Obturator Manufacturing for Oronasal Fistula after Cleft Palate Repair: A Review from Handicraft to the Application of Digital Techniques
Abstract
:1. Introduction
2. Materials and Methods
3. Development of ONF Obturator
3.1. Achievement of ONF Obstruction with the Obturator
3.2. Improvement for More Stable Retention of the Obturator
3.3. Restoration of Speech Problems with the Obturator
3.4. Resolution of Infections
4. Digital Process of ONF Obturator
4.1. Acquisition of Accurate 3D Images
4.2. Precision Fabrication of ONF Obturators
4.3. Further Improvements in Materials of ONF Obturators
4.4. Fabrication of a Digital ONF Obturator
5. Summary of the Important Designs during the Development
6. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paradowska-Stolarz, A. MSX1 gene in the etiology orofacial deformities. Postep. Hig. Med. Dosw. 2015, 69, 1499–1504. [Google Scholar]
- Dixon, M.J.; Marazita, M.L.; Beaty, T.H.; Murray, J.C. Cleft lip and palate: Understanding genetic and environmental influences. Nat. Rev. Genet. 2011, 12, 167–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, T.; Gupta, P.; Kumar, S.; Gupta, R.; Gupta, T.; Singh, H.P. Cleft of lip and palate: A review. J. Fam. Med. Prim. Care 2020, 9, 2621–2625. [Google Scholar] [CrossRef] [PubMed]
- Roguzińska, S.; Pelc, A.; Mikulewicz, M. Orthodontic-care burden for patients with unilateral and bilateral cleft lip and palate. Dent. Med. Probl. 2020, 57, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Nasroen, S.L.; Maskoen, A.M.; Soedjana, H.; Hilmanto, D.; Gani, B.A. IRF6 rs2235371 as a risk factor for non-syndromic cleft palate only among the Deutero-Malay race in Indonesia and its effect on the IRF6 mRNA expression level. Dent. Med. Probl. 2022, 59, 59–65. [Google Scholar] [CrossRef]
- Crider, K.S.; Bailey, L.B. Defying birth defects through diet? Genome Med. 2011, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Bateman, B.T.; Hernandez-Diaz, S.; Straub, L.; Zhu, Y.; Gray, K.J.; Desai, R.J.; Mogun, H.; Gautam, N.; Huybrechts, K.F. Association of first trimester prescription opioid use with congenital malformations in the offspring: Population based cohort study. BMJ 2021, 372, n102. [Google Scholar] [CrossRef]
- Wilcox, A.J.; Lie, R.T.; Solvoll, K.; Taylor, J.; McConnaughey, D.R.; Abyholm, F.; Vindenes, H.; Vollset, S.E.; Drevon, C.A. Folic acid supplements and risk of facial clefts: National population based case-control study. BMJ 2007, 334, 464. [Google Scholar] [CrossRef] [Green Version]
- Alonso, V.; Abuin, A.S.; Duran, C.; Gomez, O.; Miguez, L.; Molina, M.E. Three-layered repair with a collagen membrane and a mucosal rotational flap reinforced with fibrine for palatal fistula closure in children. Int. J. Pediatr. Otorhinolaryngol. 2019, 127, 109679. [Google Scholar] [CrossRef]
- Honnebier, M.B.O.M.; Johnson, D.S.; Parsa, A.A.; Dorian, A.; Parsa, F.D. Closure of Palatal Fistula with a Local Mucoperiosteal Flap Lined with Buccal Mucosal Graft. Cleft Palate-Craniofacial J. 2000, 37, 127–129. [Google Scholar] [CrossRef]
- Abuabara, A.; Cortez, A.L.; Passeri, L.A.; de Moraes, M.; Moreira, R.W. Evaluation of different treatments for oroantral/oronasal communications: Experience of 112 cases. Int. J. Oral Maxillofac. Surg. 2006, 35, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.V.; Kaul, D.; Naz, F.; Tambuwala, A.; Chand, M. Repair of iatrogenic oronasal fistula after periapical surgery. Univers. Res. J. Dent. 2013, 2, 83. [Google Scholar] [CrossRef]
- Majid, O.W. Persistent oronasal fistula after primary management of facial gunshot injuries. Br. J. Oral Maxillofac. Surg. 2008, 46, 50–52. [Google Scholar] [CrossRef]
- Sahoo, N.K.; Desai, A.P.; Roy, I.D.; Kulkarni, V. Oro-Nasal Communication. J. Craniofacial Surg. 2016, 27, e529–e533. [Google Scholar] [CrossRef] [PubMed]
