1. Introduction
In the case of extensive bone loss, regeneration or reconstruction of bone tissue represents one of the greatest challenges in orthopaedic and reconstructive surgery today.
Current surgical treatments involve the use of distraction osteogenesis techniques [
1], the use of autografts [
2] or allografts [
3], or even replacement with prosthetic implants. These traditional approaches provide stability of the bone district and coverage of the bone defect. On the other hand, they require a long time for healing, have significant infectious risks and the possibility of rejection [
4].
An attractive alternative to such traditional approaches is tissue engineering, which is used in regenerative medicine [
5]. Regenerative medicine employs its resources in the search for biomaterials that can stimulate tissue growth, mimic the characteristics of the target tissue and promote healing [
6]. In this context, next-generation bone graft substitutes are being developed as a support for bone tissue regeneration and as a vehicle for a biomolecular stimulus to induce bone repair [
7]. For these purposes, three-dimensional scaffolds represent one of the most promising resources for improving bone tissue formation in vitro and in vivo. The necessary characteristics for the applicability of a scaffold are biocompatibility and biodegradability to ensure osteoconduction and osteoinduction capabilities [
8]. In addition, the mechanical properties of the chosen biomaterial and the degree of porosity must also be appropriate [
9].
Polybutylene succinate (PBS) scaffold has proven to be an excellent biomaterial in various fields, including osteogenesis [
10], with high biocompatibility and easy processability by electrospinning technique [
11,
12]. It is a commercially available, biodegradable, thermoplastic aliphatic polyester synthesized by the polycondensation of succinic acid and butanediol. PBS is insoluble in water; the glass transition temperature is below 0 °C. and its melting temperature is 120 °C. It has excellent processability and proven biocompatibility making it a promising polymer for various biomedical applications [
13,
14]. Recently, a planar PBS microfibrillar scaffold was successfully implanted in a rat model, as a nerve regeneration tool [
15]. A recent study demonstrated complete biodegradability and the absence of inflammation in high-resolution MRI investigation, showing complete reabsorption by 120 days post-implant [
15]. Lastly, it can be sterilized with several techniques without compromising the scaffold’s properties.
The main aim of this study is to demonstrate, in an in vivo rabbit model, the osseointegration of an electrospun microfibrillar polybutylene succinate scaffold and its ability to increase bone regeneration as well. The present study was conducted in vivo on nine male New Zealand White rabbits. Two equal bone defects were created in each subject, one for each frontal bone. One defect was left to heal spontaneously while the other defect was treated with a PBS scaffold. CT-scan study and histological examination were performed at 4, 12 and 24 weeks after surgery in each group for evaluating the osseointegration progress.
2. Materials and Methods
2.1. Scaffold Preparation and Characterization
PBS and its copolymers are semi-crystalline thermoplastic polymers belonging to the aliphatic polyester family [
16]. Characteristics and properties of PBS are high crystallisation rates, wide application range between −30 °C and 120 °C, high flexibility, strength and insulating capacity [
17]. Our PBS scaffold was produced as a random fibre material by electrospinning. Briefly, a PBS (Poly(1,4-butylene succinate) extended with 1,6-diisocyanatohexane, Sigma-Aldrich, Gillingham, UK) solution (15%
w/
v in 1,1,1,3,3,3-hexafluoroisopropanol) was collected with a precision 10 mL syringe and placed in an NF 103 Electrospinning (MECC, Fukuoka, Japan). The flow (1.2 mL/h) passed through a PTFE tube and then into a steel flat needle (22 gauge) with a 15.5 cm gap between the needle tip and the collector. One high-voltage generator was employed with a positive voltage (+12.5 kV) to charge the steel capillary containing the polymer solution while the stainless-steel collector plate was maintained at ground voltage. The humidity was maintained in a range between 23% and 27%. The morphological characteristics of scaffolds were investigated with a scanning electron microscope (SEM) (Phenom PRO X SEM) operating at 5 kV. Each sample was deposited onto a carbon-coated steel stub, dried under vacuum (0.1 Torr), and sputter-coated with 15-nm thick gold (Sputter Coater LuxorAu, Luxor Tech, Nazareth, Belgium) prior to microscopy examination. The fibre morphology and diameters were evaluated using the ImageJ (1.52Q Wayne Rasband National Institute of Health, Bethesda, MD, USA) software.
