; Shao, L.; Chen, W.; Bordeenithikasem, P.; et al. 3D Printing Metals like Thermoplastics: Fused Filament Fabrication of Metallic Glasses. Mater. Today 2018, 21, 697–702. [Google Scholar] [CrossRef]
- Ikarashi, Y.; Toyoda, K.; Kobayashi, E.; Doi, H.; Yoneyama, T.; Hamanaka, H.; Tsuchiya, T. Improved Biocompatibility of Titanium-Zirconium (Ti-Zr) Alloy: Tissue Reaction and Sensitization to Ti-Zr Alloy Compared with Pure Ti and Zr in Rat Implantation Study. J. Jpn. Inst. Met. 2007, 71, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Peker, A.; Johnson, W.L. A Highly Processable Metallic Glass: Zr 41.2 Ti 13.8 Cu 12.5 Ni 10.0 Be 22.5. Appl. Phys. Lett. 1993, 63, 2342–2344. [Google Scholar] [CrossRef] [Green Version]
- Qiao, D.; Peker, A. Enhanced Glass Forming Ability in Zr-Based Bulk Metallic Glasses with Hf Addition. Intermetallics 2012, 24, 115–119. [Google Scholar] [CrossRef]
- Han, K.-M.; Jiang, H.; Wang, Y.-M.; Qiang, J.-B. Zr–Ti–Al–Fe–Cu Bulk Metallic Glasses for Biomedical Device Application. Rare Met. 2021, 40, 1239–1246. [Google Scholar] [CrossRef]
- Sun, K.; Fu, R.; Liu, X.W.; Xu, L.M.; Wang, G.; Chen, S.Y.; Zhai, Q.J.; Pauly, S. Osteogenesis and Angiogenesis of a Bulk Metallic Glass for Biomedical Implants. Bioact. Mater. 2022, 8, 253–266. [Google Scholar] [CrossRef]
- He, Q.; Cheng, Y.Q.; Ma, E.; Xu, J. Locating Bulk Metallic Glasses with High Fracture Toughness: Chemical Effects and Composition Optimization. Acta Mater. 2011, 59, 202–215. [Google Scholar] [CrossRef]
- Han, K.; Jiang, H.; Wang, Y.; Qiang, J.; Yu, C. Antimicrobial Zr-Based Bulk Metallic Glasses for Surgical Devices Applications. J. Non Cryst. Solids 2021, 564, 120827. [Google Scholar] [CrossRef]
- Jin, Z.S.; Yang, Y.J.; Zhang, Z.P.; Ma, X.Z.; Lv, J.W.; Wang, F.L.; Ma, M.Z.; Zhang, X.Y.; Liu, R.P. Effect of Hf Substitution Cu on Glass-Forming Ability, Mechanical Properties and Corrosion Resistance of Ni-Free Zr–Ti–Cu–Al Bulk Metallic Glasses. J. Alloy. Compd. 2019, 806, 668–675. [Google Scholar] [CrossRef]
- Hasiak, M.; Sobieszczańska, B.; Łaszcz, A.; Biały, M.; Chęcmanowski, J.; Zatoński, T.; Bożemska, E.; Wawrzyńska, M. Production, Mechanical Properties and Biomedical Characterization of ZrTi-Based Bulk Metallic Glasses in Comparison with 316L Stainless Steel and Ti6Al4V Alloy. Materials 2021, 15, 252. [Google Scholar] [CrossRef] [PubMed]
- Ida, H.; Seiryu, M.; Takeshita, N.; Iwasaki, M.; Yokoyama, Y.; Tsutsumi, Y.; Ikeda, E.; Sasaki, S.; Miyashita, S.; Sasaki, S.; et al. Biosafety, Stability, and Osteogenic Activity of Novel Implants Made of Zr70Ni16Cu6Al8 Bulk Metallic Glass for Biomedical Application. Acta Biomater. 2018, 74, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhao, W.; Wei, X.; Ding, Y.; Shen, X.; Liu, W. Effect of Ti Addition on Mechanical Properties and Corrosion Resistance of Ni-Free Zr-Based Bulk Metallic Glasses for Potential Biomedical Applications. J. Alloy. Compd. 2020, 815, 152636. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, H.; Zhou, Z.; Ding, Y.; Liu, W.; Ji, J. Improved Mechanical Properties and Corrosion Resistance of Zr-Cu-Al-Ni-Ti Bulk Metallic Glass by Fe Substitution for Ni. J. Non Cryst. Solids 2022, 576, 121246. [Google Scholar] [CrossRef]
- Hua, N.; Huang, L.; Chen, W.; He, W.; Zhang, T. Biocompatible Ni-Free Zr-Based Bulk Metallic Glasses with High-Zr-Content: Compositional Optimization for Potential Biomedical Applications. Mater. Sci. Eng. C 2014, 44, 400–410. [Google Scholar] [CrossRef]
- Vincent, S.; Daiwile, A.; Devi, S.S.; Kramer, M.J.; Besser, M.F.; Murty, B.S.; Bhatt, J. Bio-Corrosion and Cytotoxicity Studies on Novel Zr55Co30Ti15 and Cu60Zr20Ti20 Metallic Glasses. Metall. Mater. Trans. A 2015, 46, 2422–2430. [Google Scholar] [CrossRef]
- Jain, A.; Prabhu, Y.; Gunderov, D.; Narayan, R.L.; Saini, P.; Vincent, S.; Sudha, P.; Bagde, A.D.; Bhatt, J. Structural Characterization, Biocorrosion and in-Vitro Investigation on Zr62Cu22Al10Fe5Dy1 Metallic Glass for Bio-Implant Applications. J. Non Cryst. Solids 2022, 598, 121928. [Google Scholar] [CrossRef]
- Prabhu, Y.; Jain, A.; Vincent, S.; Ryu, W.H.; Park, E.S.; Kumar, R.; Bagde, A.D.; Bhatt, J. Compositional Design and in Vitro Investigation on Novel Zr–Co–Cu–Ti Metallic Glass for Biomedical Applications. Intermetallics 2022, 150, 107692. [Google Scholar] [CrossRef]
- Khan, M.M.; Deen, K.M.; Haider, W. Combinatorial Development and Assessment of a Zr-Based Metallic Glass for Prospective Biomedical Applications. J. Non Cryst. Solids 2019, 523, 119544. [Google Scholar] [CrossRef]
- Jabed, A.; Khan, M.M.; Camiller, J.; Greenlee-Wacker, M.; Haider, W.; Shabib, I. Property Optimization of Zr-Ti-X (X = Ag, Al) Metallic Glass via Combinatorial Development Aimed at Prospective Biomedical Application. Surf. Coat. Technol. 2019, 372, 278–287. [Google Scholar] [CrossRef]
- Ketov, S.V.; Shi, X.; Xie, G.; Kumashiro, R.; Churyumov, A.Y.; Bazlov, A.I.; Chen, N.; Ishikawa, Y.; Asao, N.; Wu, H.; et al. Nanostructured Zr-Pd Metallic Glass Thin Film for Biochemical Applications. Sci. Rep. 2015, 5, 7799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Liou, M.-L.; Duh, J.-G. The Development of a Zr-Cu-Al-Ag-N Thin Film Metallic Glass Coating in Pursuit of Improved Mechanical, Corrosion, and Antimicrobial Property for Bio-Medical Application. Surf. Coat. Technol. 2017, 310, 214–222. [Google Scholar] [CrossRef]