- Tartaro, G.; Rauso, R.; Bux, A.; Santagata, M.; Colella, G. An unusual oronasal fistula induced by prolonged cocaine snort. Case report and literature review. Minerva Stomatol. 2008, 57, 203–210. [Google Scholar]
- Garg, R.; Shah, S.; Uppal, S.; Mittal, R.K. A statistical analysis of incidence, etiology, and management of palatal fistula. Natl. J. Maxillofac. Surg. 2019, 10, 43–46. [Google Scholar] [CrossRef]
- Mahajan, R.K.; Kaur, A.; Singh, S.M.; Kumar, P. A retrospective analysis of incidence and management of palatal fistula. Indian J. Plast. Surg. 2018, 51, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Yuan, N.; Dorafshar, A.H.; Follmar, K.E.; Pendleton, C.; Ferguson, K.; Redett, R.J., 3rd. Effects of Cleft Width and Veau Type on Incidence of Palatal Fistula and Velopharyngeal Insufficiency after Cleft Palate Repair. Ann. Plast. Surg. 2016, 76, 406–410. [Google Scholar] [CrossRef]
- Tse, R.W.; Siebold, B. Cleft Palate Repair: Description of an Approach, Its Evolution, and Analysis of Postoperative Fistulas. Plast. Reconstr. Surg. 2018, 141, 1201–1214. [Google Scholar] [CrossRef]
- Shankar, V.A.; Snyder-Warwick, A.; Skolnick, G.B.; Woo, A.S.; Patel, K.B. Incidence of Palatal Fistula at Time of Secondary Alveolar Cleft Reconstruction. Cleft Palate-Craniofacial J. 2018, 55, 999–1005. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, H.; Wu, M.; Tian, Y.; Wan, Q.; Shi, B.; Hu, T.; Spintzyk, S. Rapid Additive Manufacturing of a Superlight Obturator for Large Oronasal Fistula in Pediatric Patient. Laryngoscope, 2022; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Brandão, T.B.; Vechiato Filho, A.J.; de Souza Batista, V.E.; de Oliveira, M.C.Q.; Santos-Silva, A.R. Obturator prostheses versus free tissue transfers: A systematic review of the optimal approach to improving the quality of life for patients with maxillary defects. J. Prosthet. Dent. 2016, 115, 247–253.e244. [Google Scholar] [CrossRef] [PubMed]
- Murthy, J. Descriptive study of management of palatal fistula in one hundred and ninety-four cleft individuals. Indian J. Plast. Surg. 2011, 44, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yin, N.; Song, T. Oronasal fistula repair using the alveolar ridge approach. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Goiato, M.C.; dos Santos, D.M.; Moreno, A.; Santiago, J.F.J.; Haddad, M.F.; Pesqueira, A.A.; Miyahara, G.I. Prosthetic Treatments for Patients with Oronasal Communication. J. Craniofacial Surg. 2011, 22, 1445–1447. [Google Scholar] [CrossRef] [PubMed]
- Gümüş, H.O.; Tuna, S.H. An alternative method for constructing an obturator prosthesis for a patient with a bilateral cleft lip and palate: A clinical report. J. Esthet. Restor. Dent. 2009, 21, 89–94. [Google Scholar] [CrossRef]
- Bartellas, M.; Tibbo, J.; Angel, D.; Rideout, A.; Gillis, J. Three-Dimensional Printing: A Novel Approach to the Creation of Obturator Prostheses Following Palatal Resection for Malignant Palate Tumors. J. Craniofacial Surg. 2018, 29, e12–e15. [Google Scholar] [CrossRef]
- Rodney, J.; Chicchon, I. Digital Design and Fabrication of Surgical Obturators Based Only on Preoperative Computed Tomography Data. Int. J. Prosthodont. 2017, 30, 111–112. [Google Scholar] [CrossRef]
- Ackerman, A.J. Maxillofacial prosthesis. Oral Surg. Oral Med. Oral Pathol. 1953, 6, 176–200. [Google Scholar] [CrossRef]
- Ackerman, A.J. The prosthetic management of oral and facial defects following cancer surgery. J. Prosthet. Dent. 1955, 5, 413–432. [Google Scholar] [CrossRef]
- Boucher, L.J.; Heupel, E.M. Prosthetic restoration of a maxilla and associated structures. J. Prosthet. Dent. 1966, 16, 154–168. [Google Scholar] [CrossRef]
- Curtis, T.A. Treatment planning for intraoral maxillofacial prosthetics for cancer patients. J. Prosthet. Dent. 1967, 18, 70–76. [Google Scholar] [CrossRef]