A 3D structure of the scaffold was analyzed with a μCT scanner (Skyscan 1272, Bruker Kontich, Belgium) at a source voltage of 40 kV, a current of 250 mA, a total rotation of 180° and a rotation step of 0.3°. No filter mode was chosen for the acquisitions. The image pixel size was 2.6 μm and the scan duration was about 3 h for every sample. The scanning dataset obtained after the acquisition step consisted of images in 16-bit tiff format (3238 × 4904 pixels). The 3D reconstructions were carried out using the software NRecon (version 1.6.10.2) starting from the acquired projection images. The obtained 2D images had a colour depth of 8 bits with 265 grey levels. The whole set of raw images was displayed in a 3D space by the software CTVox.
2.2. Study Population
After exploring alternatives to animal model testing in bone scaffold research in the literature and taking into account the guidance given by the European Union Reference Laboratory for alternatives to animal testing (EU Reference Laboratory for alternatives to animal testing, EURL-ECVAM) on alternative methods and acceptable approaches, the animal model (rabbit) was used. Procedures involving animals were carried out in accordance with the Italian Legislative Decree N° 26/2014 and the European Directive 2010/63/EU. The animal experiment project was successfully approved by the Italian Ministry of Health with the following authorization n° 66-2022/PR dated 02/28/2022 (prot 28875.38).
The animals were housed and tested at the Istituto Zooprofilattico Sperimentale della Sicilia ‘A. Mirri’ with ministerial authorisation: 14/2015-UT.
The number of animals used for this project is reduced to the minimum compatible for the verification of the scientific objectives, compatible with the standards published in the literature that allows statistical evaluation.
The present in vivo study was conducted on 9 male New Zealand white rabbits from the company Harlan Laboratories SRL Zona Industriale Azzida, 57 33049—San Pietro al Natisone (UD), with an average body weight of 4.85 kg (range: 3.5–6 kg). A sample size of 9 rabbits was required to obtain a 98% power and an average SFI at least 15 points better than the control group. A one-sided two sample t-test was calculated with a significance level (alpha) of 0.05. Animals were housed in polypropylene cage and kept in controlled temperature (22 ± 2 °C), humidity (50–55%) and light (12 h light/dark cycle). Animals had access to food and water ad libitum. Rabbits were randomly divided into 3 groups of three individuals each and allowed to acclimate for at least 2 days prior to experiments.
2.3. Surgical Procedure
The experimental procedure was conducted under general anaesthesia and with the administration of analgesics and antibiotic therapy so as not to induce any pain, suffering or stress to the animal.
Animals were induced to anaesthetic depth with inhaled isoflurane at 2% and then anaesthetised with intramuscular (i.m.) injection of Zoletil(r) (tiletamine/zolazepam; 10 mg/kg) and Domitor(r) (medetomidine hydrochloride; 0.5 mg/kg.
The surgical procedure was performed by the same surgeon, in a sterile field after shaving and disinfecting the skin with iodine solution.
A full-thickness incision was made along the midline of the skull exposing both frontal and parietal bones. Retracted the skin flap, an approximately 8mm full-thickness circular defect was created on one frontal bone using a high-precision surgical drill (hand drill) under constant saline irrigation. An equal defect was created on the contralateral frontal bone. The diameter of the defects was checked with a ruler under microscopic vision.
All procedures were performed avoiding injury to the dura mater and underlying brain tissue. Then, the 8 mm × 2.5 mm scaffold was placed in one of the randomly chosen bone defects without exerting any pressure on the underlying tissue (
Figure 1).
At the end of the procedure, each subject had two bone defects. One defect was treated by applying the scaffold while the other was left to heal spontaneously [
18]. No suturing of the periosteum is performed. The skin is sutured with 3-0 silk and disinfected with iodine solution (Betadine).
Intramuscular atipamezole (Antisedan) (300 μg/kg) was used to awaken all rabbits. Carprofen (5 mg/kg) and Enrofloxacin (5 mg/kg) were daily administered for 1 week to each rabbit. After the procedure, each animal was assigned with an identification number and housed one per cage. They were monitored on a daily basis for infection, self-mutilation, and signs of distress.
2.4. Imaging by CT Scanning
CT images were acquired with a Simens SOMATOM Definition AS machine, 128 banks, rotation time 0.5 s, maximum mAs 250, effective 100–120 mAs, Kilovolt (KV)120, thickness 1.2 mm with 0.6 mm interval, pitch 0.6. The filter used was B20fsmooth and window W450C40.
The bone reconstruction was done with 0.6 mm thickness with 0.3 mm interval, B60fsharp filter, “osteo” window W1500C450.
