Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Extraction of Unpolarized Monomers and Catalyst
2.3. Flexural Strength
2.4. Sorption and Solubility
2.5. Ion Release
2.6. Cell Culture
2.7. Cytotoxicity Assay Test—Direct Contact
3. Results
3.1. Extraction of Unpolymerized Monomers and Catalyst
3.2. Flexural Strength
3.3. Sorption and Solublity
3.4. Cytotoxic Study
3.5. Ion Releasing
4. Discussion
5. Conclusions
- The thesis presented at the beginning of our research has been confirmed. It is possible to make a 3D printing material prepared with 10% addition of various active glasses that can release calcium, silicon and phosphate ions.
- In the case of Biomin F glass, the release of fluorine ions in an acidic and neutral environment was very dynamic (it occurred within the first 24 h).
- Acrylic resins modified with 10% Biomin C glass can be valuable sources of calcium cations and phosphate anions under acid and neutral conditions over a period of 42 days.
- More research is needed on the composition of the methacrylate resins used to create the material for 3D printing, which would have a higher mechanical resistance to fracture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Aerosil R972 | fumed silica commercial product from Evonik |
CAD CAM | Computer-Aided Design/Computer-Aided Manufacturing |
DMEM | Dulbecco’s Modified Eagle Medium |
E4GMA | Ethoxylated (E4) bisphenol A dimethacrylate |
EDTA | Ethylenediaminetetraacetic acid |
HGFs | human gingival fibroblasts |
LOD | below the detection limit |
PE | polyethylene |
TEGDMA | Triethylene glycol dimethacrylate |
TPO | diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide |
UDMA | 7,9,9-trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl bis methacrylate |
References
- Kessler, A.; Hickel, R.; Reymus, M. 3D Printing in Dentistry-State of the Art. Oper. Dent. 2020, 45, 30–34. [Google Scholar] [CrossRef]
- Alshaikh, A.A.; Khattar, A.; Almindil, I.A.; Alsaif, M.H.; Akhtar, S.; Khan, S.Q.; Gad, M.M. 3D-Printed Nanocomposite Denture-Base Resins: Effect of ZrO2 Nanoparticles on the Mechanical and Surface Properties In Vitro. Nanomaterials 2022, 12, 2451. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Ateeq, I.S.; Helal, M.A.; Al-Harbi, F.A. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J. Prosthodont. 2021, 31, 412–418. [Google Scholar] [CrossRef]
- Lee, J.; Belles, D.; Gonzalez, M.; Kiat-Amnuay, S.; Dugarte, A.; Ontiveros, J. Impact strength of 3D printed and conventional heat-cured and cold-cured denture base acrylics. Int. J. Prosthodont. 2022, 35, 240–244. [Google Scholar] [CrossRef]
- Chen, S.; Yang, J.; Jia, Y.G.; Lu, B.; Ren, L. A study of 3D-printable reinforced composite resin: PMMA modified with silver nanoparticles loaded cellulose nanocrystal. Materials 2018, 11, 2444. [Google Scholar] [CrossRef] [Green Version]
