An In Vitro Study of Chitosan-Coated Bovine Pericardium as a Dural Substitute Candidate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bovine Pericardium Tissue Preparation
2.3. Bovine Pericardium Coating
2.4. Morphological Analysis Using Scanning Electron Microscope (SEM)
2.5. Fourier Transform Infrared (FTIR) Spectroscopy
2.6. Tensile Strength Test
2.7. Water Retention Test/Swelling Ratio
2.8. Degradation Test
2.9. Cytotoxicity Test
2.10. Statistical Analysis
3. Results
3.1. Morphological Testing Using SEM
3.2. FTIR Spectroscopy
3.3. Tensile Strength and Elongation
3.4. Water Retention Test/Swelling Test
3.5. Degradation
3.6. Cytotoxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ginsberg, L. Lecturer Note Neurology 8th Edition. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1739. [Google Scholar]
- Hobbs, C.G.L.; Darr, A.; Carlin, W.V. Management of intra-operative cerebrospinal fluid leak following endoscopic trans-sphenoidal pituitary surgery. J. Laryngol. Otol. 2011, 125, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Protasoni, M.; Sangiorgi, S.; Cividini, A.; Culuvaris, G.T.; Tomei, G.; Dell’Orbo, C.; Raspanti, M.; Balbi, S.; Reguzzoni, M. The collagenic architecture of human dura mater. J. Neurosurg. 2011, 114, 1723–1730. [Google Scholar] [CrossRef]
- Danish, S.F.; Samdani, A.; Hanna, A.; Storm, P.; Sutton, L. Experience with acellular human dura and bovine collagen matrix for duraplasty after posterior fossa decompression for Chiari malformations. J. Neurosurg. 2006, 104, 16–20. [Google Scholar] [CrossRef]
- MacEwan, M.R.; Kovacs, T.; Osbun, J.; Ray, W.Z. Comparative analysis of a fully-synthetic nanofabricated dura substitute and bovine collagen dura substitute in a large animal model of dural repair. Interdiscip. Neurosurg. Adv. Tech. Case Manag. 2018, 13, 145–150. [Google Scholar] [CrossRef]
- Kranokpiraksa, P.; Pavcnik, D.; Kakizawa, H.; Uchida, B.T.; Jeromel, M.; Keller, F.S.; Rösch, J. Hemostatic efficacy of chitosan-based bandage for closure of percutaneous arterial access sites: An experimental study in heparinized sheep model. Radiol. Oncol. 2010, 44, 86–91. [Google Scholar] [CrossRef]
- Sandoval-Sánchez, J.H.; Ramos-Zúñiga, R.; Luquín De Anda, S.; López-Dellamary, F.; Gonzalez-Castañeda, R.; Ramírez-Jaimes, J.D.L.C.; Jorge-Espinoza, G. A new bilayer chitosan scaffolding as a dural substitute: Experimental evaluation. World Neurosurg. 2012, 77, 577–582. [Google Scholar] [CrossRef]
- Angtika, R.S.; Widiyanti, P.; Aminatun, A. Bacterial cellulose-chitosan-glycerol biocomposite as artificial dura mater candidates for head trauma. J. Biomim. Biomater. Biomed. Eng. 2018, 36, 7–16. [Google Scholar]
- Pogorielov, M.; Kravtsova, A.; Reilly, G.C.; Deineka, V.; Tetteh, G.; Kalinkevich, O.; Pogorielova, O.; Moskalenko, R.; Tkach, G. Experimental evaluation of new chitin–chitosan graft for duraplasty. J. Mater. Sci. Mater. Med. 2017, 28, 34. [Google Scholar] [CrossRef]
- Widiyanti, P.; Jabbar, H.; Rudyardjo, D.I. Effects of variation of chitosan concentration on the characteristics of membrane cellulose bacteria-chitosan biocomposites as candidates for artificial dura mater. AIP Conf. Proc. 2017, 1817, 020011. [Google Scholar]
- Santos, M.H.; Silva, R.M.; Dumont, V.C.; Neves, J.S.; Mansur, H.S.; Heneine, L.G.D. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications. Mater. Sci. Eng. C 2013, 33, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Gallyamov, M.O.; Chaschin, I.S.; Khokhlova, M.A.; Grigorev, T.E.; Bakuleva, N.P.; Lyutova, I.G.; Kondratenko, J.E.; Badun, G.A.; Chernysheva, M.G.; Khokhlov, A.R. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves. Mater. Sci. Eng. C 2014, 37, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Nie, B.; Stutzman, J.; Xie, A. A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys. J. 2005, 88, 2833–2847. [Google Scholar] [CrossRef]
