Evaluation of Compressive and Permeability Behaviors of Trabecular-Like Porous Structure with Mixed Porosity Based on Mechanical Topology
Abstract
:1. Introduction
2. Materials and Methods
2.1. TLPS Design
2.2. Mechanical Finite Element Analysis and Compression Testing
2.3. Permeability Simulation
2.4. Cell Experiment
3. Results and Discussion
3.1. Controllability Analysis of Porosity and Pore Size Distribution
3.1.1. Relationship between Design Parameters and Pore Size Distribution and Porosity
3.1.2. Relationship between Pore Size Distribution and Porosity
3.2. Mechanical Finite Element Result
3.3. Compression Test Results
3.4. Permeability Analysis
3.5. Cell Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, L.; Ding, S.; Wen, C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioact. Mater. 2019, 4, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Arabnejad, S.; Johnston, B.; Tanzer, M.; Pasini, D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 2017, 35, 1774–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, L.; Daynes, S.; Zhang, H.; Feih, S.; YuWang, M. Design of graded lattice structure with optimized mesostructures for additive manufacturing. Mater. Des. 2018, 142, 114–123. [Google Scholar] [CrossRef]
- Rana, M.; Karmakar, S.K.; Pal, B.; Datta, P.; Roychowdhury, A.; Bandyopadhyay, A. Design and manufacturing of biomimetic porous metal implants. J. Mater. Res. 2021, 36, 3952–3962. [Google Scholar] [CrossRef]
- Ma, S.; Tang, Q.; Feng, Q.; Song, J.; Han, X.; Guo, F. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting. J. Mech. Behav. Biomed. Mater. 2019, 93, 158–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Pei, X.; Jiang, L.; Hu, C.; Sun, J.; Xing, F.; Zhou, C.; Fan, Y.; Zhang, X. Bionic design and 3D printing of porous titanium alloy scaffolds for bone tissue repair. Composites. Part B. Eng. 2019, 162, 154–161. [Google Scholar] [CrossRef]
- Yoo, D. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int. J. Precis. Eng. Manuf. 2011, 12, 61–71. [Google Scholar] [CrossRef]
- Yoo, D. Advanced porous scaffold design using multi-void triply periodic minimal surface models with high surface area to volume ratios. Int. J. Precis. Eng. Manuf. 2014, 15, 1657–1666. [Google Scholar] [CrossRef]
- Bobbert, F.S.L.; Lietaert, K.; Eftekhari, A.A.; Pouran, B.; Ahmadi, S.M.; Weinans, H.; Zadpoor, A.A. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater 2017, 53, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Nune, K.C.; Kumar, A.; Misra, R.D.K.; Li, S.J.; Hao, Y.L.; Yang, R. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing. Colloids Surf. B. Biointerfaces 2017, 150, 78–88. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.J.; Wang, S.G.; Hou, W.T.; Li, Y.; Zhang, L.C.; Hao, Y.L.; Yang, R.; Misra, R.D.K.; Murr, L.E. Compressive and fatigue behavior of functionally graded Ti6Al4Vmeshes fabricated by electron beam melting. Acta Mater. 2018, 150, 1–15. [Google Scholar] [CrossRef]
- Peng, W.; Liu, Y.; Jiang, X.; Dong, X.; Jun, J.; Baur, D.; Xu, J.; Pan, H.; Xu, X. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. J. Zhejiang Univ. Sci. B. 2019, 20, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Jetté, B.; Brailovski, V.; Dumas, M.; Simoneau, C.; Terriault, P. Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing. J. Mech. Behav. Biomed. Mater. 2018, 77, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, S.; Wang, Y.; Li, F.; Luo, Z. A lightweight methodology of 3D printed objects utilizing multi-scale porous structures. Vis. Comput. 2019, 35, 949–959. [Google Scholar] [CrossRef]