- Morrison, M.L.; Buchanan, R.A.; Leon, R.V.; Liu, C.T.; Green, B.A.; Liaw, P.K.; Horton, J.A. The Electrochemical Evaluation of a Zr-Based Bulk Metallic Glass in a Phosphate-Buffered Saline Electrolyte. J. Biomed. Mater. Res. Part A 2005, 74, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, S.; Nisar, A.; Sharma, R.K.; Schwarz, U.D.; Balani, K.; Datye, A. Effect of Fictive Temperature on Tribological Properties of Zr44Ti11Cu10Ni10Be25 Bulk Metallic Glasses. Wear 2021, 486–487, 204075. [Google Scholar] [CrossRef]
- Rajan, S.T.; V, A.T.V.; Terada-Nakaishi, M.; Chen, P.; Hanawa, T.; Nandakumar, A.K.; Subramanian, B. Zirconium-Based Metallic Glass and Zirconia Coatings to Inhibit Bone Formation on Titanium. Biomed. Mater. 2020, 15, 065019. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, Y.; Fan, H.; Wang, Y.; Ning, Z.; Liu, F.; Feng, D.; Jin, X.; Shen, J.; Sun, J.; et al. In Vitro and in Vivo Biocompatibility of an Ag-Bearing Zr-Based Bulk Metallic Glass for Potential Medical Use. J. Non Cryst. Solids 2015, 419, 82–91. [Google Scholar] [CrossRef]
- Liu, L.; Qiu, C.L.; Chen, Q.; Chan, K.C.; Zhang, S.M. Deformation Behavior, Corrosion Resistance, and Cytotoxicity of Ni-Free Zr-Based Bulk Metallic Glasses. J. Biomed. Mater. Res. Part A 2008, 86, 160–169. [Google Scholar] [CrossRef]
- Gebert, A.; Buchholz, K.; Leonhard, A.; Mummert, K.; Eckert, J.; Schultz, L. Investigations on the Electrochemical Behaviour of Zr-Based Bulk Metallic Glasses. Mater. Sci. Eng. A 1999, 267, 294–300. [Google Scholar] [CrossRef]
- Qiu, C.L.; Chen, Q.; Liu, L.; Chan, K.C.; Zhou, J.X.; Chen, P.P.; Zhang, S.M. A Novel Ni-Free Zr-Based Bulk Metallic Glass with Enhanced Plasticity and Good Biocompatibility. Scr. Mater. 2006, 55, 605–608. [Google Scholar] [CrossRef]
- Wang, B.; Xu, K.K.; Shi, X.H.; Zhang, M.; Qiao, J.W.; Gao, C.H.; Wu, Y.C. Electrochemical and Chemical Corrosion Behaviors of the In-Situ Zr-Based Metallic Glass Matrix Composites in Chloride-Containing Solutions. J. Alloy. Compd. 2019, 770, 679–685. [Google Scholar] [CrossRef]
- Lin, C.H.; Chen, C.H.; Huang, Y.S.; Huang, C.H.; Huang, J.C.; Jang, J.S.C.; Lin, Y.S. In-Vivo Investigations and Cytotoxicity Tests on Ti/Zr-Based Metallic Glasses with Various Cu Contents. Mater. Sci. Eng. C 2017, 77, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Kadir, L.A.; Stacey, M.; Barrett-Jolley, R. Emerging Roles of the Membrane Potential: Action beyond the Action Potential. Front. Physiol. 2018, 9, 1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Li, M.; Zhou, Y.; Xu, K.; Li, X.; Lin, C.; Zhang, J.; Cai, K. Pitting Behavior of 316L Stainless Steel in Direct Culture with Mesenchymal Stem Cells. Corros. Sci. 2022, 204, 110380. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Z.B.; Pang, S.J.; Zheng, Y.G.; Li, Y. Oxygen Impurity Improving Corrosion Resistance of a Zr-Based Bulk Metallic Glass in 3.5 Wt% NaCl Solution. Corros. Sci. 2021, 192, 109867. [Google Scholar] [CrossRef]
- Sawyer, V.; Tao, X.; Dong, H.; Dashtbozorg, B.; Li, X.; Sammons, R.; Dong, H.-S. Improving the Tribological Properties and Biocompatibility of Zr-Based Bulk Metallic Glass for Potential Biomedical Applications. Materials 2020, 13, 1960. [Google Scholar] [CrossRef]
- Zhou, M.; Hagos, K.; Huang, H.; Yang, M.; Ma, L. Improved Mechanical Properties and Pitting Corrosion Resistance of Zr65Cu17.5Fe10Al7.5 Bulk Metallic Glass by Isothermal Annealing. J. Non Cryst. Solids 2016, 452, 50–56. [Google Scholar] [CrossRef]
- Zhang, L.M.; Zhang, S.D.; Ma, A.L.; Hu, H.X.; Zheng, Y.G.; Yang, B.J.; Wang, J.Q. Thermally Induced Structure Evolution on the Corrosion Behavior of Al-Ni-Y Amorphous Alloys. Corros. Sci. 2018, 144, 172–183. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, P.; Yu, Z.; Zhang, X.; Shen, L.; Shi, H.; Yan, H.; Wang, L.; Tian, Y. Effects of Periodic Surface Structures Induced by Femtosecond Laser Irradiation on the Antibacterial Properties of Zr-Based Amorphous Material. Optik 2022, 268, 169760. [Google Scholar] [CrossRef]
- Du, C.; Yang, Y.; Zheng, L.; Zhang, T.; Zhao, X.; Wang, C. Structure-Element Surface Modification Strategy Enhances the Antibacterial Performance of Zr-BMGs. ACS Appl. Mater. Interfaces 2022, 14, 8793–8803. [Google Scholar] [CrossRef]
- Sun, J.; Wan, J.; Zhai, X.; Wang, J.; Liu, Z.; Tian, H.; Xin, L. Silver Nanoparticles: Correlating Particle Size and Ionic Ag Release with Cytotoxicity, Genotoxicity, and Inflammatory Responses in Human Cell Lines. Toxicol. Ind. Health 2021, 37, 198–209. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic Potential of Silver Nanoparticles. Yonsei Med. J. 2014, 55, 283–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A Systematic Review on Silver Nanoparticles-Induced Cytotoxicity: Physicochemical Properties and Perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Zhang, H.; Zhang, E.; You, J.; Ma, X.; Bai, X. Antibacterial Activities and Biocompatibilities of Ti-Ag Alloys Prepared by Spark Plasma Sintering and Acid Etching. Mater. Sci. Eng. C 2018, 92, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liang, L.; Liu, L.; Yin, Y.; Liu, Y.; Lei, G.; Zhou, K.; Huang, Q.; Wu, H. Using MgO Nanoparticles as a Potential Platform to Precisely Load and Steadily Release Ag Ions for Enhanced Osteogenesis and Bacterial Killing. Mater. Sci. Eng. C 2021, 119, 111399. [Google Scholar] [CrossRef]