- Palucci, R.; Rosace, G.; Arrigo, R.; Malucelli, G. Preparation and Characterization of 3D-Printed Biobased Composites Containing Micro- or Nanocrystalline Cellulose. Polymers 2022, 14, 1886. [Google Scholar] [CrossRef]
- Revilla-León, M.; Meyers, M.; Zandinejad, A.; Özcan, M. A review on chemical composition, mechanical properties, and manufacturing workflow of additively manufactured current polymers for interim dental restorations. J. Esthet. Restor. Dent. 2018, 31, 12438. [Google Scholar] [CrossRef] [Green Version]
- Altarazi, A.; Haider, J.; Alhotan, A.; Silikas, N.; Devlin, H. Assessing the physical and mechanical properties of 3D printed acrylic material for denture base application. Dent. Mater. 2022, 38, 1841–1854. [Google Scholar] [CrossRef]
- Chenicheri, S.R.U.; Ramachandran, R.; Thomas, V.; Wood, A. Insight into Oral Biofilm: Primary, Secondary and Residual Caries and Phyto-Challenged Solutions. Open Dent. J. 2017, 11, 312–333. [Google Scholar] [CrossRef] [Green Version]
- Bordbar-Khiabani, A.; Gasik, M. Smart Hydrogels for Advanced Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 3665. [Google Scholar] [CrossRef]
- Safavi, M.S.; Bordbar-Khiabani, A.; Khalil-Allafi, J.; Mozafari, M.; Visai, L. Additive Manufacturing: An Opportunity for the Fabrication of Near-Net-Shape NiTi Implants. J. Manuf. Mater. Process. 2022, 6, 65. [Google Scholar] [CrossRef]
- Staffova, M.; Ondreáš, F.; Svatík, J.; Zbončák, M.; Jančář, J.; Lepcio, P. 3D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical properties. Polym. Test. 2022, 108, 107499. [Google Scholar] [CrossRef]
- Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Raszewski, Z.; Chojnacka, K.; Mikulewicz, M. Preparation and characterization of acrylic resins with bioactive glasses. Sci. Rep. 2022, 12, 16624. [Google Scholar] [CrossRef]
- Raszewski, Z.; Nowakowska, D.; Wieckiewicz, W.; Nowakowska-Toporowska, A. The effect of chlorhexidine disinfectant gels with anti-discoloration systems on color and mechanical properties of PMMA resin for dental applications. Polymers 2021, 13, 1800. [Google Scholar] [CrossRef] [PubMed]
- González, G.; Barualdi, D.; Martinengo, C.; Angelini, A.; Chiappone, A.; Roppolo, I.; Pirri, C.F.; Frascella, F. Materials Testing for the Development of Biocompatible Devices through Vat-Polymerization 3D Printing. Nanomaterials 2020, 10, 1788. [Google Scholar] [CrossRef]
- EN ISO 4049; Dentistry—Polymer-Based Restorative Materials. ISO: London, UK, 2019.
- Saczko, J.M.; Dominiak, J.; Kulbacka, A.; Chwiłkowska, H.; Krawczykowska, H. A simple and established method of tissue culture of human gingival fibroblasts for gingival augmentation. Folia Histochem. Cytobiol. 2008, 46, 117–119. [Google Scholar] [CrossRef] [Green Version]
- Raszewski, Z.; Kulbacka, J.; Nowakowska-Toporowska, A. Mechanical Properties, Cytotoxicity, and Fluoride Ion Release Capacity of Bioactive Glass-Modified Methacrylate Resin Used in Three-Dimensional PrintingTechnology. Materials 2022, 15, 1133. [Google Scholar] [CrossRef]