- Zarb, G.A. The maxillary resection and its prosthetic replacement. J. Prosthet. Dent. 1967, 18, 268–281. [Google Scholar] [CrossRef]
- Jacobson, B.N.; Rosenstein, S.W. Early maxillary orthopedics for the newborn cleft lip and palate patient. An impression and an appliance. Angle Orthod. 1984, 54, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Pielou, W.D. Non-surgical management of Pierre Robin syndrome. Arch. Dis. Child. 1967, 42, 20–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, P.G. Early Pre-Surgical Treatment of the Cleft Palate Patient. J. R. Soc. Med. 1990, 83, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Dholam, K.P.; Sadashiva, K.M.; Bhirangi, P.P. Rehabilitation of large maxillary defect with two-piece maxillary obturators. J. Cancer Res. Ther. 2015, 11, 664. [Google Scholar] [CrossRef]
- Murakami, M.; Nishi, Y.; Shimizu, T.; Nishimura, M. A retainer-free obturator prosthesis in a fully dentulous patient with palatal defects. J. Oral Sci. 2020, 62, 122–124. [Google Scholar] [CrossRef] [Green Version]
- Białożyt-Bujak, E.; Wyszyńska, M.; Chladek, G.; Czelakowska, A.; Gala, A.; Orczykowska, M.; Białożyt, A.; Kasperski, J.; Skucha-Nowak, M. Analysis of the Hardness of Soft Relining Materials for Removable Dentures. Int. J. Environ. Res. Public Health 2021, 18, 9491. [Google Scholar] [CrossRef]
- Buurman, D.J.M.; Speksnijder, C.M.; Engelen, B.H.B.T.; Kessler, P. Masticatory performance and oral health-related quality of life in edentulous maxillectomy patients: A cross-sectional study to compare implant-supported obturators and conventional obturators. Clin. Oral Implant. Res. 2020, 31, 405–416. [Google Scholar] [CrossRef]
- Ayad, T.; Xie, L. Facial artery musculomucosal flap in head and neck reconstruction: A systematic review. Head Neck 2015, 37, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Sakran, K.A.; Wu, M.; Alkebsi, K.; Mashrah, M.A.; Al-Rokhami, R.K.; Wang, Y.; Mohamed, A.A.; Elayah, S.A.; Al-Sharani, H.M.; Huang, H.; et al. The Sommerlad-Furlow Modified Palatoplasty Technique: Postoperative Complications and Implicating Factors. Laryngoscope, 2022; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Shi, B.; Huang, H. Velopharyngeal Inadequacy-Related Quality of Life Assessment: The Instrument Development and Application Review. Front. Surg. 2022, 9, 796941. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, C.; Zhao, Y.; Yang, Y.; Xia, W.; Zong, Y.; Chi, T.; Shi, B.; Huang, H.; Gong, C. Anxiety in Chinese Patients with Cleft Lip and/or Palate: A Preliminary Study. Front. Pediatr. 2022, 10, 842470. [Google Scholar] [CrossRef] [PubMed]
- Sakran, K.A.; Al-Rokhami, R.K.; Wu, M.; Chen, N.; Yin, H.; Guo, C.; Wang, Y.; Alkebsi, K.; Abotaleb, B.M.; Mohamed, A.A.; et al. Correlation of the Chinese velopharyngeal insufficiency-related quality of life instrument and speech in subjects with cleft palate. Laryngoscope Investig. Otolaryngol. 2022, 7, 180–189. [Google Scholar] [CrossRef]
- Huang, H.; Chen, N.; Yin, H.; Skirko, J.R.; Guo, C.; Ha, P.; Li, J.; Shi, B. Validation of the Chinese Velopharyngeal Insufficiency Effects on Life Outcomes Instrument. Laryngoscope 2019, 129, E395–E401. [Google Scholar] [CrossRef]
- Ysunza, P.A.; Repetto, G.M.; Pamplona, M.C.; Calderon, J.F.; Shaheen, K.; Chaiyasate, K.; Rontal, M. Current Controversies in Diagnosis and Management of Cleft Palate and Velopharyngeal Insufficiency. Biomed. Res. Int. 2015, 2015, 196240. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Guo, C.L.; Shi, B.; Yin, H. Velopharyngeal closure pattern and speech characteristics of patients congenital velopharyngeal insufficiency. Hua Xi Kou Qiang Yi Xue Za Zhi 2020, 38, 662–666. [Google Scholar] [CrossRef]