- Subramanian, B.; Maruthamuthu, S.; Rajan, S.T. Biocompatibility Evaluation of Sputtered Zirconium-Based Thin Film Metallic Glass-Coated Steels. Int. J. Nanomed. 2015, 10, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Li, T.H.; Wong, P.C.; Chang, S.F.; Tsai, P.H.; Jang, J.S.C.; Huang, J.C. Biocompatibility Study on Ni-Free Ti-Based and Zr-Based Bulk Metallic Glasses. Mater. Sci. Eng. C 2017, 75, 1–6. [Google Scholar] [CrossRef]
- Cortizo, M.C.; de Mele, M.F.L. Cytotoxicity of Copper Ions Released from Metal: Variation with the Exposure Period and Concentration Gradients. Biol. Trace Elem. Res. 2004, 102, 129–141. [Google Scholar] [CrossRef]
- Sharifikolouei, E.; Najmi, Z.; Cochis, A.; Scalia, A.C.; Aliabadi, M.; Perero, S.; Rimondini, L. Generation of Cytocompatible Superhydrophobic Zr–Cu–Ag Metallic Glass Coatings with Antifouling Properties for Medical Textiles. Mater. Today Bio. 2021, 12, 100148. [Google Scholar] [CrossRef]
- Chang, C.H.; Li, C.L.; Yu, C.C.; Chen, Y.L.; Chyntara, S.; Chu, J.P.; Chen, M.J.; Chang, S.H. Beneficial Effects of Thin Film Metallic Glass Coating in Reducing Adhesion of Platelet and Cancer Cells: Clinical Testing. Surf. Coat. Technol. 2018, 344, 312–321. [Google Scholar] [CrossRef]
- Pang, H.; Xu, C.; Qin, H.; Li, D.; Li, P.; Wang, B.; Zhang, S.; Zhao, Q. Cytotoxicity in Vitro of a Noval Ni-Free ZrCuFeAlAg Bulk Metallic Glass. J. Biomed. Eng. 2015, 32, 380–386. [Google Scholar]
- Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S. Primary Concept of Nickel Toxicity—an Overview. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 141–152. [Google Scholar] [CrossRef]
- Buchner, M.R. Beryllium-Associated Diseases from a Chemist’s Point of View. Z. Für Nat. B 2020, 75, 405–412. [Google Scholar] [CrossRef]
- Buzzi, S.; Jin, K.; Uggowitzer, P.J.; Tosatti, S.; Gerber, I.; Löffler, J.F. Cytotoxicity of Zr-Based Bulk Metallic Glasses. Intermetallics 2006, 14, 729–734. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zheng, Y.F.; Wei, S.C.; Li, M. In Vitro Study on Zr-Based Bulk Metallic Glasses as Potential Biomaterials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 96, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Espinoza, H.M.; Gallagher, E.P. Brief Exposure to Copper Induces Apoptosis and Alters Mediators of Olfactory Signal Transduction in Coho Salmon. Chemosphere 2013, 93, 2639–2643. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Y.-M.; Pang, H.-F.; Zhao, Q.; Liu, L. A Ni-Free ZrCuFeAlAg Bulk Metallic Glass with Potential for Biomedical Applications. Acta Biomater. 2013, 9, 7043–7053. [Google Scholar] [CrossRef]
- Liu, G.; Wang, F.; Cao, Y.; Sun, Y. Potential Prospective Application of Zr-Based Bulk Metallic Glasses in Dental Implant. Mater. Trans. 2015, 56, 1925–1929. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.H.H.; Zhang, W.; Dong, C.; Qiang, J.B.B.; Fukuhara, M.; Makino, A.; Inoue, A. Effects of Ni Addition on the Glass-Forming Ability, Mechanical Properties and Corrosion Resistance of Zr-Cu-Al Bulk Metallic Glasses. Mater. Sci. Eng. A 2011, 528, 8551–8556. [Google Scholar] [CrossRef]
- Park, E.S.; Chang, H.J.; Kim, D.H. Effect of Addition of Be on Glass-Forming Ability, Plasticity and Structural Change in Cu–Zr Bulk Metallic Glasses. Acta Mater. 2008, 56, 3120–3131. [Google Scholar] [CrossRef]
- Inoue, A. Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Kuo, P.-H.; Tsai, S.-Y.; Duh, J.-G. Bio-Compatible Zirconium-Based Thin Film Metallic Glasses with Nitrogen Reinforced by Micro-Alloying Technique. Mater. Chem. Phys. 2021, 272, 124965. [Google Scholar] [CrossRef]
- Sarac, B.; Bera, S.; Balakin, S.; Stoica, M.; Calin, M.; Eckert, J. Hierarchical Surface Patterning of Ni- and Be-Free Ti- and Zr-Based Bulk Metallic Glasses by Thermoplastic Net-Shaping. Mater. Sci. Eng. C 2017, 73, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Huang, H.; Wang, C.; Zhang, L.; Yan, J. Achieving Superhydrophobicity of Zr-Based Metallic Glass Surfaces with Tunable Adhesion by Nanosecond Laser Ablation and Annealing. ACS Appl. Mater. Interfaces 2022, 14, 39567–39576. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, Y.; Zhu, Z.; Xiang, N.; Wang, H. Modulation and Control of Wettability and Hardness of Zr-Based Metallic Glass via Facile Laser Surface Texturing. Micromachines 2021, 12, 1322. [Google Scholar] [CrossRef]
- Bai, M.-Y.; Chang, Y.-C.; Chu, J.P. Preclinical Studies of Non-Stick Thin Film Metallic Glass-Coated Syringe Needles. Sci. Rep. 2020, 10, 20313. [Google Scholar] [CrossRef]
- Diyatmika, W.; Yu, C.C.; Tanatsugu, Y.; Yasuzawa, M.; Chu, J.P. Fibrinogen and Albumin Adsorption Profiles on Ni-Free Zr-Based Thin Film Metallic Glass. Thin Solid Films 2019, 688, 137382. [Google Scholar] [CrossRef]