- Reyes, M.; Bataller, A.; Cabrera, J.; Velasco, G.; Juan, M.; Castillo, J. A study of tensile and bending properties of 3D-printed biocompatible materials used in dental appliances. J. Mater. Sci. 2022. [Google Scholar] [CrossRef]
- Perea-Lowery, L.; Gibreel, M.; Vallittu, P.K.; Lassila, L.V. 3D-Printed vs. Heat-Polymerizing and Autopolymerizing Denture Base Acrylic Resins. Materials 2021, 14, 5781. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.A.E.; Sherif, A.F.; Baraka, Y.; Abualsaud, R.; Abdelrahim, R.A.; Gad, M.M.; Helal, M.A. Evaluation of the Effect of Different Construction Techniques of CAD-CAM Milled, 3D-Printed, and Polyamide Denture Base Resins on Flexural Strength: An In Vitro Comparative Study. J. Prosthodont. 2022. [CrossRef] [PubMed]
- Aati, S.; Akram, Z.; Shrestha, B.; Patel, J.; Shih, B.; Shearston, K.; Ngo, H.; Fawzy, A. Effect of post-curing light exposure time on the physico-mechanical properties and cytotoxicity of 3D-printed denture base material. Dent Mater. 2022, 38, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Al-Eesa, N.A.; Fernandes, S.D.; Hill, R.G.; Wong, F.S.L.; Jargalsaikhan, U.; Shahid, S. Remineralising fluorine containing bioactive glass composites. Dent Mater. 2021, 37, 672–681. [Google Scholar] [CrossRef]
- Al-Eesaa, N.A.; Johal, A.; Hill, R.G.; Wong, F.S.L. Fluoride-containing bioactive glass composite for orthodontic adhesives: Apatite formation properties. Dent. Mater. 2021, 34, 1127–1133. [Google Scholar] [CrossRef]
- Liu, J.; Rawlinson, S.C.F.; Hill, R.G.; Fortune, F. Fluoride incorporation in high-phosphate-containing bioactive glasses and in vitro osteogenic, angiogenic, and antibacterial effects. Dent. Mater. 2016, 32, e221–e237. [Google Scholar] [CrossRef]
- Tiskaya, M.; Shahid, S.; Gillam, D.; Hill, R.G. The use of bioactive glass (BAG) in dental composites: Critical review. Dent. Mater. 2021, 37, 296–310. [Google Scholar] [CrossRef]
- Park, J.-H.; Lee, H.; Kim, J.-W. Cytocompatibility of 3D printed dental materials for temporary restorations on fibroblasts. BMC Oral Health 2020, 20, 157. [Google Scholar] [CrossRef]
- d’Apuzzo, F.; Nucci, L.; Strangio, B.M.; Inchingolo, A.D.; Dipalma, G.; Minervini, G.; Perillo, L.; Grassia, V. Dento-Skeletal Class III Treatment with Mixed Anchored Palatal Expander: A Systematic Review. Appl. Sci. 2022, 12, 4646. [Google Scholar] [CrossRef]
- Reddy, L.K.V.; Madithati, P.; Narapureddy, B.R.; Ravula, S.R.; Vaddamanu, S.K.; Alhamoudi, F.H.; Minervini, G.; Chaturvedi, S. Perception about Health Applications (Apps) in Smartphones towards Telemedicine during COVID-19: A Cross-Sectional Study. J. Pers. Med. 2022, 12, 1920. [Google Scholar] [CrossRef]
- Minervini, G.; Russo, D.; Herford, A.S.; Gorassini, F.; Meto, A.; D’Amico, C.; Cervino, G.; Cicciù, M.; Fiorillo, L. Teledentistry in the Management of Patients with Dental and Temporomandibular Disorders. Biomed. Res Int. 2022, 2022, 7091153. [Google Scholar] [CrossRef]