- Agrawal, P.; Pramanik, K. Fabrication of chitosan-based nanofibrous scaffold using free surface electrospinning for tissue engineering application. Bioteknologi 2017, 14, 60–70. [Google Scholar]
- Liao, C.J.; Wang, W.H.; Liang, H.C.; Su, Y.C.; Hsu, P.C.; Wang, Y.M.; Tsai, Y.-H.; Chen, Y.; Tseng, S.-H. A novel foamy collagen as a dural substitute. Biomed. Eng.-Appl. Basis Commun. 2014, 26, 1450066. [Google Scholar] [CrossRef]
- Suroto, N.S.; Al Fauzi, A.; Widiyanti, P.; Bella, F.R. Biocompatibility Evaluation of Electrospun Poly-L lactic Acid-Chitosan Immobilizied with Heparin as Scaffold for Vascular Tissue Repair. J. Sci. Adv. Mater. Devices 2023, 8, 100594. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Kirsner, R. Pathophysiology of acute wound healing. Clin. Dermatol. 2007, 25, 9–18. [Google Scholar] [CrossRef]
- Ishihara, T.; Ferrans, V.J.; Jones, M.; Boyce, S.W.; Roberts, W.C. Structure of bovine parietal pericardium and of unimplanted Ionescu-Shiley pericardial valvular bioprostheses. J. Thorac. Cardiovasc. Surg. 1981, 81, 747–757. [Google Scholar] [CrossRef]
- Stieglmeier, F.; Grab, M.; König, F.; Büch, J.; Hagl, C.; Thierfelder, N. Mapping of bovine pericardium to enable a standardized acquirement of material for medical implants. J. Mech. Behav. Biomed. Mater. 2021, 118, 104432. [Google Scholar] [CrossRef]
- Bružauskaitė, I.; Bironaitė, D.; Bagdonas, E.; Bernotienė, E. Scaffolds and cells for tissue regeneration: Different scaffold pore sizes—Different cell effects. Cytotechnology 2016, 68, 355–369. [Google Scholar] [CrossRef]
- Fiqrianti, I.A.; Widiyanti, P.; Cahyani, N.R.; Bella, F.R. Poly-L-lactic Acid (PLLA)-Chitosan-Collagen Electrospun Tube for Vascular Graft Application. J. Funct. Biomater. 2018, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Qian, H.; Liu, Y.; Liu, J.; Zhao, R.; Yang, X.; Zhu, X.; Chen, R.; Zhang, X. Application of osteoinductive calcium phosphate ceramics in children’s endoscopic neurosurgery: Report of five cases. Regen. Biomater. 2018, 5, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Zhuravlova, I.P.; Vovk, Y.N. Biomechanical properties of cerebral falx of human dura mater in adult human. Surg. Donnbass 2012, 64–68. [Google Scholar]
- Kizmazoglu, C.; Aydin, H.E.; Kaya, I.; Atar, M.; Husemoglu, B.; Kalemci, O.; Sozer, G.; Havitcioglu, H. Comparison of biomechanical properties of dura mater substitutes and cranial human dura mater: An in vitro study. J. Korean Neurosurg. Soc. 2019, 62, 635–642. [Google Scholar] [CrossRef]
- Thomas, M.S.; Pillai, P.K.S.; Faria, M.; Cordeiro, N.; Barud, H.; Thomas, S.; Pothen, L.A. Electrospun polylactic acid-chitosan composite: A bio-based alternative for inorganic composites for advanced application. J. Mater. Sci. Mater. Med. 2018, 29, 137. [Google Scholar] [CrossRef]
- Deng, W.; Tan, Y.; Riaz Rajoka, M.S.; Xue, Q.; Zhao, L.; Wu, Y. A new type of bilayer dural substitute candidate made up of modified chitin and bacterial cellulose. Carbohydr. Polym. 2021, 256, 117577. [Google Scholar] [CrossRef]
- Amaral, J.B.C.G.; Ratnasari, D.; Trisanti, P.N.; Sumarno, S.; Ningrum, E.O. Pengaruh Perubahan Suhu Pada Properti Adsorpsi Dan Desorpsi Thermosensitive NIPAM-Co-DMAAPS Gel. In Seminar Nasional Teknik Kimia “Kejuangan”; 2016; Available online: http://jurnal.upnyk.ac.id/index.php/kejuangan/article/view/1530/1403 (accessed on 29 August 2023).