- Ronin, D.; Boyer, J.; Alban, N.; Natoli, R.M.; Johnson, A.; Kjellerup, B.V. Current and Novel Diagnostics for Orthopedic Implant Biofilm Infections: A Review. APMIS 2022, 130, 59–81. [Google Scholar] [CrossRef]
- Rodríguez-Merchán, E.C.; Davidson, D.J.; Liddle, A.D. Recent Strategies to Combat Infections from Biofilm-Forming Bacteria on Orthopaedic Implants. Int. J. Mol. Sci. 2021, 22, 10243. [Google Scholar] [CrossRef]
- Blank, E.; Grischke, J.; Winkel, A.; Eberhard, J.; Kommerein, N.; Doll, K.; Yang, I.; Stiesch, M. Evaluation of Biofilm Colonization on Multi-Part Dental Implants in a Rat Model. BMC Oral. Health 2021, 21, 313. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, Y.; Zheng, J. A Polymer Nanocomposite Coating with Enhanced Hydrophilicity, Antibacterial and Antibiofouling Properties: Role of Polymerizable Emulsifier/Anionic Ligand. Chem. Eng. J. 2020, 379, 122268. [Google Scholar] [CrossRef]
- Wang, X.; Li, R.; Liu, A.; Yue, C.; Wang, S.; Cheng, J.; Li, J.; Liu, Z. Syntheses, Crystal Structures, Antibacterial Activities of Cu(II) and Ni(II) Complexes Based on Terpyridine Polycarboxylic Acid Ligand. J. Mol. Struct. 2019, 1184, 503–511. [Google Scholar] [CrossRef]
- Vimbela, G.V.; Ngo, S.M.; Fraze, C.; Yang, L.; Stout, D.A. Antibacterial Properties and Toxicity from Metallic Nanomaterials. Int. J. Nanomed. 2017, 12, 3941–3965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Li, J.; Cheng, M.; Wang, Q.; Qian, Y.; Yeung, K.W.K.; Chu, P.K.; Zhang, X. A Surface-Engineered Polyetheretherketone Biomaterial Implant with Direct and Immunoregulatory Antibacterial Activity against Methicillin-Resistant Staphylococcus Aureus. Biomaterials 2019, 208, 8–20. [Google Scholar] [CrossRef]
- Grass, G.; Rensing, C.; Solioz, M. Metallic Copper as an Antimicrobial Surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef] [Green Version]
- Melaiye, A.; Youngs, W.J. Silver and Its Application as an Antimicrobial Agent. Expert Opin. Ther. Pat. 2005, 15, 125–130. [Google Scholar] [CrossRef]
- Tang, J.F.; Huang, P.Y.; Lin, J.H.; Liu, T.W.; Yang, F.C.; Chang, C.L. Microstructure and Antimicrobial Properties of Zr-Cu-Ti Thin-Film Metallic Glass Deposited Using High-Power Impulse Magnetron Sputtering. Materials 2022, 15, 2461. [Google Scholar] [CrossRef]
- Etiemble, A.; der Loughian, C.; Apreutesei, M.; Langlois, C.; Cardinal, S.; Pelletier, J.M.; Pierson, J.F.; Steyer, P. Innovative Zr-Cu-Ag Thin Film Metallic Glass Deposed by Magnetron PVD Sputtering for Antibacterial Applications. J. Alloy. Compd. 2017, 707, 155–161. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, M.; Ma, M.; Cao, X.; He, Y.; Wang, W.; Luo, J. Influence of Annealing on the Tribological Properties of Zr-Based Bulk Metallic Glass. J. Non Cryst. Solids 2018, 481, 94–97. [Google Scholar] [CrossRef]
- Loye, A.M.; Kinser, E.R.; Bensouda, S.; Shayan, M.; Davis, R.; Wang, R.; Chen, Z.; Schwarz, U.D.; Schroers, J.; Kyriakides, T.R. Regulation of Mesenchymal Stem Cell Differentiation by Nanopatterning of Bulk Metallic Glass. Sci. Rep. 2018, 8, 8758. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, T.; Liu, Z.; Yu, C.; Dong, X.; He, L.; Gao, K.; Zhu, X.; Li, W.; Wang, C.; et al. Near-Net Forming Complex Shaped Zr-Based Bulk Metallic Glasses by High Pressure Die Casting. Materials 2018, 11, 2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauf, A.; Guo, C.Y.; Fang, Y.N.; Yu, Z.; Sun, B.A.; Feng, T. Binary Cu-Zr Thin Film Metallic Glasses with Tunable Nanoscale Structures and Properties. J. Non Cryst. Solids 2018, 498, 95–102. [Google Scholar] [CrossRef]
- Jiao, Y.; Brousseau, E.; Shen, X.; Wang, X.; Han, Q.; Zhu, H.; Bigot, S.; He, W. Investigations in the Fabrication of Surface Patterns for Wettability Modification on a Zr-Based Bulk Metallic Glass by Nanosecond Laser Surface Texturing. J. Mater. Process. Technol. 2020, 283, 116714. [Google Scholar] [CrossRef]
- Huang, L.; Fozo, E.M.; Zhang, T.; Liaw, P.K.; He, W. Antimicrobial Behavior of Cu-Bearing Zr-Based Bulk Metallic Glasses. Mater. Sci. Eng. C 2014, 39, 325–329. [Google Scholar] [CrossRef]
- Du, C.; Wang, C.; Zhang, T.; Zheng, L. Antibacterial Performance of Zr-BMG, Stainless Steel, and Titanium Alloy with Laser-Induced Periodic Surface Structures. ACS Appl. Bio. Mater. 2022, 5, 272–284. [Google Scholar] [CrossRef]
- Mavrogenis, A.F.; Dimitriou, R.; Parvizi, J.; Babis, G.C. Biology of Implant Osseointegration. J. Musculoskelet. Neuronal Interact. 2009, 9, 61–71. [Google Scholar]
- Imai, K.; Hiromoto, S. In Vivo Evaluation of Bulk Metallic Glasses for Osteosynthesis Devices. Materials 2016, 9, 676. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.P.; Yu, C.C.; Tanatsugu, Y.; Yasuzawa, M.; Shen, Y.L. Non-Stick Syringe Needles: Beneficial Effects of Thin Film Metallic Glass Coating. Sci. Rep. 2016, 6, 31847. [Google Scholar] [CrossRef]
- Khorasani, A.M.; Goldberg, M.; Doeven, E.H.; Littlefair, G. Titanium in Biomedical Applications—Properties and Fabrication: A Review. J. Biomater. Tissue Eng. 2015, 5, 593–619. [Google Scholar] [CrossRef]