- Fernandes Fagundes, N.C.; Minervini, G.; Furió Alonso, B.; Nucci, L.; Grassia, V.; d’Apuzzo, F.; Puigdollers, A.; Perillo, L.; Flores-Mir, C. Patient-reported outcomes while managing obstructive sleep apnea with oral appliances: A scoping review. J. Evid. -Based Dent. Pract. 2022; 101786in press. [Google Scholar] [CrossRef]
Monomer | Concentration [%] | Producer |
---|---|---|
Ethoxylated (E4) bisphenol A dimethacrylate (E4GMA) 98% | 60% | Esschem |
7,9,9-trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl bismethacrylate (UDMA) 98% | 25% | Evonik |
Triethylene glycol dimethacrylate (TEGDMA) 99% | 10% | Evonik |
Pentaerythritol tetraacrylate 96% | 3% | Sigma-Aldrich |
diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide 98% | 1% | Sigma-Aldrich |
silicon dioxide Aerosil R972 99% | 1% | Evonik |
Resin | Resin + 10% Biomin C | Resin + 10% Biomin F | Resin + 10% S53P4 | Resin + 10% 45S5 | ||
---|---|---|---|---|---|---|
Time [min] | Wave Length [nm] | Absorbance ± SD | Absorbance ± SD | Absorbance ± SD | Absorbance ± SD | Absorbance ± SD |
10 | ||||||
271 | 0.046 ± 0.011 | 0.056 ± 0.015 | 0.061 ± 0.013 | 0.054 ± 0.019 | 0.059 ± 0.009 | |
265 | 0.104 ± 0.011 | 0.131 ± 0.012 | 0.151 ± 0.024 | 0.144 ± 0.02 | 0.164 ± 0.022 | |
372 | 0.016 ± 0.011 | 0.018 ± 0.011 | 0.021 ± 0.011 | 0.026 ± 0.011 | 0.025 ± 0.011 | |
30 | ||||||
271 | 0.016 ± 0.009 p < 0.01 | 0.023 ± 0.012 p < 0.01 | 0.023 ± 0.019 p < 0.01 | 0.026 ± 0.013 p < 0.05 | 0.031 ± 0.011 p < 0.05 | |
265 | 0.049 ± 0.015 p < 0.01 | 0.063 ± 0.015 p < 0.01 | 0.061 ± 0.02 p < 0.01 | 0.063 ± 0.023 p < 0.01 | 0.073 ± 0.026 p < 0.01 | |
372 | 0.07 ± 0.005 | 0.09 ± 0.004 | 0.012 ± 0.01 | 0.06 ± 0.09 | 0.008 ± 0.05 p < 0.01 |
Resin + 10% S53P4 | Resin + 10% 45S5 | Resin + 10% Biomin F | Resin + 10% Biomin C | Resin | ||
---|---|---|---|---|---|---|
horizontally | ||||||
24 h | 66.42 ± 3.01 | 66.66 ± 3.02 p < 0.01 | 58.92 ± 4.68 p < 0.01 | 69.28 ± 2.94 | 73.2 ± 3.74 | |
30 days | 54.1 ± 3.01 | 53.2 ± 4.03 | 52.72 ± 1.0 | 53.88 ± 1.73 | 67.81 ± 4.65 | |
p < 0.01 | p < 0.01 | p < 0.01 | p < 0.01 | |||
vertically | ||||||
24 h | 58.1 ± 4.41 | 47.34 ± 5.02 | 42.11 ± 3.33 | 43.32 ± 4.03 | 53.2 ± 4.03 | |
30 days | 47.3 ± 5.98 | p < 0.01 43.1 ± 3.66 p < 0.05 | p < 0.01 38.13 ± 4.71 p < 0.01 | p < 0.01 40.92 ± 6.01 p < 0.01 | 49.2 ± 5.43 |
Resin + 10% S53P4 | Resin + 10% 45S5 | Resin + 10% Biomin F | Resin + 10% Biomin C | Resin | |
---|---|---|---|---|---|
solubility [μg/mm3] | 3.09 ± 0.32 p < 0.01 | 1.46 ± 0.39 p < 0.01 | 1.58 ± 0.14 p < 0.01 | 1.18 ± 0.09 | 0.36 ± 0.09 |
sorption [μg/mm3] | 71.39 ± 13.61 p < 0.01 | 89.38 ± 11.15 p < 0.01 | 83.93 ± 4.08 p < 0.01 | 140.48 ± 2.76 p < 0.01 | 11.06 ± 0.88 |
Ca | P | Si | F- | |
---|---|---|---|---|
Sample Days | [mg/L] | [mg/L] | [mg/L] | [mg/L] |
Background saliva | ||||
pH 4 0 | <LOD | 19.14 ± 3.32 | 0.007300 ± 0.0 | <LOD |
pH 7 0 | <LOD | 20.65 ± 2.54 | 0.06050 ± 0.01 | <LOD |
10% S53P4 | ||||
S1 pH4 1 | 1.058 ± 0.012 | 40.22 ± 3.21 | 0.7269 ± 0.03 | <LOD |
