Green Biodegradable Polylactide-Based Polyurethane Triblock Copolymers Reinforced with Cellulose Nanowhiskers
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Experimental Procedure
2.2.1. Production of BC Nanofibers
2.2.2. Preparation of BCNW
2.2.3. Synthesis of PL-PEG-PL Triblock Copolymer (TB)
2.2.4. Purification and Recovery of TB Copolymers
2.2.5. Synthesis of TB-BDI Pre-Polymer
2.2.6. Synthesis of Triblock Polyurethane Polymers (TBPUs)
2.2.7. Preparation of Polymer Films
2.2.8. Preparation of TBPU/BCNW Nanocomposites
2.3. Characterization Techniques
2.3.1. Fourier Transform Infra-Red Spectroscopy (FTIR/ATR)
2.3.2. H-NMR Spectra
2.3.3. Gel Permeation Chromatography (GPC)
2.3.4. Differential Scanning Calorimetry (DSC)
2.3.5. Water Content Measurements
2.3.6. Contact Angle Measurements
2.3.7. Biodegradation
2.3.8. Field Emission Scanning Electron Microscopy (FE-SEM)
2.3.9. Mechanical Testing
3. Results and Discussion
3.1. Synthesis of Triblock (PL-PEG-PL) and PUs
3.2. Characterization of PL-PEG-PL and PUs
3.3. Water Absorption and Contact Angle Testing of TBPUs
3.4. Degradation and Associated Morphological Changes
3.5. Thermal Properties of TBPUs Copolymers
3.6. Mechanical Properties of TB and TBPUs copolymers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. 1H-NMR (CDCl3) Chemical Shifts in Figure 3 and Figure 4
Code Name of the Hydrogen | Chemical Shift δ (ppm) | Kind of Hydrogen |
f | 1.41–1.52 | γ -(CH2)- of PCL |
a | 1.57 | -CH3 of PL |
e + g | 1.58–1.65 | β and δ -(CH2)- of PCL |
d | 2.3 | α -(CH2)- of PCL |
b | 3.65 | -(CH2)- of PEG |
c + h | 4.35–4.4 | ω-(CH2)- of PCL |
d | 5.1–5.25 | -CH-O- of PL |
References
- Gunatillake, P.; Mayadunne, R.; Adhikari, R. Recent Developments in Biodegradable Synthetic Polymers. Biotechnol. Annu. Rev. 2006, 12, 301–347. [Google Scholar] [PubMed]
- Barnes, C.; Sell, S.; Boland, E.; Simpson, D.L.; Bowlin, G. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 2007, 59, 1413. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, C.; Athanasiou, K. Technique to control pH in vicinity of biodegrading PLA-PGA Implants. J. Biomed. Mater. Res. 1997, 38, 105. [Google Scholar] [CrossRef]
- Ara, M.; Watanabe, M.; Imai, Y. Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials 2002, 23, 2479–2483. [Google Scholar] [CrossRef]
- Jaganjac, M.; Milkovi, L.; Cipak, A.; Mozeti, M.; Recek, N. Cell adhesion on hydrophobic polymer surfaces. Mater. Technol. 2012, 461, 53–56. [Google Scholar]
- Loh, X.J.; Tan, K.K.; Li, X.; Li, J. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials 2006, 27, 1841. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Beckman, E.J.; Piesco, N.P.; Agarwal, S. A new peptide-based urethane polymer: Synthesis, biodegradation, and potential to support cell growth in vitro. Biomaterials 2000, 21, 1247. [Google Scholar] [CrossRef] [Green Version]
- Skarja, G.A.; Woodhouse, K.A. Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J. Appl. Polym. Sci. 2000, 75, 1522–1534. [Google Scholar] [CrossRef]
- Skarja, G.A.; Woodhouse, K.A. In vitro degradation and erosion of degradable, segmented polyurethanes containing an amino acid-based chain extender. J. Biomater. Sci. Polym. Ed. 2001, 12, 851–873. [Google Scholar] [CrossRef]
- Asplund, J.O.; Bowden, T.; Mathisen, T.; Hilborn, J. Synthesis of highly elastic biodegradable poly(urethane urea). Biomacromolecules 2007, 8, 905–911. [Google Scholar] [CrossRef]