- Zhang, L.C.; Chen, L.Y. A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Adv. Eng. Mater. 2019, 21, 1801215. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.-J.; Song, Y.-H.; An, J.-H.; Song, H.-J.; Anusavice, K.J. Cytocompatibility of Pure Metals and Experimental Binary Titanium Alloys for Implant Materials. J. Dent. 2013, 41, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Hua, N.; Wang, W.; Wang, Q.; Ye, Y.; Lin, S.; Zhang, L.; Guo, Q.; Brechtl, J.; Liaw, P.K. Mechanical, Corrosion, and Wear Properties of Biomedical Ti–Zr–Nb–Ta–Mo High Entropy Alloys. J. Alloy. Compd. 2021, 861, 157997. [Google Scholar] [CrossRef]
- Hussein, M.A.; Mohammed, A.S.; Al-Aqeeli, N. Wear Characteristics of Metallic Biomaterials: A Review. Materials 2015, 8, 2749–2768. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Yang, X.; Zhang, A.; Shao, Y.; Zhao, S.; Yao, K. Centimeter-Sized Ti-Rich Bulk Metallic Glasses with Superior Specific Strength and Corrosion Resistance. J. Non Cryst. Solids 2019, 512, 206–210. [Google Scholar] [CrossRef]
- Pang, S.; Liu, Y.; Li, H.; Sun, L.; Li, Y.; Zhang, T. New Ti-Based Ti–Cu–Zr–Fe–Sn–Si–Ag Bulk Metallic Glass for Biomedical Applications. J. Alloy. Compd. 2015, 625, 323–327. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Y.; Hua, N.; Pang, S.; Li, Y.; Liaw, P.K.; Zhang, T. Formation and Properties of Biocompatible Ti-Based Bulk Metallic Glasses in the Ti–Cu–Zr–Fe–Sn–Si–Ag System. J. Non Cryst. Solids 2021, 571, 121060. [Google Scholar] [CrossRef]
- Xie, G.; Kanetaka, H.; Kato, H.; Qin, F.; Wang, W. Porous Ti-Based Bulk Metallic Glass with Excellent Mechanical Properties and Good Biocompatibility. Intermetallics 2019, 105, 153–162. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Li, H.; Pang, S.; Chen, K.; Zhang, T. Ti-Cu-Zr-Fe-Sn-Si-Sc Bulk Metallic Glasses with Good Mechanical Properties for Biomedical Applications. J. Alloy. Compd. 2016, 679, 341–349. [Google Scholar] [CrossRef]
- Yan, H.-M.; Liu, Y.; Pang, S.-J.; Zhang, T. Glass Formation and Properties of Ti-Based Bulk Metallic Glasses as Potential Biomaterials with Nb Additions. Rare Met. 2018, 37, 831–837. [Google Scholar] [CrossRef]
- Rezvan, A.; Sharifikolouei, E.; Lassnig, A.; Soprunyuk, V.; Gammer, C.; Spieckermann, F.; Schranz, W.; Najmi, Z.; Cochis, A.; Scalia, A.C.; et al. Antibacterial Activity, Cytocompatibility, and Thermomechanical Stability of Ti40Zr10Cu36Pd14 Bulk Metallic Glass. Mater. Today Bio 2022, 16, 100378. [Google Scholar] [CrossRef]
- Liens, A.; Etiemble, A.; Rivory, P.; Balvay, S.; Pelletier, J.M.; Cardinal, S.; Fabrègue, D.; Kato, H.; Steyer, P.; Munhoz, T.; et al. On the Potential of Bulk Metallic Glasses for Dental Implantology: Case Study on Ti40Zr10Cu36Pd14. Materials 2018, 11, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bera, S.; Ramasamy, P.; Şopu, D.; Sarac, B.; Zálešák, J.; Gammer, C.; Stoica, M.; Calin, M.; Eckert, J. Tuning the Glass Forming Ability and Mechanical Properties of Ti-Based Bulk Metallic Glasses by Ga Additions. J. Alloy. Compd. 2019, 793, 552–563. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.J.; Pang, S.J.; Zhang, T. Ti–Zr–Cu–Fe–Sn–Si–Ag–Ta Bulk Metallic Glasses with Good Corrosion Resistance as Potential Biomaterials. Rare Met. 2020, 39, 688–694. [Google Scholar] [CrossRef]
- Kuball, A.; Gross, O.; Bochtler, B.; Adam, B.; Ruschel, L.; Zamanzade, M.; Busch, R. Development and Characterization of Titanium-Based Bulk Metallic Glasses. J. Alloy. Compd. 2019, 790, 337–346. [Google Scholar] [CrossRef]
- Hua, N.; Hong, X.; Lin, L.; Liao, Z.; Zhang, L.; Ye, X.; Wang, Q. Mechanical, Corrosion, and Wear Performances of a Biocompatible Ti-Based Glassy Alloy. J. Non Cryst. Solids 2020, 543, 120116. [Google Scholar] [CrossRef]
- Kokubun, R.; Wang, W.; Zhu, S.; Xie, G.; Ichinose, S.; Itoh, S.; Takakuda, K. In Vivo Evaluation of a Ti-Based Bulk Metallic Glass Alloy Bar. Bio-Med. Mater. Eng. 2015, 26, 9–17. [Google Scholar] [CrossRef]
- Rajan, S.T.; Das, M.; Kumar, P.S.; Arockiarajan, A.; Subramanian, B. Biological Performance of Metal Metalloid (TiCuZrPd:B) TFMG Fabricated by Pulsed Laser Deposition. Colloids Surf. B Biointerfaces 2021, 202, 111684. [Google Scholar] [CrossRef]
- Wong, P.C.; Song, S.M.; Tsai, P.H.; Maqnun, M.J.; Wang, W.R.; Wu, J.L.; Jang, S.-C.C. Using Cu as a Spacer to Fabricate and Control the Porosity of Titanium Zirconium Based Bulk Metallic Glass Foams for Orthopedic Implant Applications. Materials 2022, 15, 1887. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Eckert, J.; Schultz, L. Difference in Compressive and Tensile Fracture Mechanisms of Zr59Cu20Al10Ni8Ti3 Bulk Metallic Glass. Acta Mater. 2003, 51, 1167–1179. [Google Scholar] [CrossRef]
- Chen, L.Y.; Li, B.Z.; Wang, X.D.; Jiang, F.; Ren, Y.; Liaw, P.K.; Jiang, J.Z. Atomic-Scale Mechanisms of Tension-Compression Asymmetry in a Metallic Glass. Acta Mater. 2013, 61, 1843–1850. [Google Scholar] [CrossRef]
- Lv, J.W.; Wei, C.; Shi, Z.L.; Zhang, S.; Zhang, H.R.; Zhang, X.Y.; Ma, M.Z. The Size-Dependence of Compressive Mechanical Properties and Serrated-Flow Behavior of Ti-Based Bulk Metallic Glass. Mater. Sci. Eng. A 2022, 857, 143968. [Google Scholar] [CrossRef]