- Tache, A.; Maryn, Y.; Mommaerts, M.Y. Need for velopharyngeal surgery after primary palatoplasty in cleft patients. A retrospective cohort study and review of literature. Ann. Med. Surg. 2021, 69, 102707. [Google Scholar] [CrossRef]
- Smyth, A.G.; Wu, J. Cleft Palate Outcomes and Prognostic Impact of Palatal Fistula on Subsequent Velopharyngeal Function—A Retrospective Cohort Study. Cleft Palate-Craniofacial J. 2019, 56, 1008–1012. [Google Scholar] [CrossRef]
- Gustafsson, C.; Heliövaara, A.; Leikola, J. Long-Term Follow-up of Unilateral Cleft lip and Palate: Incidence of Speech-Correcting Surgeries and Fistula Formation. Cleft Palate-Craniofacial J. 2021, 59, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Narayanraopeta, S.; Vemisetty, H.K.; Marri, T.; Konda, P. Rehabilitation of a Unilateral Cleft Palate with Endosseous Implants in an Edentulous Elderly Patient. Contemp. Clin. Dent. 2020, 11, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.M. Prosthetic rehabilitation of a completely edentulous patient with palatal insufficiency. Indian J. Dent. Res. 2007, 18, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Vamsi Krishna, C.H.; Babu, J.K.; Fathima, T.; Reddy, G.V.K. Fabrication of a hollow bulb prosthesis for the rehabilitation of an acquired total maxillectomy defect. Case Rep. 2014, 2014, bcr2013201400-b. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.S.; Roumanas, E.D. Optimization of Maxillary Obturator Thickness Using a Double-Processing Technique. J. Prosthodont. 2007, 17, 60–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagis, B.; Aydoğan, E.; Hasanreisoğlu, U. Rehabilitation of a congenital palatal defect with a modified technique: A case report. Cases J. 2008, 1, 39. [Google Scholar] [CrossRef] [Green Version]
- Bhasin, A.S.; Singh, V.; Mantri, S.S. Rehabilitation of Patient with Acquired Maxillary Defect, using a Closed Hollow Bulb Obturator. Indian J. Palliat. Care 2011, 17, 70–73. [Google Scholar] [CrossRef]
- Johns, D.F.; Rohrich, R.J.; Awada, M. Velopharyngeal Incompetence:: A Guide for Clinical Evaluation. Plast. Reconstr. Surg. 2003, 112, 1890–1898. [Google Scholar] [CrossRef]
- Smith, B.; Guyette, T.W. Evaluation of cleft palate speech. Clin. Plast. Surg. 2004, 31, 251–260. [Google Scholar] [CrossRef]
- Woo, A. Velopharyngeal dysfunction. Semin. Plast. Surg. 2012, 26, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Blakeley, R.W. The complementary use of speech prostheses and pharyngeal flaps in palatal insufficiency. Cleft Palate J. 1964, 12, 194–198. [Google Scholar]
- Mazaheri, M.; Millard, R.T. Changes in nasal resonance related to differences in location and dimension of speech bulbs. Cleft Palate J. 1965, 31, 167–175. [Google Scholar] [PubMed]
- Shelton, R.L.; Lindquist, A.F.; Chisum, L.; Arndt, W.B.; Youngstrom, K.A.; Stick, S.L. Effect of prosthetic speech bulb reduction on articulation. Cleft Palate J. 1968, 5, 195–204. [Google Scholar] [PubMed]
- Shelton, R.L.; Lindquist, A.F.; Arndt, W.B.; Elbert, M.; Youngstrom, K.A. Effect of speech bulb reduction on movement of the posterior wall of the pharynx and posture of the tongue. Cleft Palate J. 1971, 8, 10–17. [Google Scholar] [PubMed]
- LaVelle, W.E.; Hardy, J.C. Palatal lift prostheses for treatment of palatopharyngeal incompetence. J. Prosthet. Dent. 1979, 42, 308–315. [Google Scholar] [CrossRef]
- Israel, J.M.; Cook, T.A.; Blakeley, R.W. The use of a temporary oral prosthesis to treat speech in velopharyngeal incompetence. Facial Plast. Surg. 1993, 9, 206–212. [Google Scholar] [CrossRef]
- Bispo, N.H.M.; Whitaker, M.E.; Aferri, H.C.; Neves, J.D.A.; Dutka, J.D.C.R.; Pegoraro-Krook, M.I. Speech therapy for compensatory articulations and velopharyngeal function: A case report. J. Appl. Oral Sci. 2011, 19, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Elangovan, S.; Loibi, E. Two-piece hollow bulb obturator. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2011, 22, 486–488. [Google Scholar] [CrossRef]