As in the 2018 study by Pihlman H. et al. [
19], the area of the defect covered by mineralised bone tissue was assessed by CT evaluation.
2.5. Histological Examination
After the CT examination, the subjects were euthanised with Tranax (1 mL) intracardiacally. After shaving, a median incision was made to expose the frontal bones. Using a high-precision surgical burr, the frontal bones were then harvested (
Figure 2).
Specimens were fixed and preserved in 10% buffered formalin and were decalcified using Na EDTA (10% w/v, pH 7.2) prior to histological analysis. The decalcified frontal bone samples were cut transversely in two from the centre of the defect. All samples were embedded in paraffin and sectioned at a thickness of 5.0 μm for staining with haematoxylin and eosin (H&E).
The resulting preparations were dried overnight in an oven at 37 °C. They were sparged with xylene for 20 min. After a series of passages in decreasing alcohol (100°, 95°, 75° and 50°), the slides were washed in distilled water and then stained with haematoxylin and eosin. This was followed by dehydration in ascending alcohols (50°, 75°, 95° and 100°) and clarification in xylene. After this step, the slides were mounted in acrylic mounting medium (Eukitt®, O. Kindler GmbH, Freiburg, Germany).
The stained samples were analysed for tissue infiltration, bone formation patterns and scaffold integration. Images of the stained slides were obtained with a Leica DMR microscope equipped with a Leica DFC 320 digital camera and analysed using digital image analysis (Nikon NIS Br, Nikon Instruments Europe BV, Amsterdam, The Netherlands).
An immunohistochemical evaluation of the samples was also performed for CD56 (to assess the presence of osteoblasts), CD68 (to assess the presence of osteoclasts) and CD34 (to assess the presence of vessels). In all treated and control samples, a semi-quantitative count was performed in an area corresponding to 3 contiguous high-power fields (HPF, ×400) using immunohistochemical staining for CD56 to assess osteoblast density. Based on the values obtained, the statistical average of scaffold-treated and control samples was calculated.
2.6. Statistical Analysis
All experiments were performed in triplicate by collecting, for each experiment, a number of samples n = 3, and values were expressed as mean ± standard deviation. The collected data were analysed within each group and for the entire population using GraphPad PrismTM 4.0 software (GraphPad Software Inc., San Diego, CA, USA). The one-way ANOVA associated with Sidak’s push-out test was used. All data were presented as mean and statistical significance was set at p < 0.05.
4. Discussion
The present study shows that the use of a PBS microfibrillar scaffold in critical bone defects on a rabbit model proves to be a potentially efficient technique to improve bone regeneration.
CT examination at the last follow-up shows incomplete healing in both untreated and scaffold-treated defects. However, relevant differences are observed in the assessment of the area covered by mineralised tissue, in agreement with similar studies [
18,
19].
The statistical analysis describes bone regeneration as significant in the intervals between 0 and 24 weeks, 4 and 24 weeks, and 12 and 24 weeks in both the overall population and in the control and scaffold-treated defects. Thus, no differences, and in this case no negative effects of the application of the scaffold to the bone defect, can be detected. In the first 4 weeks, there is little appreciable healing in either defect, so the scaffold does not appear to provide an advantage. Examining the bone sections of the defect, histological evaluation reveals important information. There is no evidence of inflammatory infiltrates around the scaffold. This confirms the biocompatibility and biodegradability of the material. In 2022, Cicero et al. studied a 3D microfibrillar scaffold based on PBS (Poly 1,4-butylene succinate) produced by electrospinning in sciatic nerve lesions on a mouse model [
15]. Along with an improvement in the regenerative process of the peripheral nerve, the ability to limit macrophage action and the inflammatory process counterproductive to nerve regeneration were described. Therefore, even in a different tissue type, the biocompatibility and biodegradability of PBS-based 3D scaffolds are confirmed.
Histological analysis also shows that with scaffold implantation, increased infiltration of mineralised tissue is observed. This, unlike the control, involves almost the entire surface of the scaffold. It is important to note that these results are shown to be progressive in consecutive follow-ups. Although there are no statistically significant findings of faster defect healing, certainly the histological study demonstrates a qualitative advantage. Infiltration of bone tissue, with greater amounts of mineralised tissue, contrasts with a majority of fibrous tissue. Another relevant factor in scaffold-treated defects is the presence of periosteal fibrous tissue, which is indicative of a florid osteosynthesis. Furthermore, immunohistochemical analysis, which is not indicative for CD 68 and CD34, shows instead a conspicuous positivity for CD56 at the transition point from healthy bone to the ‘fracture zone’. Immunohistochemical staining for CD56 (neural cell adhesion molecule, homophilic-binding glycoprotein with a role in cell-cell adhesion) highlights the key role of osteoblasts in bone tissue regeneration and wound healing. The presence of numerous activated osteoblasts indicates a well-started bone regeneration process and haemopoietic niches are indicative of increased bone maturation.