- Gu, J.; Shao, Y.; Shi, L.; Si, J.; Yao, K. Novel Corrosion Behaviours of the Annealing and Cryogenic Thermal Cycling Treated Ti-Based Metallic Glasses. Intermetallics 2019, 110, 106467. [Google Scholar] [CrossRef]
- Du, P.; Li, K.; Zhu, B.; Xiang, T.; Xie, G. Development of Non-Toxic Low-Cost Bioactive Porous Ti–Fe–Si Bulk Metallic Glass with Bone-like Mechanical Properties for Orthopedic Implants. J. Mater. Res. Technol. 2022, 17, 1319–1329. [Google Scholar] [CrossRef]
- Du, P.; Xiang, T.; Cai, Z.; Xie, G. The Influence of Porous Structure on the Corrosion Behavior and Biocompatibility of Bulk Ti-Based Metallic Glass. J. Alloy. Compd. 2022, 906, 164326. [Google Scholar] [CrossRef]
- Lin, B.; Yang, K.; Bao, X.; Liu, J.; Guo, Q.; Zhang, L.; Wang, Q.; Hua, N. Enhanced Wear, Corrosion, and Corrosive-Wear Resistance of the Biocompatible Ti-Based Bulk Metallic Glass by Oxidation Treatment. J. Non Cryst. Solids 2022, 576, 121231. [Google Scholar] [CrossRef]
- Thanka Rajan, S.; Bendavid, A.; Subramanian, B. Cytocompatibility Assessment of Ti-Nb-Zr-Si Thin Film Metallic Glasses with Enhanced Osteoblast Differentiation for Biomedical Applications. Colloids Surf. B Biointerfaces 2019, 173, 109–120. [Google Scholar] [CrossRef]
- Guo, Y.; Bataev, I.; Georgarakis, K.; Jorge, A.M.; Nogueira, R.P.; Pons, M.; Yavari, A.R. Ni- and Cu-Free Ti-Based Metallic Glasses with Potential Biomedical Application. Intermetallics 2015, 63, 86–96. [Google Scholar] [CrossRef]
- Gong, P.; Wang, D.; Zhang, C.; Wang, Y.; Jamili-Shirvan, Z.; Yao, K.; Wang, X. Corrosion Behavior of TiZrHfBeCu(Ni) High-Entropy Bulk Metallic Glasses in 3.5 Wt. % NaCl. Npj Mater. Degrad. 2022, 6, 77. [Google Scholar] [CrossRef]
- Wei, Q.; Gostin, P.F.; Addison, O.; Reed, D.; Calin, M.; Bera, S.; Ramasamy, P.; Davenport, A. The Influence of Partial Replacement of Cu with Ga on the Corrosion Behavior of Ti 40 Zr 10 Cu 36 Pd 14 Metallic Glasses. J. Electrochem. Soc. 2019, 166, C485–C491. [Google Scholar] [CrossRef]
- Yüce, E.; Zarazúa-Villalobos, L.; Ter-Ovanessian, B.; Sharifikolouei, E.; Najmi, Z.; Spieckermann, F.; Eckert, J.; Sarac, B. New-Generation Biocompatible Ti-Based Metallic Glass Ribbons for Flexible Implants. Mater. Des. 2022, 223, 111139. [Google Scholar] [CrossRef]
- Gong, P.; Li, F.; Jin, J. Preparation, Characterization, and Properties of Novel Ti-Zr-Be-Co Bulk Metallic Glasses. Materials 2020, 13, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanquer, A.; Hynowska, A.; Nogués, C.; Ibáñez, E.; Sort, J.; Baró, M.D.; Özkale, B.; Pané, S.; Pellicer, E.; Barrios, L. Effect of Surface Modifications of Ti40Zr10Cu38Pd12 Bulk Metallic Glass and Ti-6Al-4V Alloy on Human Osteoblasts in Vitro Biocompatibility. PLoS ONE 2016, 11, e0156644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speer, R.M.; The, T.; Xie, H.; Liou, L.; Adam, R.M.; Wise, J.P. The Cytotoxicity and Genotoxicity of Particulate and Soluble Cobalt in Human Urothelial Cells. Biol. Trace Elem. Res. 2017, 180, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Kanaji, A.; Orhue, V.; Caicedo, M.S.; Virdi, A.S.; Sumner, D.R.; Hallab, N.J.; Yoshiaki, T.; Sena, K. Cytotoxic Effects of Cobalt and Nickel Ions on Osteocytes in Vitro. J. Orthop. Surg. Res. 2014, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Loh, Q.L.; Choong, C. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Eng. Part B Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef] [Green Version]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Xiang, T.; Yang, X.; Xie, G. Enhanced Mechanical and Antibacterial Properties of Cu-Bearing Ti-Based Bulk Metallic Glass by Controlling Porous Structure. J. Alloy. Compd. 2022, 904, 164005. [Google Scholar] [CrossRef]
- Aliyu, A.A.A.; Udomlertpreecha, S.; Medhisuwakul, M.; Panwisawas, C.; Reed, R.; Puncreobutr, C.; Khamwannah, J.; Kuimalee, S.; Yipyintum, C.; Lohwongwatana, B. A New Toxic-Free Ti40Zr10Co36Pd14 Metallic Glass with Good Biocompatibility and Surface Behaviour Comparable to Ti-6Al-4V. Mater. Des. 2022, 218, 110691. [Google Scholar] [CrossRef]
- Gostin, P.F.; Addison, O.; Morrell, A.P.; Zhang, Y.; Cook, A.J.M.C.; Liens, A.; Stoica, M.; Ignatyev, K.; Street, S.R.; Wu, J.; et al. In Situ Synchrotron X-Ray Diffraction Characterization of Corrosion Products of a Ti-Based Metallic Glass for Implant Applications. Adv. Healthc. Mater. 2018, 7, 1800338. [Google Scholar] [CrossRef]
- Yaqoob, S.B.; Adnan, R.; Rameez Khan, R.M.; Rashid, M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front. Chem. 2020, 8, 376. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, P.; Tang, M.; Shen, L.; Yu, Z.; Shi, H.; Tian, Y. Biocompatibility of Micro/Nano Structures on the Surface of Ti6Al4V and Ti-Based Bulk Metallic Glasses Induced by Femtosecond Laser. Biomater. Adv. 2022, 139, 212998. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.C.; Song, S.M.; Li, T.H.; Li, J.B.; Tsai, P.H.; Jang, J.S.C.; Huang, C.H.; Huang, J.C.; Huang, Y.S.; Lin, C.H.; et al. Synthesis and Characterization of an Open-Pore Toxic-Element-Free Ti-Based Bulk Metallic Glass Foam for Bio-Implant Application. J. Mater. Res. Technol. 2020, 9, 4518–4526. [Google Scholar] [CrossRef]