- Lin, F.H.; Wang, T.C. Prosthodontic Rehabilitation for Edentulous Patients with Palatal Defect: Report of Two Cases. J. Formos. Med. Assoc. 2011, 110, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, K.K.; Singh, B.P.; Chand, P.; Patel, C.B.S. Impact of delayed prosthetic treatment of velopharyngeal insufficiency on quality of life. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2011, 22, 356–358. [Google Scholar] [CrossRef]
- Mack, D.; Becker, P.; Chatterjee, I.; Dobinsky, S.; Knobloch, J.K.; Peters, G.; Rohde, H.; Herrmann, M. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: Functional molecules, regulatory circuits, and adaptive responses. Int. J. Med. Microbiol. 2004, 294, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Mack, D.; Davies, A.P.; Harris, L.G.; Rohde, H.; Horstkotte, M.A.; Knobloch, J.K. Microbial interactions in Staphylococcus epidermidis biofilms. Anal Bioanal. Chem. 2007, 387, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.C.; Siedlecki, C.A. Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation. Acta Biomater. 2012, 8, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Ramage, G.; Martínez, J.P.; López-Ribot, J.L. Candida biofilms on implanted biomaterials: A clinically significant problem. FEMS Yeast Res. 2006, 6, 979–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nett, J.; Andes, D. Candida albicans biofilm development, modeling a host-pathogen interaction. Curr. Opin. Microbiol. 2006, 9, 340–345. [Google Scholar] [CrossRef]
- Thein, Z.M.; Seneviratne, C.J.; Samaranayake, Y.H.; Samaranayake, L.P. Community lifestyle of Candida in mixed biofilms: A mini review. Mycoses 2009, 52, 467–475. [Google Scholar] [CrossRef]
- Beumer, J., 3rd; Kurrasch, M.; Kagawa, T. Prosthetic restoration of oral defects secondary to surgical removal of oral neoplasms. CDA J. 1982, 10, 47–54. [Google Scholar]
- Huber, H.; Studer, S.P. Materials and techniques in maxillofacial prosthodontic rehabilitation. Oral Maxillofac. Surg. Clin. 2002, 14, 73–93. [Google Scholar] [CrossRef]
- Goiato, M.C.; Zucolotti, B.C.; Mancuso, D.N.; dos Santos, D.M.; Pellizzer, E.P.; Verri, F.R. Care and cleaning of maxillofacial prostheses. J. Craniofacial Surg. 2010, 21, 1270–1273. [Google Scholar] [CrossRef]
- Wieckiewicz, W.; Baran, E.; Zenczak-Wiechiewicz, D.; Proniexicz, A. Adhesion of Candida to the obturator and oral mucosa as a cause of the presence of inflammation in patients treated surgically for neoplasia. Rev. Iberoam. Micol. 2004, 21, 187–190. [Google Scholar]
- Mattos, B.S.C.; Sousa, A.A.D.; Magalhaes, M.H.C.G.D.; Andre, M.; Brito E Dias, R. Candida albicans in patients with oronasal communication and obturator prostheses. Braz. Dent. J. 2009, 20, 336–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depprich, R.A.; Handschel, J.G.; Meyer, U.; Meissner, G. Comparison of prevalence of microorganisms on titanium and silicone/polymethyl methacrylate obturators used for rehabilitation of maxillary defects. J. Prosthet. Dent. 2008, 99, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Atay, A.; Piskin, B.; Akin, H.; Sipahi, C.; Karakas, A.; Saracli, M.A. Evaluation of Candida albicans adherence on the surface of various maxillofacial silicone materials. J. Mycol. Médicale 2013, 23, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef]
- Nikawa, H.; Yamamoto, T.; Hamada, T. Effect of components of resilient denture-lining materials on the growth, acid production and colonization of Candida albicans. J. Oral Rehabil. 1995, 22, 817–824. [Google Scholar] [CrossRef]
- Nikawa, H.; Jin, C.; Hamada, T.; Makihira, S.; Kumagai, H.; Murata, H. Interactions between thermal cycled resilient denture lining materials, salivary and serum pellicles and Candida albicans in vitro. Part II. Effects on fungal colonization. J. Oral Rehabil. 2000, 27, 124–130. [Google Scholar] [CrossRef]