Although there are no statistically significant findings of faster defect healing, certainly the histological study demonstrates a qualitative advantage. The infiltration of bone tissue, with greater amounts of mineralised tissue, contrasts with a majority of fibrous tissue. Another relevant factor in scaffold-treated defects is the presence of periosteal fibrous tissue, which is indicative of a florid osteosynthesis.
In contrast, immunohistochemical analysis shows a conspicuous positivity for CD56 at the transition point from healthy bone to the ‘fracture zone’. Immunohistochemical staining for CD56 (neural cell adhesion molecule, homophilic-binding glycoprotein with a role in cell-cell adhesion) highlights the key role of osteoblasts in bone tissue regeneration and wound healing. The presence of numerous activated osteoblasts indicates a well-started bone regeneration process and the haemopoietic niches are indicative of increased bone maturation. Immunohistochemical staining analysis for CD56, carried out to assess osteoblast density, showed that the mean osteoblast density in scaffold-treated cases is 86.5/3HPF, while the statistical average of controls is 34/3HPF; these data show that in the scaffold-treated cases osteoblast density is markedly increased compared with controls. In addition, specimens in which the lesion healed spontaneously had more areas of necrosis and fibrosis in which marker assessment was non-specific.
Immunohistochemical analysis for CD 68 and CD34 showed no relevant scaffold-associated advantages. However, the normal density of haematopoietic precursor cells and the osteoclastic component as well as the normal microvascular density show that the scaffold did not alter these processes.
The authors consider these results to be valid evidence of the usefulness and future potential for bone regeneration of the scaffold that was the object of this study.
The pursuit of a scaffold with osteogenic, osteoconductive and/or osteoinductive properties finds considerable space in the literature, and other studies also show similar results to those described in this study. In 2012, also in a rabbit animal model with radial defect, a Chinese research group demonstrated similar properties [
20]. Furthermore, it was shown how an enhanced osteogenic effect can be achieved by using an engineered scaffold with mimetic osteoinductive periosteum. Teotia et al. compared the use of 3D-printed composite porous scaffolds with resins and osteoinductive growth factors in critical bone defects on flat bone (skull) and long bone (tibia) with similar models [
21]. Faster healing of scaffold-treated bone defects was described in both districts. Therefore, the present study is in agreement with these studies, considering the potential osteoconductive properties of the tested PBS scaffold. Hwan D Kim’s research group incorporated osteoinductive and osteoconductive materials, such as calcium and phosphate, into the 3D scaffolds in order to stimulate osteogenic stem cell differentiation [
22]. Furthermore, it has been shown that increasing the local concentration of phosphate ions in the scaffolds promotes the activation of transcription factors, such as osteocalcin and osteopontin, which induce osteogenic differentiation in stem cells. The PBS, therefore, represents a promising biocompatible material that may have important bone regenerative properties if properly processed in a three-dimensional scaffold with a suitable fibrillar or microporous structure. The choice of producing an electrospun scaffold and thus a microfibrillar PBS-based structure, and its exact method of fabrication, represent the main focus of research in this area. The authors consider this process to be a crucial factor in the osseointegration process. In 2018, Preethi Soundarya et al. provided an overview of the different fabrication techniques for the production of scaffolds (biological macromolecules such as chitin/chitosan, collagen/gelatin, alginate, hyaluronic acid, silk, synthetic polymers, ceramics) [
23]. The study, analysing more than 40 different techniques and compositions, showed interesting and positive results but concluded that an ideal manufacturing method for a scaffold has not been determined yet. Therefore, given the results of the present study, the authors believe that the microfibrillar PBS scaffold produced by electrospinning techniques may represent a viable alternative to those found in the current literature.
The main limitation of the study is that it has a restricted number of samples, which limits the effectiveness of the statistical analysis. CT evaluation, while also used as a benchmark in other studies, has limitations due to its method of execution. A further limitation of this study may be that the histological and immunohistochemical evaluation did not include the examination of healthy bone tissue samples.
The future objective will be to engineer the scaffold in order to enhance its bone regeneration capabilities, without losing the properties demonstrated in this study.