- Ding, M.; Zhou, L.; Fu, X.; Tan, H.; Li, J.; Fu, Q. Biodegradable gemini multiblock poly (ε-caprolactone urethane)s toward controllable micellization. Soft Matter 2010, 6, 2087. [Google Scholar] [CrossRef]
- Lu, J.; Ma, S.; Sun, J.; Xia, C.; Liu, C.; Wang, Z.; Zhao, X.; Gao, F.; Gong, Q.; Song, B.; et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials 2009, 30, 2919. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Jorfi, M.; Foster, E.J. Recent advances in nanocellulose for biomedical applications. A Review. J. Appl. Polym. Sci. 2015, 132, 41719. [Google Scholar] [CrossRef]
- Wu, X.; Moon, R.J.; Martini, A. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation. Cellulose 2013, 20, 43–55. [Google Scholar] [CrossRef]
- Guo, X.; Tan, J.; Kim, S.; Zhang, L.; Zhang, Y.; Hedrick, J.; Yang, Y.; Qian, Y. Computational studies on self-assembled paclitaxel structures: Templates for hierarchical block copolymer assemblies and sustained drug release. Biomaterials 2009, 30, 6556. [Google Scholar] [CrossRef]
- Spaans, C.J.; de Groot, J.H.; Dekens, F.G.; Pennings, A.J. High molecular weight polyurethanes and a polyurethane urea based on 1,4-butanediisocyanate. Polym. Bull. 1998, 41, 131–138. [Google Scholar] [CrossRef]
- Sani, A.; Dahman, Y. Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods. J. Chem. Technol. Biotechnol. 2010, 85, 151–164. [Google Scholar] [CrossRef]
- Al-Abdallah, W.; Dahman, Y. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues. J. Chem. Technol. Biol. 2013, 36, 1735–1743. [Google Scholar] [CrossRef]
- Hirai, A.; Inui, O.; Horii, F.; Tsuji, M. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 2009, 25, 497–502. [Google Scholar] [CrossRef]
- Leenslag, J.W.; Pennings, A.J. Synthesis of high-molecular-weight poly(L-lactide) initiated with tin 2-ethylhexanoate. Makromol. Chem. 1987, 188, 1809–1814. [Google Scholar] [CrossRef]
- Fortunati, E.; Rinaldi, S.; Peltzer, M.; Bloise, N.; Visai, L.; Armentano, I.; Jiménez, A.; Latterini, L.; Kenny, J. Nano-Biocomposite Films with Modified Cellulose Nanocrystals and Synthesized Silver Nanoparticles. Carbohydr. Polym. 2014, 101, 1122–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izunobi, J.; Higginbotham, C.L. Polymer Molecular Weight Analysis by 1H-NMR Spectroscopy. J. Chem. Educ. 2011, 88, 1098–1104. [Google Scholar] [CrossRef]
- Painter, P.C.; Coleman, M.M. Fundamentals of Polymer Science: An Introductory Text, 2nd ed.; Technomic Pub. Co.: Lancaster, PA, USA, 1997; pp. 339–394. [Google Scholar]
- Wang, H.L.; Zhang, Y.; Tian, M.; Zhai, L.F.; Wei, Z.; Shi, T.J. Preparation and degradability of poly(lactic acid)–poly(ethylene glycol)–poly(lactic acid)/SiO2 hybrid material. J. Appl. Polym. Sci. 2008, 110, 3985–3989. [Google Scholar] [CrossRef]
- Lang, M.; Bei, J.; Wang, S. Synthesis and characterization of polycaprolactone/poly(ethylene oxide)/polylactide tri-component copolymers. J. Biomater. Sci. Polym. 1999, 10, 501–512. [Google Scholar] [CrossRef]
- Ali, F.B.; Kang, D.J.; Kim, M.P.; Cho, C.-H.; Kim, B.J. Synthesis of biodegradable and flexible, polylactic acid based, thermoplastic polyurethane with high gas barrier properties. Polym. Int. 2014, 63, 1620–1626. [Google Scholar] [CrossRef]