- Ghorbani, F.; Li, D.; Ni, S.; Zhou, Y.; Yu, B. 3D printing of acellular scaffolds for bone defect regeneration: A review. Mater. Today Commun. 2020, 22, 100979. [Google Scholar] [CrossRef]
- Wang, C.; Gu, X.; Zhu, J.; Zhou, H.; Li, S.; Zhang, W. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing. Struct. Multidiscip. Optim. 2020, 61, 869–894. [Google Scholar] [CrossRef]
- Yan, X.; Rao, C.; Lu, L.; Sharf, A.; Zhao, H.; Chen, B. Strong 3D Printing by TPMS Injection. IEEE Trans. Vis. Comput. Graph. 2020, 26, 3037–3050. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.; Li, J.; Xu, Z.; Wang, Q. Parametric design of Voronoi-based lattice porous structures. Mater. Des. 2020, 191, 108607. [Google Scholar] [CrossRef]
- Liu, W.; Tang, G.H.; Shi, Y. Apparent permeability study of rarefied gas transport properties through ultra-tight VORONOI porous media by Discrete Velocity Method. J. Nat. Gas Sci. Eng. 2020, 74, 103100. [Google Scholar] [CrossRef]
- Wang, G.; Shen, L.; Zhao, J.; Liang, H.; Xie, D.; Tian, Z.; Wang, C. Design and Compressive Behavior of Controllable Irregular Porous Scaffolds: Based on Voronoi-Tessellation and for Additive Manufacturing. ACS Biomater. Sci. Eng. 2018, 4, 719–727. [Google Scholar] [CrossRef]
- Du, Y.; Liang, H.; Xie, D.; Mao, N.; Zhao, J.; Tian, Z.; Wang, C.; Shen, L. Finite element analysis of mechanical behavior, permeability of irregular porous scaffolds and lattice-based porous scaffolds. Mater. Res. Express 2019, 6, 105407. [Google Scholar] [CrossRef]
- Liang, H.; Yang, Y.; Xie, D.; Li, L.; Mao, N.; Wang, C.; Tian, Z.; Jiang, Q.; Shen, L. Trabecular-like Ti6Al4Vscaffolds for orthopedic: Fabrication by selective laser melting and in vitro biocompatibility. J. Mater. Sci. Technol. 2019, 35, 1284–1297. [Google Scholar] [CrossRef]
- Du, Y.; Liang, H.; Xie, D.; Mao, N.; Zhao, J.; Tian, Z.; Wang, C.; Shen, L. Design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction based on voronoi tessellation and fabricated via selective laser melting (SLM). Mater. Chem. Phys. 2020, 239, 121968. [Google Scholar] [CrossRef]
- Liang, H.; Chao, L.; Xie, D.; Yang, Y.; Shi, J.; Zhang, Y.; Xue, B.; Shen, L.; Tian, Z.; Li, L.; et al. Trabecular-like Ti–6Al–4V scaffold for bone repair: A diversified mechanical stimulation environment for bone regeneration. Composites. Part B Eng. 2022, 241, 110057. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Rowshan, R.; Abu Al-Rub, R.K. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit. Manuf. 2018, 19, 167–183. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, Y.; Yang, M.; Qian, G.; Peng, S.; Qi, F.; Shuai, C. Semicoherent strengthens graphene/zinc scaffolds. Mater. Today Nano 2022, 17, 100163. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, Y.; Peng, S.; Xu, L.; He, C.; Qi, F.; Zhao, M.; Shuai, C. Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold. Bioact. Mater. 2021, 6, 1230–1241. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, C.; Shen, L.; Zhao, Z.; Peng, S.; Shuai, C. In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing. J. Magnes. Alloys 2021. [Google Scholar] [CrossRef]
- Amin Yavari, S.; Wauthle, R.; van der Stok, J.; Riemslag, A.C.; Janssen, M.; Mulier, M.; Kruth, J.P.; Schrooten, J.; Weinans, H.; Zadpoor, A.A. Fatigue behavior of porous biomaterials manufactured using selective laser melting. Mater. Sci. Eng. C 2013, 33, 4849–4858. [Google Scholar] [CrossRef]