- Johansson, B.; Alderborn, G. The effect of shape and porosity on the compression behaviour and tablet forming ability of granular materials formed from microcrystalline cellulose. Eur. J. Pharm. Biopharm. 2001, 52, 347–357. [Google Scholar] [CrossRef]
- Horowitz, G.; Fliss, D.M.; Margalit, N.; Wasserzug, O.; Gil, Z. Association between cerebrospinal fluid leak and meningitis after skull base surgery. Otolaryngol.-Head Neck Surg. 2011, 145, 689–693. [Google Scholar] [CrossRef]
- Couture, D.; Branch, C.L., Jr. Spinal pseudomeningoceles and cerebrospinal fluid fistulas. Neurosurg. Focus 2003, 15, E6. [Google Scholar] [CrossRef]
- Burke, G.; Barron, V.; Geever, T.; Geever, L.; Devine, D.M.; Higginbotham, C.L. Evaluation of the materials properties, stability and cell response of a range of PEGDMA hydrogels for tissue engineering applications. J. Mech. Behav. Biomed. Mater. 2019, 99, 1–10. [Google Scholar] [CrossRef]
- Popvic, A.; Drljaca, J.; Popovic, M. Mitochondrial energy metabolism in baby hamster kidney (BHK-21/C13) Cells treated with karnozin EXTRA. Int. J. Morphol. 2022, 40, 91–97. [Google Scholar] [CrossRef]
- Veronika, D.; Florian, P.; Aline, Z.; Beer, M.; Eschbaumer, M. Adherent and suspension baby hamster kidney cells have a different cytoskeleton and surface receptor repertoire. PLoS ONE 2021, 16, e0246610. [Google Scholar]
- Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A. Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr. Polym. 2011, 84, 477–483. [Google Scholar] [CrossRef]
- Azuma, K.; Osaki, T.; Minami, S.; Okamoto, Y. Anticancer and Anti-Inflammatory Properties of Chitin and Chitosan Oligosaccharides. J. Funct. Biomater. 2015, 6, 33–49. [Google Scholar] [CrossRef]
- Lastauskiene, E.; Zinkevičiene, A.; Girkontaite, I.; Kaunietis, A.; Kvedariene, V. Formic acid and acetic acid induce a programmed cell death in pathogenic Candida species. Curr. Microbiol. 2014, 69, 303–310. [Google Scholar] [CrossRef]
Sample | Concentration of Chitosan (w/v)% |
---|---|
A (BP without chitosan coating) | 0 |
B (BP, with chitosan coating) | 0.25 |
C (BP, with chitosan coating) | 0.5 |
D (BP, with chitosan coating) | 0.75 |
E (BP, with chitosan coating) | 1 |
Sample | A (mm2) | Fmax (N) | Elongation/Strains (%) | UTS (MPa) |
---|---|---|---|---|
Control (bovine pericardium) | 2.42 | 53.559419 | 60.28290289 | 22.30212767 |
Sample A (bovine pericardium + chitosan 0.25%) | 1.918 | 5.59415514 | 20.31215049 | 2.8540068 |
Sample B (bovine pericardium + chitosan 0.5%) | 1.0272 | 5.265274 | 19.69608871 | 2.7258298 |
Sample C (bovine pericardium + chitosan 0.75%) | 1.04 | 3.687771 | 22.15770568 | 2.8183967 |
Sample D (bovine pericardium + chitosan 1%) | 1.1656 | 1.896028 | 11.98032766 | 1.7334682 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fauzi, A.A.; Fauza, J.; Suroto, H.; Parenrengi, M.A.; Suryaningtyas, W.; Widiyanti, P.; Suroto, N.S.; Utomo, B.; Wahid, B.D.J.; Bella, F.R.; et al. An In Vitro Study of Chitosan-Coated Bovine Pericardium as a Dural Substitute Candidate. J. Funct. Biomater. 2023, 14, 488. https://doi.org/10.3390/jfb14100488
Fauzi AA, Fauza J, Suroto H, Parenrengi MA, Suryaningtyas W, Widiyanti P, Suroto NS, Utomo B, Wahid BDJ, Bella FR, et al. An In Vitro Study of Chitosan-Coated Bovine Pericardium as a Dural Substitute Candidate. Journal of Functional Biomaterials. 2023; 14(10):488. https://doi.org/10.3390/jfb14100488
Chicago/Turabian StyleFauzi, Asra Al, Joandre Fauza, Heri Suroto, Muhammad Arifin Parenrengi, Wihasto Suryaningtyas, Prihartini Widiyanti, Nur Setiawan Suroto, Budi Utomo, Billy Dema Justia Wahid, Fitria Renata Bella, and et al. 2023. "An In Vitro Study of Chitosan-Coated Bovine Pericardium as a Dural Substitute Candidate" Journal of Functional Biomaterials 14, no. 10: 488. https://doi.org/10.3390/jfb14100488
APA StyleFauzi, A. A., Fauza, J., Suroto, H., Parenrengi, M. A., Suryaningtyas, W., Widiyanti, P., Suroto, N. S., Utomo, B., Wahid, B. D. J., Bella, F. R., & Firda, Y. (2023). An In Vitro Study of Chitosan-Coated Bovine Pericardium as a Dural Substitute Candidate. Journal of Functional Biomaterials, 14(10), 488. https://doi.org/10.3390/jfb14100488