S1 pH4 28 | 1.960 ± 0.19 | 30.41 ± 2.11 | 6.216 ± 0.36 | <LOD |
S1 pH4 42 | 0.4599 ± 0.011 | 39.78 ± 2.76 | 5.574 ± 0.39 | <LOD |
S1 pH7 1 | 0.593 ± 0.015 | 41.91 ± 1.95 | 0.7802 ± 0.061 | 0.1595 ± 0.009 |
S1 pH7 28 | 0.2698 ± 0.001 | 40.75 ± 2.74 | 3.135 ± 0.15 | <0.10 |
S1 pH7 42 | 0.2445 ± 0.016 | 39.20 ± 1.32 | 3.836 ± 0.016 | 0.1347 ± 0.007 |
Resin | ||||
S2 pH4 1 | <LOD | 19.24 ± 0.92 | 0.02590 ± 0.001 | <LOD |
S2 pH4 28 | <LOD | 19.66 ± 1.02 | 0.09770 ± 0.002 | <LOD |
S2 pH4 42 | <LOD | 19.98 ± 0.88 | 0.1044 ± 0.001 | <LOD |
S2 pH7 1 | <LOD | 20.05 ± 1.35 | 0.08210 ± 0.001 | <LOD |
S2 pH7 28 | <LOD | 20.45 ± 1.41 | 0.07540 ± 0.001 | <LOD |
S2 pH7 42 | <LOD | 20.35 ± 1.86 | 0.07230 ± 0.002 | <LOD |
10% Biomin F | ||||
S3 pH4 1 | 0.6543 ± 0.002 | 41.52 ± 2.02 | 0.6316 ± 0.03 | 1.849 ± 0.02 |
S3 pH4 28 | 0.8841 ± 0.003 | 49.70 ± 2.11 | 15.19 ± 0.92 | 0.138 ± 0.001 |
S3 pH4 42 | 1.3700 ± 0.001 | 52.44 ± 1.94 | 19.00 ± 0.76 | <LOD |
S3 pH7 1 | 0.6234 ± 0.001 | 42.01 ± 2.05 | 1.016 ± 0.09 | 2.665± |
S3 pH7 28 | 0.5772 ± 0.002 | 47.16 ± 1.86 | 8.975 ± 0.08 | 0.3251± |
S3 pH7 42 | 0.5800 ± 0.001 | 44.73 ± 1.76 | 7.771 ± 0.08 | <LOD |
10% Biomin C | ||||
S4 pH4 1 | 2.046 ± 0.03 | 39.56 ± 2.11 | 0.2752 ± 0.002 | <LOD |
S4 pH4 28 | 79.70 ± 2.02 | 34.02 ± 1.64 | 2.224 ± 0.09 | <LOD |
S4 pH4 42 | 62.75 ± 1.45 | 20.59 ± 1.29 | 3.414 ± 0.07 | <LOD |
S4 pH7 1 | 1.381 ± 0.03 | 40.92 ± 1.84 | 0.4609 ± 0.005 | <LOD |
S4 pH7 28 | 20.18 ± 0.18 | 10.18 ± 0.84 | 1.293 ± 0.07 | <LOD |
S4 pH7 42 | 20.14 ± 0.21 | 0.4463 ± 0.03 | 2.066 ± 0.05 | <LOD |
10% 45S5 | ||||
S5 pH4 1 | 1.216 ± 0.01 | 38.72 ± 1.22 | 1.466 ± 0.01 | <LOD |
S5 pH4 28 | 1.720 ± 0.02 | 40.19 ± 1.65 | 5.522 ± 0.01 | <LOD |
S5 pH4 42 | 2.750 ± 0.04 | 41.43 ± 2.23 | 5.763 ± 0.02 | 0.1745 ± 0.001 |
S5 pH7 1 | 0.9079 ± 0.01 | 39.80 ± 2.06 | 1.133 ± 0.05 | 0.1286 ± 0.002 |
S5 pH7 28 | 1.669 ± 0.03 | 38.71 ± 2.11 | 3.828 ± 0.03 | 0.1965 ± 0.001 |
S5 pH7 42 | 1.686 ± 0.03 | 38.78 ± 1.82 | 4.747 ± 0.02 | 0.8448 ± 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raszewski, Z.; Chojnacka, K.; Kulbacka, J.; Mikulewicz, M. Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components. J. Funct. Biomater. 2023, 14, 13. https://doi.org/10.3390/jfb14010013
Raszewski Z, Chojnacka K, Kulbacka J, Mikulewicz M. Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components. Journal of Functional Biomaterials. 2023; 14(1):13. https://doi.org/10.3390/jfb14010013
Chicago/Turabian StyleRaszewski, Zbigniew, Katarzyna Chojnacka, Julita Kulbacka, and Marcin Mikulewicz. 2023. "Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components" Journal of Functional Biomaterials 14, no. 1: 13. https://doi.org/10.3390/jfb14010013
APA StyleRaszewski, Z., Chojnacka, K., Kulbacka, J., & Mikulewicz, M. (2023). Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components. Journal of Functional Biomaterials, 14(1), 13. https://doi.org/10.3390/jfb14010013