- Amin Yavari, S.; van der Stok, J.; Ahmadi, S.M.; Wauthle, R.; Schrooten, J.; Weinans, H.; Zadpoor, A.A. Mechanical analysis of a rodent segmental bone defect model: The effects of internal fixation and implant stiffness on load transfer. J. Biomech. 2014, 47, 2700–2708. [Google Scholar] [CrossRef]
- Rodríguez-Montaño, Ó.; Cortés-Rodríguez, C.; Uva, A.; Fiorentino, M.; Gattullo, M.; Monno, G.; Boccaccio, A. Comparison of the mechanobiological performance of bone tissue scaffolds based on different unit cell geometries. J. Mech. Behav. Biomed. Mater. 2018, 83, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Vaughan, T.J.; McNamara, L.M. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures. Biomech. Model Mechanobiol. 2016, 15, 561–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, D.; Sen, S. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures. J. Mech. Behav. Biomed. Mater. 2017, 75, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Al-Saedi, D.S.; Masood, S.H.; Faizan-Ur-Rab, M.; Alomarah, A.; Ponnusamy, P. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM. Mater. Des. 2018, 144, 32–44. [Google Scholar] [CrossRef]
- Li, J.; Jansen, J.; Walboomers, X.; van den Beucken, J. Mechanical aspects of dental implants and osseointegration: A narrative review. J. Mech. Behav. Biomed. Mater. 2020, 103, 103574. [Google Scholar] [CrossRef]
Series | C | T | F | N | R |
---|---|---|---|---|---|
1 | 0.4–0.5 | 50% | 2500 | 700 | 0.6 |
2 | 0.4–0.6 | 50% | 2500 | 700 | 0.6 |
3 | 0.4–0.7 | 50% | 2500 | 700 | 0.6 |
4 | 0.4–0.8 | 50% | 2500 | 700 | 0.6 |
5 | 0.4–0.9 | 50% | 2500 | 700 | 0.6 |
6 | 0.4–0.8 | 30% | 2500 | 700 | 0.6 |
7 | 0.4–0.8 | 40% | 2500 | 700 | 0.6 |
8 | 0.4–0.8 | 50% | 2500 | 700 | 0.6 |
9 | 0.4–0.8 | 60% | 2500 | 700 | 0.6 |
10 | 0.4–0.8 | 70% | 2500 | 700 | 0.6 |
11 | 0.4–0.8 | 50% | 1500 | 700 | 0.6 |
12 | 0.4–0.8 | 50% | 2000 | 700 | 0.6 |
13 | 0.4–0.8 | 50% | 2500 | 700 | 0.6 |
14 | 0.4–0.8 | 50% | 3000 | 700 | 0.6 |
15 | 0.4–0.8 | 50% | 3500 | 700 | 0.6 |
16 | 0.4–0.8 | 50% | 2500 | 500 | 0.6 |
17 | 0.4–0.8 | 50% | 2500 | 600 | 0.6 |
18 | 0.4–0.8 | 50% | 2500 | 700 | 0.6 |
19 | 0.4–0.8 | 50% | 2500 | 800 | 0.6 |
20 | 0.4–0.8 | 50% | 2500 | 900 | 0.6 |
21 | 0.4–0.8 | 50% | 2500 | 700 | 0.4 |
22 | 0.4–0.8 | 50% | 2500 | 700 | 0.5 |
23 | 0.4–0.8 | 50% | 2500 | 700 | 0.6 |
24 | 0.4–0.8 | 50% | 2500 | 700 | 0.7 |
25 | 0.4–0.8 | 50% | 2500 | 700 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, L.; He, Y.; Gu, J.; Xie, D.; Yang, Y.; Shen, L.; Wu, G.; Wang, L.; Tian, Z. Evaluation of Compressive and Permeability Behaviors of Trabecular-Like Porous Structure with Mixed Porosity Based on Mechanical Topology. J. Funct. Biomater. 2023, 14, 28. https://doi.org/10.3390/jfb14010028
Chao L, He Y, Gu J, Xie D, Yang Y, Shen L, Wu G, Wang L, Tian Z. Evaluation of Compressive and Permeability Behaviors of Trabecular-Like Porous Structure with Mixed Porosity Based on Mechanical Topology. Journal of Functional Biomaterials. 2023; 14(1):28. https://doi.org/10.3390/jfb14010028
Chicago/Turabian StyleChao, Long, Yangdong He, Jiasen Gu, Deqiao Xie, Youwen Yang, Lida Shen, Guofeng Wu, Lin Wang, and Zongjun Tian. 2023. "Evaluation of Compressive and Permeability Behaviors of Trabecular-Like Porous Structure with Mixed Porosity Based on Mechanical Topology" Journal of Functional Biomaterials 14, no. 1: 28. https://doi.org/10.3390/jfb14010028
APA StyleChao, L., He, Y., Gu, J., Xie, D., Yang, Y., Shen, L., Wu, G., Wang, L., & Tian, Z. (2023). Evaluation of Compressive and Permeability Behaviors of Trabecular-Like Porous Structure with Mixed Porosity Based on Mechanical Topology. Journal of Functional Biomaterials, 14(1), 28. https://doi.org/10.3390/jfb14010028