- Rashkov, I.; Manolova, N.; Li, S.M.; Espartero, J.L.; Vert, M. Synthesis, Characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(L-lactic acid) chains. Macromolecules 1996, 29, 50–56. [Google Scholar] [CrossRef]
- Li, S.M.; Rashkov, I.; Espartero, J.L.; Manolova, N.; Vert, M. Synthesis, Characterization, and Hydrolytic Degradation of PLA/PEO/PLA Triblock Copolymers with Long Poly(L-lactic acid) Blocks. Macromolecules 1996, 29, 57–62. [Google Scholar] [CrossRef]
- Youxin, L.; Kissel, T. Synthesis and properties of biodegradable ABA triblock copolymers consisting of poly(L-lactic acid) or poly(L-lactic-co-glycolic acid) A-blocks attached to central poly(oxyethylene) B-blocks. J. Control. Release 1993, 27, 247–257. [Google Scholar] [CrossRef]
- Kulkarni, R.K.; Pani, K.C.; Neuman, C.; Leonard, F. Biodegradable polylactic acid. Biomed. Mater. Res. 1971, 5, 169. [Google Scholar] [CrossRef]
- Luo, B.H.; Zhou, C.R.; Chen, Y.K.; Li, L.H.; Jiao, Y.P. Preliminary study of a novel amphiphilic crosslinked copolymer based on biodegradable crosslinking agent, macromonomer and NVP. Chin. J. Funct. Polym. 2005, 18, 299. [Google Scholar]
- Fukuzaki, H.; Yoshida, M.; Asano, M.; Kumakura, M.; Mashimo, T.; Yuasa, H.; Imai, K.; Yamanaka, H. Synthesis of low-molecular-weight copoly(L-lactic acid/ε-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers. Polymer 1990, 31, 2006. [Google Scholar] [CrossRef]
- Zhang, C.H.; Zhao, K.J.; Hu, T.Y.; Cui, X.F.; Brown, N.; Boland, T. Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes. J. Control. Release 2008, 131, 128–136. [Google Scholar] [CrossRef]
- Li, H.Y.; Chang, J. pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Compos. Sci. Technol. 2005, 65, 2226–2232. [Google Scholar] [CrossRef]
- Umare, S.S.; Chandure, A.S. Synthesis, characterization and biodegradation studies of poly (ester urethane). Chem. Eng. J. 2008, 142, 65–77. [Google Scholar] [CrossRef]
- Ding, M.; Li, J.H.; Fu, X.T.; Zhou, J.; Tan, H.; Gu, Q.; Fu, Q. Synthesis, Degradation, and Cytotoxicity of Multiblock Poly(ε-caprolactone urethane)s Containing Gemini Quaternary Ammonium Cationic Groups. Biomacromolecules 2009, 10, 2857–2865. [Google Scholar] [CrossRef] [PubMed]
- Härkönen, M.; Hiltunen, K.; Malin, M.; Seppälä, J. Properties and polymerization of biodegradable thermoplastic poly(ester-urethane). J.M.S.-Pure Appl. Chem. 1995, 32, 857–862. [Google Scholar] [CrossRef]
- Mariano, M.; Kissi, N.E.; Dufresne, A. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J. Polym. Sci. Part B Polym. Phys 2014, 52, 791–806. [Google Scholar] [CrossRef]
- Nakhoda, H.; Dahman, Y. Novel biodegradable polyurethanes reinforced with green nanofibers for applications in tissue engineering. Synthesis and characterization. Can. J. Chem. Eng. 2014, 92, 1895–1902. [Google Scholar] [CrossRef]
- Nakhoda, H.M.; Dahman, Y. Mechanical properties and biodegradability of porous polyurethanes reinforced with green nanofibers for applications in tissue engineering. Polym. Bull. 2016, 73, 2039–2055. [Google Scholar] [CrossRef]
- Abu Ghalia, M.; Dahman, Y. Fabrication and enhanced mechanical properties of porous PLA/PEG copolymer reinforced with bacterial cellulose nanofibers for soft tissue engineering applications. Polym. Test 2017, 61, 114–131. [Google Scholar] [CrossRef]
Lot | Feed (%w/w) of LA: PEG4000 | Yield (%) | Extraction and Purification Solvents | Color after Purification |