- Meagher, P.; O’Cearbhaill, E.D.; Byrne, J.H.; Browne, D.J. Bulk Metallic Glasses for Implantable Medical Devices and Surgical Tools. Adv. Mater. 2016, 28, 5755–5762. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Liu, Z.; Yu, W.; Qin, C.; Yu, H.; Wang, Z. Biodegradable Mg–Zn–Ca-Based Metallic Glasses. Materials 2022, 15, 2172. [Google Scholar] [CrossRef] [PubMed]
- Nowosielski, R.; Cesarz-Andraczke, K. Impact of Zn and Ca on Dissolution Rate, Mechanical Properties and GFA of Resorbable Mg–Zn–Ca Metallic Glasses. Arch. Civ. Mech. Eng. 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Li, H.; Pang, S.; Liu, Y.; Sun, L.; Liaw, P.K.; Zhang, T. Biodegradable Mg–Zn–Ca–Sr Bulk Metallic Glasses with Enhanced Corrosion Performance for Biomedical Applications. Mater. Des. 2015, 67, 9–19. [Google Scholar] [CrossRef]
- Li, K.; Liang, L.; Du, P.; Cai, Z.; Xiang, T.; Kanetaka, H.; Wu, H.; Xie, G. Mechanical Properties and Corrosion Resistance of Powder Metallurgical Mg-Zn-Ca/Fe Bulk Metal Glass Composites for Biomedical Application. J. Mater. Sci. Technol. 2022, 103, 73–83. [Google Scholar] [CrossRef]
- Wang, S.G.; Shi, L.L.; Xu, J. Mg-Based Bulk Metallic Glasses: Elastic Properties and Their Correlations with Toughness and Glass Transition Temperature. J. Mater. Res. 2011, 26, 923–933. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Yang, L.; Yongyan, L.; Wang, X.; Qin, C.; Zhao, W.; Yu, H.; Wang, Z. Effects of Ag, Nd, and Yb on the Microstructures and Mechanical Properties of Mg-Zn-Ca Metallic Glasses. Metals 2018, 8, 856. [Google Scholar] [CrossRef] [Green Version]
- Miskovic, D.M.; Pohl, K.; Birbilis, N.; Laws, K.J.; Ferry, M. Examining the Elemental Contribution towards the Biodegradation of Mg–Zn–Ca Ternary Metallic Glasses. J. Mater. Chem. B 2016, 4, 2679–2690. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Guo, S.; Jiang, W.; Liu, Q. Effect of Sr on the Microstructure and Biodegradable Behavior of Mg–Zn–Ca-Mn Alloys for Implant Application. Mater. Des. 2018, 153, 308–316. [Google Scholar] [CrossRef]
- Zhou, J.; Li, K.; Wang, B.; Ai, F. Nano-Hydroxyapatite/ZnO Coating Prepared on a Biodegradable Mg–Zn–Ca Bulk Metallic Glass by One-Step Hydrothermal Method in Acid Situation. Ceram. Int. 2020, 46, 6958–6964. [Google Scholar] [CrossRef]
- Chen, J.; Dong, J.; Fu, H.; Zhang, H.; Tan, L.; Zhao, D.; Yang, K. In Vitro and in Vivo Studies on the Biodegradable Behavior and Bone Response of Mg69Zn27Ca4 Metal Glass for Treatment of Bone Defect. J. Mater. Sci. Technol. 2019, 35, 2254–2262. [Google Scholar] [CrossRef]
- Wong, C.C.; Wong, P.C.; Tsai, P.H.; Jang, J.S.C.; Cheng, C.K.; Chen, H.H.; Chen, C.H. Biocompatibility and Osteogenic Capacity of Mg-Zn-Ca Bulk Metallic Glass for Rabbit Tendon-Bone Interference Fixation. Int. J. Mol. Sci. 2019, 20, 2191. [Google Scholar] [CrossRef] [Green Version]
- Wong, P.C.; Song, S.M.; Tsai, P.H.; Nien, Y.Y.; Jang, J.S.C.; Cheng, C.K.; Chen, C.H. Relationship between the Surface Roughness of Biodegradable Mg-Based Bulk Metallic Glass and the Osteogenetic Ability of Mg63 Osteoblast-like Cells. Materials 2020, 13, 1188. [Google Scholar] [CrossRef] [Green Version]
- Meng, D.; Yi, J.; Zhao, D.Q.; Ding, D.W.; Bai, H.Y.; Pan, M.X.; Wang, W.H. Tantalum Based Bulk Metallic Glasses. J. Non Cryst. Solids 2011, 357, 1787–1790. [Google Scholar] [CrossRef]
- Chen, P.S.; Chen, H.W.; Duh, J.G.; Lee, J.W.; Jang, J.S.C. Characterization of Mechanical Properties and Adhesion of Ta-Zr-Cu-Al-Ag Thin Film Metallic Glasses. Surf. Coat. Technol. 2013, 231, 332–336. [Google Scholar] [CrossRef]
- Lai, J.J.; Lin, Y.S.; Chang, C.H.; Wei, T.Y.; Huang, J.C.; Liao, Z.X.; Lin, C.H.; Chen, C.H. Promising Ta-Ti-Zr-Si Metallic Glass Coating without Cytotoxic Elements for Bio-Implant Applications. Appl. Surf. Sci. 2018, 427, 485–495. [Google Scholar] [CrossRef]
- Wataha, J.C.; Shor, K. Palladium Alloys for Biomedical Devices. Expert Rev. Med. Devices 2010, 7, 489–501. [Google Scholar] [CrossRef]
- Woodward, B. Palladium in Temporary and Permanently Implantable Medical Devices. Platin. Met. Rev. 2012, 56, 213–217. [Google Scholar] [CrossRef]
- Hua, N.; Hong, X.; Liao, Z.; Wang, Q.; Zhang, L.; Guo, Q.; Ye, X.; Brechtl, J.; Liaw, P.K. A Biocompatible Pd-Based BMG with Excellent Corrosive-Wear Resistance for Implant Applications. Intermetallics 2020, 124, 106847. [Google Scholar] [CrossRef]
- Cihova, M.; Müller, E.; Chandorkar, Y.; Thorwarth, K.; Fortunato, G.; Maniura-Weber, K.; Löffler, J.F.; Rottmar, M. Palladium-Based Metallic Glass with High Thrombogenic Resistance for Blood-Contacting Medical Devices. Adv. Funct. Mater. 2022, 32, 2108256. [Google Scholar] [CrossRef]
Composition (at.%) | Production Method | d (mm) | Structure | σmax (MPa) | E (GPa) | Hv (HV) | εel/εpl (%) | Ref. |
---|---|---|---|---|---|---|---|---|
Zr63.5−xTixAl9Fe4.5Cu23 (x = 0, 1.5, 3, 4.5, 6) | Arc melting/suction casting | 3–10 | Fully amorphous | 1580–1690 | – | – | –/0.9–4.7 | [40] |
Zr61Ti2Cu25Al12 | Arc melting/suction casting | 2–10 | Fully amorphous | – | 83 | – | – | [41,42] |