- Casemiro, L.A.; Martins, C.H.G.; Pires-De-Souza, F.D.C.P.; Panzeri, H. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite—Part I. Gerodontology 2008, 25, 187–194. [Google Scholar] [CrossRef]
- Wen, J.; Yeh, C.K.; Sun, Y. Functionalized Denture Resins as Drug Delivery Biomaterials to Control Fungal Biofilms. ACS Biomater. Sci. Eng. 2016, 2, 224–230. [Google Scholar] [CrossRef]
- Jo, J.K.; El-Fiqi, A.; Lee, J.H.; Kim, D.A.; Kim, H.W.; Lee, H.H. Rechargeable microbial anti-adhesive polymethyl methacrylate incorporating silver sulfadiazine-loaded mesoporous silica nanocarriers. Dent. Mater. 2017, 33, e361–e372. [Google Scholar] [CrossRef]
- He, J.; Söderling, E.; Vallittu, P.K.; Lassila, L.V.J. Investigation of double bond conversion, mechanical properties, and antibacterial activity of dental resins with different alkyl chain length quaternary ammonium methacrylate monomers (QAM). J. Biomater. Sci. Polym. Ed. 2013, 24, 565–573. [Google Scholar] [CrossRef]
- Nikawa, H.; Jin, C.; Hamada, T.; Makihira, S.; Polyzois, G. Candida albicans growth on thermal cycled materials for maxillofacial prostheses in vitro. J. Oral Rehabil. 2001, 28, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Tong, Z.; Wu, G.; Feng, Z.; Bai, S.; Dong, Y.; Ni, L.; Zhao, Y. Parylene coating hinders Candida albicans adhesion to silicone elastomers and denture bases resin. Arch. Oral Biol. 2010, 55, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, S.; Ariffin, Z.; Husein, A.; Reza, F. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: Evaluating Different Microbial Adhesion. J. Prosthodont. 2017, 26, 664–669. [Google Scholar] [CrossRef]
- Tschernitschek, H.; Borchers, L.; Geurtsen, W. Nonalloyed titanium as a bioinert metal-a review. Quintessence Int. 2005, 36, 523–530. [Google Scholar] [CrossRef]
- Perez-Jorge, C.; Arenas, M.A.; Conde, A.; Hernández-Lopez, J.M.; de Damborenea, J.J.; Fisher, S.; Hunt, A.M.; Esteban, J.; James, G. Bacterial and fungal biofilm formation on anodized titanium alloys with fluorine. J. Mater. Sci. Mater. Med. 2017, 28, 8. [Google Scholar] [CrossRef]
- Shi, B.; Huang, H. Computational technology for nasal cartilage-related clinical research and application. Int. J. Oral Sci. 2020, 12, 21. [Google Scholar] [CrossRef]
- Pauwels, R.; Araki, K.; Siewerdsen, J.H.; Thongvigitmanee, S.S. Technical aspects of dental CBCT: State of the art. Dentomaxillofac. Radiol. 2015, 44, 20140224. [Google Scholar] [CrossRef] [Green Version]
- Kuijpers, M.A.R.; Chiu, Y.T.; Nada, R.M.; Carels, C.E.L.; Fudalej, P.S. Three-dimensional Imaging Methods for Quantitative Analysis of Facial Soft Tissues and Skeletal Morphology in Patients with Orofacial Clefts: A Systematic Review. PLoS ONE 2014, 9, e93442. [Google Scholar] [CrossRef] [Green Version]
- Kihara, H.; Hatakeyama, W.; Komine, F.; Takafuji, K.; Takahashi, T.; Yokota, J.; Oriso, K.; Kondo, H. Accuracy and practicality of intraoral scanner in dentistry: A literature review. J. Prosthodont. Res. 2020, 64, 109–113. [Google Scholar] [CrossRef]
- An, H.; Langas, E.E.; Gill, A.S. Effect of scanning speed, scanning pattern, and tip size on the accuracy of intraoral digital scans. J. Prosthet. Dent. 2022; in press. [Google Scholar] [CrossRef]
- Auškalnis, L.; Akulauskas, M.; Jegelevičius, D.; Simonaitis, T.; Rutkūnas, V. Error propagation from intraoral scanning to additive manufacturing of complete-arch dentate models: An in vitro study. J. Dent. 2022, 121, 104136. [Google Scholar] [CrossRef] [PubMed]