---|---|---|---|---|
TB1 | 98:2 | 72% | CH3Cl//MeOH | Colorless very viscous liquid |
TB2 | 97:3 | 75% | CH3Cl//MeOH | Yellowish viscous liquid |
TB3 | 95:5 | 87% | CH3Cl//MeOH | Brown-semitransparent liquid |
TB4 * | 90:10 | 90% | CH3Cl//ether | Brownish powder |
TB5 * | 80:20 | 92% | CH3Cl//ether | Yellowish powder |
TB6 * | 70:25 | 96% | CH3Cl//ether | White powder |
Lot | Copolymer | Feed (%w/w) of LA: PEG4000 | Molar Ratio of LA/EG | DPPL | Mn PL b | Mn of TB (PLx/PEGy/PLx) | (%) d Content of PEG | % Conversion of LA to PL | ||
---|---|---|---|---|---|---|---|---|---|---|
In Feed | In Product a | (1H-NMR) b | (GPC) c | |||||||
TB1 | PL866-PEG91-PL866 | 98:2 | 14.95 | 9.52 | 866 | 66,682 | 137,346 | 128,700 | 9.9 | 64 |
TB2 | PL551-PEG91-PL551 | 97:3 | 9.80 | 6.06 | 551 | 42,466 | 88,915 | 84,115 | 14.2 | 62 |
TB3 | PL414-PEG91-PL414 | 95:5 | 5.79 | 4.55 | 414 | 31,881 | 67,445 | 62,110 | 18.0 | 78 |
TB4 | PL99-PEG91-PL99 | 90:10 | 1.74 | 1.10 | 99 | 7657 | 19,297 | 19,100 | 47.8 | 63 |
TB5 | PL86-PEG91-PL86 | 80:20 | 1.20 | 0.95 | 86 | 6673 | 17,328 | 16,170 | 51.5 | 74 |
TB6 | PL81-PEG91-PL81 | 70:25 | 0.92 | 0.89 | 81 | 6256 | 16,494 | 15,715 | 52.8 | 97 |
Sample | Mn * | Contact Angle, (θ°) | t30 ** (min) | % Weight Loss (Buffer) | % Weight Loss (Enzyme) |
---|---|---|---|---|---|
homo-PL | 67,500 | 77.7 | - | 3 | 10 |
TBPU-1 | 139,763 | 65.3 | 48 | 5 | 21 |
TBPU-2 | 91,195 | 57.8 | 35 | 7 | 23 |
TBPU-3 | 69,725 | 52.2 | 27 | 12 | 27 |
TBPU-4 | 21,577 | - | - | 47 | 75 |
TBPU-5 | 19,608 | - | - | 52 | 82 |
TBPU-6 | 18,774 | - | - | 56 | 91 |
Polymer | Lot Name | Tensile Strength (MPa) | % Elongation at Break | Young Modulus (MPa) |
---|---|---|---|---|
Homopolymer | PL | 35.58 ± 0.78 | 3.50 ± 0.12 | 3100 ± 36 |
Triblock (TB) | TB1 | 33.66 ± 1.67 | 4.19 ± 0.20 | 4555 ± 56 |
TB2 | 31.75 ± 1.86 | 5.18 ± 0.11 | 5223 ± 36 | |
TB3 | 30.00 ± 1.27 | 7.12 ± 0.41 | 6055 ± 46 | |
Triblock-Polyurethane (TBPU) | TBPU-1 | 30.05 ± 0.77 | 5.34 ± 0.12 | 4100 ± 66 |
TBPU-2 | 29.22 ± 1.13 | 7.22 ± 0.25 | 4531 ± 61 | |
TBPU-3 | 27.00 ± 1.00 | 9.54 ± 0.38 | 5518 ± 69 | |
Nanocomposite TBPU-3/BCNW | 1%w BCNW | 27.55 | 11 | 5323 |
3%w BCNW | 29.00 | 13 | 5014 | |
5%w BCNW | 30.03 | 14 | 4525 | |
7%w BCNW | 31.50 | 15 | 3372 | |
8%w BCNW | 25.12 | 12 | 2315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khattab, M.; Abdel Hady, N.; Dahman, Y. Green Biodegradable Polylactide-Based Polyurethane Triblock Copolymers Reinforced with Cellulose Nanowhiskers. J. Funct. Biomater. 2023, 14, 118. https://doi.org/10.3390/jfb14030118
Khattab M, Abdel Hady N, Dahman Y. Green Biodegradable Polylactide-Based Polyurethane Triblock Copolymers Reinforced with Cellulose Nanowhiskers. Journal of Functional Biomaterials. 2023; 14(3):118. https://doi.org/10.3390/jfb14030118
Chicago/Turabian StyleKhattab, Mohamed, Noha Abdel Hady, and Yaser Dahman. 2023. "Green Biodegradable Polylactide-Based Polyurethane Triblock Copolymers Reinforced with Cellulose Nanowhiskers" Journal of Functional Biomaterials 14, no. 3: 118. https://doi.org/10.3390/jfb14030118
APA StyleKhattab, M., Abdel Hady, N., & Dahman, Y. (2023). Green Biodegradable Polylactide-Based Polyurethane Triblock Copolymers Reinforced with Cellulose Nanowhiskers. Journal of Functional Biomaterials, 14(3), 118. https://doi.org/10.3390/jfb14030118