Zr58.6Al15.4Co18.2Cu7.8 | Arc melting/suction casting | 10 | Fully amorphous | 1950 | 84 | – | –/2.0 | [43] |
Zr55Ti3HfxCu32−xAl10 (x = 0, 1, 2, 3, 4, 5) | Arc melting/suction casting | 4–8 | Fully amorphous | 1695–1824 | 73–85 | – | 2.0–2.5/0–2.6 | [44] |
Zr40Ti15Cu10Ni10Be25 | Arc melting/suction casting | 3 | Mainly amorphous | – | – | 796 | – | [45] |
Zr50Ti5Cu10Ni10Be25 | Arc melting/suction casting | 3 | Mainly amorphous | – | – | 741 | – | [45] |
Zr40Ti15Cu10Ni5Si5Be25 | Arc melting/suction casting | 3 | Partially amorphous | – | – | 843 | – | [45] |
Zr70Ni16Cu6Al8 | Arc melting/arc tilt casting | 3 | – | 1500 * | 70 | – | 2.2/0 | [46] |
Zr65−xTixCu20Al10Fe5 (x = 0, 2, 4, 6, 8) | Arc melting/suction casting | 2 | Fully amorphous for x = 0, 2, 4, and partially amorphous for x = 6, 8 | 1405–1905 | – | – | –/0–8.6 | [47] |
Zr56Cu24Al9Ni7−xTi4Fex (x = 0, 1, 3, 5, 7) | Arc melting/suction casting | 2 | Fully amorphous for x = 0, 1, 3, and partially amorphous for x = 5, 7 | 1043–1709 | – | – | 3.9–6.3/0–5.6 | [48] |
Zr60+xTi2.5Al10Fe12.5-xCu10Ag5 (x = 0, 2.5, 5) | Arc melting/suction casting/casting | 1–2 | Fully amorphous | ~1660–1740 | 70–78 | 443–460 | 2.0–2.0/4–12 | [49] |
Zr55Co30Ti15 | Arc melting/melt spinning | 0.04 | Fully amorphous | – | – | – | – | [50] |
Zr62Cu22Al10Fe5Dy1 | Induction melting/melt spinning | 0.04 | Fully amorphous | – | 96 | 495 | – | [51] |
Zr37Co34Cu20Ti9 | Arc melting/melt spinning | – | Fully amorphous | – | 81 | 567 | – | [52] |
Zr40Ti35Ni14Nb11 | Magnetron co-sputtering | 0.0006 | Fully amorphous | – | 122 | ~658 | – | [53] |
Zr46Ti40Ag14 | Magnetron co-sputtering | 0.0003 | Fully amorphous | – | 109 | ~567 | – | [54] |
Zr46Ti43Al11 | Magnetron co-sputtering | 0.0002 | Fully amorphous | – | 127 | ~520 | – | [54] |
Zr62.5Pd37.5 | Magnetron sputtering | – | Fully amorphous | – | – | – | – | [55] |
Composition (at.%) | Production Method | d (mm) | Structure | σmax (MPa) | E (GPa) | Hv (HV) | εel/εpl (%) | Ref. |
---|---|---|---|---|---|---|---|---|
(Ti55Zr15Be20Ni10)100−xFex (x = 0, 2, 4, 6, 8, 10) | Arc melting/suction casting | 5–10 | Fully amorphous | 1878–2355 | – | – | –/3.4–1.3 | [127] |
Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 | Arc melting/tilt pouring | 7 | Fully amorphous | 2080 | 100 | 588 | –/2.5 | [128] |
Ti48Cu37Zr7.5Fe2.5Sn2Si1Ag2 | Arc melting/tilt pouring | 6 | Fully amorphous | 2050 | 101 | 571 | 2.0/2.8 | [129] |
Ti45Zr10Cu31Pd10Sn4 | Argon atomization/spark plasma sintering | 6 | Fully amorphous | – | 100 | – | – | [130] |
Ti47−xCu40Zr7.5Fe2.5Sn2Si1Scx (x = 0, 1, 2, 3, 4) | Arc melting/suction casting/tilt pouring | 3–6 | Fully amorphous | 1982–2169 | 93–101 | 577–590 | –/0.8–5.9 | [131] |
Ti47Cu38−xZr7.5Fe2.5Sn2Si1Ag2Nbx (x = 0, 1, 2) | Arc melting/suction casting | 3–5 | Fully amorphous | 2031–2078 | 97–100 | 588–593 | –/1.9–2.5 | [132] |
Ti40Zr10Cu36Pd14 | Arc melting/tilt pouring | 5 | Fully amorphous | 2010 | 96 | 556 | 2.0/0.7 | [133,134] |
Ti40Zr10Cu36−xPd14Gax (x = 2, 4, 8, 10) | Arc melting/suction casting | 3 | Fully amorphous for x = 2, 4, and partially amorphous for x = 8, 10 | 1935–2075 | 93–140 | – | 1.9–2.1/0.8–2.5 | [135] |
Ti47Cu40−xZr7.5Fe2.5Sn2Si1Tax (x = 1, 2, 3, 4) | Arc melting/suction casting | 3 | Fully amorphous | 2041–2191 | 98–101 | 582–595 | –/1.0–3.4 | [136] |
Ti40Zr35Cu17S8 | Induction melting/arc melting/suction casting | 3 | Fully amorphous | 3200 | 96 | 509 | – | [137] |
Ti50Zr25Cu17S8 | Induction melting/arc melting/suction casting | 2 | Fully amorphous | 3100 | 98 | 524 | – | [137] |
Ti40Zr10Cu38Pd12 | Induction melting/mold casting | 2 | Fully amorphous | 2300 | 95 | 734 | –/4.0 | [138] |
Ti40Zr10Cu34Pd14Sn2 | Arc melting/suction casting | 1.5 | Fully amorphous | >2000 | 93 | – | 2.2/– | [139] |
Ti60Zr15Cu17S8 | Induction melting/arc melting/suction casting | 1 | Fully amorphous | 2800 | 98 | 547 | – | [137] |
TiCuZrPd:Bx (x = 0, 4, 8, 14) | Pulsed laser deposition | – | Fully amorphous | – | 108–174 | 454–685 | – | [140] |
Ti42Zr35Ta3Si5Co12.5Sn2.5 | Argon atomization/hot pressing | – | Fully amorphous | 1261 | 79.7 | – | – | [141] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biały, M.; Hasiak, M.; Łaszcz, A. Review on Biocompatibility and Prospect Biomedical Applications of Novel Functional Metallic Glasses. J. Funct. Biomater. 2022, 13, 245. https://doi.org/10.3390/jfb13040245
Biały M, Hasiak M, Łaszcz A. Review on Biocompatibility and Prospect Biomedical Applications of Novel Functional Metallic Glasses. Journal of Functional Biomaterials. 2022; 13(4):245. https://doi.org/10.3390/jfb13040245
Chicago/Turabian StyleBiały, Michał, Mariusz Hasiak, and Amadeusz Łaszcz. 2022. "Review on Biocompatibility and Prospect Biomedical Applications of Novel Functional Metallic Glasses" Journal of Functional Biomaterials 13, no. 4: 245. https://doi.org/10.3390/jfb13040245
APA StyleBiały, M., Hasiak, M., & Łaszcz, A. (2022). Review on Biocompatibility and Prospect Biomedical Applications of Novel Functional Metallic Glasses. Journal of Functional Biomaterials, 13(4), 245. https://doi.org/10.3390/jfb13040245