- Decazes, P.; Hinault, P.; Veresezan, O.; Thureau, S.; Gouel, P.; Vera, P. Trimodality PET/CT/MRI and Radiotherapy: A Mini-Review. Front. Oncol. 2020, 10, 614008. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Shin, H.S. Preoperative Planning and Simulation in Patients With Cleft Palate Using Intraoral Three-Dimensional Scanning and Printing. J. Craniofacial Surg. 2019, 30, 2245–2248. [Google Scholar] [CrossRef]
- Krämer Fernandez, P.; Kuscu, E.; Weise, H.; Engel, E.M.; Spintzyk, S. Rapid additive manufacturing of an obturator prosthesis with the use of an intraoral scanner: A dental technique. J. Prosthet. Dent. 2022, 127, 189–193. [Google Scholar] [CrossRef]
- Williams, R.J.; Bibb, R.; Eggbeer, D.; Collis, J. Use of CAD/CAM technology to fabricate a removable partial denture framework. J. Prosthet. Dent. 2006, 96, 96–99. [Google Scholar] [CrossRef]
- Kattadiyil, M.T.; Mursic, Z.; AlRumaih, H.; Goodacre, C.J. Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. J. Prosthet. Dent. 2014, 112, 444–448. [Google Scholar] [CrossRef]
- Bibb, R.; Brown, R. The application of computer aided product development techniques in medical modelling topic: Rehabilitation and prostheses. Biomed. Sci. Instrum. 2000, 36, 319–324. [Google Scholar]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.-S.; Jiang, H.B. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef]
- Della Bona, A.; Cantelli, V.; Britto, V.T.; Collares, K.F.; Stansbury, J.W. 3D printing restorative materials using a stereolithographic technique: A systematic review. Dent. Mater. 2021, 37, 336–350. [Google Scholar] [CrossRef]
- Park, S.M.; Park, J.M.; Kim, S.K.; Heo, S.J.; Koak, J.Y. Flexural Strength of 3D-Printing Resin Materials for Provisional Fixed Dental Prostheses. Materials 2020, 13, 3970. [Google Scholar] [CrossRef]
- Schönhoff, L.M.; Mayinger, F.; Eichberger, M.; Reznikova, E.; Stawarczyk, B. 3D printing of dental restorations: Mechanical properties of thermoplastic polymer materials. J. Mech. Behav. Biomed. Mater. 2021, 119, 104544. [Google Scholar] [CrossRef] [PubMed]
- Ajaj-Alkordy, N.M.; Alsaadi, M.H. Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins. Saudi Dent. J. 2014, 26, 15–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, T.R., Jr.; Latta, M.A. Physical properties of four acrylic denture base resins. J. Contemp. Dent. Pract. 2005, 6, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, R.; Singh, R.D.; Sharma, V.P.; Siddhartha, R.; Chand, P.; Kumar, R. Biocompatibility of polymethylmethacrylate resins used in dentistry. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100B, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Kedjarune, U.; Charoenworaluk, N.; Koontongkaew, S. Release of methyl methacrylate from heat-curved and autopolymerized resins: Cytotoxicity testing related to residual monomer. Aust. Dent. J. 1999, 44, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Raszewski, Z. Influence of polymerization method on the cytotoxicity of three different denture base acrylic resins polymerized in different methods. Saudi J. Biol. Sci. 2020, 27, 2612–2616. [Google Scholar] [CrossRef] [PubMed]
- Mitra, I.; Bose, S.; Dernell, W.S.; Dasgupta, N.; Eckstrand, C.; Herrick, J.; Yaszemski, M.J.; Goodman, S.B.; Bandyopadhyay, A. 3D Printing in alloy design to improve biocompatibility in metallic implants. Mater. Today 2021, 45, 20–34. [Google Scholar] [CrossRef]
- Heinl, P.; Müller, L.; Körner, C.; Singer, R.F.; Müller, F.A. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008, 4, 1536–1544. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, Q.; Cheng, L.; Li, S.; Shi, Y. Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting. Mater. Des. 2014, 63, 185–193. [Google Scholar] [CrossRef]
- Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive manufacturing of biomaterials. Prog. Mater. Sci. 2018, 93, 45–111. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Y.; Zhang, W.; Li, M.; Wendel, H.P.; Geis-Gerstorfer, J.; Li, P.; Wan, G.; Xu, S.; Hu, T. Biodegradable Zn-Cu-Fe Alloy as a Promising Material for Craniomaxillofacial Implants: An in vitro Investigation into Degradation Behavior, Cytotoxicity, and Hemocompatibility. Front. Chem. 2022, 10, 860040. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.G.; Yang, J.; Jia, Y.G.; Lu, B.; Ren, L. TiO(2) and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications. Nanomaterials 2019, 9, 1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, J.; Zhao, P.; Gerasimov, J.Y.; van de Lagemaat, M.; Grotenhuis, A.; Rustema-Abbing, M.; van der Mei, H.C.; Busscher, H.J.; Herrmann, A.; Ren, Y. 3D-Printable Antimicrobial Composite Resins. Adv. Funct. Mater. 2015, 25, 6756–6767. [Google Scholar] [CrossRef]
- Tu, Z.; Zhong, Y.; Hu, H.; Shao, D.; Haag, R.; Schirner, M.; Lee, J.; Sullenger, B.; Leong, K.W. Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 2022, 7, 557–574. [Google Scholar] [CrossRef]
- Huang, H.; Pan, W.; Wang, Y.; Kim, H.S.; Shao, D.; Huang, B.; Ho, T.C.; Lao, Y.H.; Quek, C.H.; Shi, J.; et al. Nanoparticulate cell-free DNA scavenger for treating inflammatory bone loss in periodontitis. Nat. Commun. 2022, 13, 5925. [Google Scholar] [CrossRef]
- Lee, V.K.; Dai, G. Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine. Ann. Biomed. Eng. 2016, 45, 115–131. [Google Scholar] [CrossRef]
- Buskermolen, J.K.; Reijnders, C.M.A.; Spiekstra, S.W.; Steinberg, T.; Kleverlaan, C.J.; Feilzer, A.J.; Bakker, A.D.; Gibbs, S. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts. Tissue Eng. Part C Methods 2016, 22, 781–791. [Google Scholar] [CrossRef]
ONF Types | Time | Materials | Highlights | Authors |
---|---|---|---|---|
Maxillofacial prosthesis | 1953 | —— | Laid the foundation for this field | Ackerman et al. [29] |
Acrylic ONF obturator | 1984 | Acrylic | Used soft acrylic on the nasal side to improve comfort | Jacobson et al. [34] |
“U”-shaped ONF obturator | 1990 | Silicone and metal | Improved ONF obturator retention with spring adjustability | Sullivan et al. [36] |
Two-piece ONF obturator | 2015 | Acrylic, silicone, magnets | Used different forms of bonding to solve the problem of obturator insertion and removal, as well as to provide good comfort to the patients | Dholam et al. [37] |
Hollow ONF obturator | 2011 | Acrylic | The hollow design aided the speech resonance and improved the retention | Bhasin et al. [57] |
Speech ball obturator | 2011 | Silicone | The speech ball improved the patients’ speech function | Bispo et al. [67] |
Digital ONF obturator | 2022 | Acrylic and Ti-6Al-4V alloy | Clearly introduced the manufacturing process of a digital ONF obturator | Yichen Xu et al. [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yang, R.; Shi, B.; Xu, Y.; Huang, H. Obturator Manufacturing for Oronasal Fistula after Cleft Palate Repair: A Review from Handicraft to the Application of Digital Techniques. J. Funct. Biomater. 2022, 13, 251. https://doi.org/10.3390/jfb13040251
Chen J, Yang R, Shi B, Xu Y, Huang H. Obturator Manufacturing for Oronasal Fistula after Cleft Palate Repair: A Review from Handicraft to the Application of Digital Techniques. Journal of Functional Biomaterials. 2022; 13(4):251. https://doi.org/10.3390/jfb13040251
Chicago/Turabian StyleChen, Jiali, Renjie Yang, Bing Shi, Yichen Xu, and Hanyao Huang. 2022. "Obturator Manufacturing for Oronasal Fistula after Cleft Palate Repair: A Review from Handicraft to the Application of Digital Techniques" Journal of Functional Biomaterials 13, no. 4: 251. https://doi.org/10.3390/jfb13040251
APA StyleChen, J., Yang, R., Shi, B., Xu, Y., & Huang, H. (2022). Obturator Manufacturing for Oronasal Fistula after Cleft Palate Repair: A Review from Handicraft to the Application of Digital Techniques. Journal of Functional Biomaterials, 13(4), 251. https://doi.org/10.3390/jfb13040251