Effect of Mg Contents on the Microstructure, Mechanical Properties and Cytocompatibility of Degradable Zn-0.5Mn-xMg Alloy
Abstract
:1. Introduction
2. Materials and Characterization
2.1. Alloys Preparation
2.2. Microstructure Analysis
2.3. Mechanical Property Tests
2.4. Immersion and Electrochemical Experiment
2.5. Cytotoxicity Tests
3. Results
3.1. Microstructure of Zn-Mn-Mg Alloys
3.2. Mechanical Properties
3.3. Electrochemical and Immersion Tests
3.4. Cytotoxicity Tests
4. Discussion
5. Conclusions
- The Zn-Mn-Mg alloy was composed of α-Zn, MnZn13, and Mg2Zn11, and magnesium had the effect of refining grain. The average grain sizes were 2.76 μm, 2.31 μm, and 2.23 μm when the magnesium content ranged from low to high;
- The addition of magnesium accelerated the corrosion of the alloy. The main reason is that the galvanic corrosion of Mg2Zn11 and the matrix accelerates the dissolution of the alloys. The average corrosion rates on the 30th day were, respectively, 0.037 mm/y, 0.052 mm/y, and 0.057 mm/y because of the rise in magnesium content;
- All three alloys met the mechanical performance requirements of biodegradable materials. The as-extruded Zn-0.5Mn-0.05Mg alloy showed the best mechanical properties, whereas Zn-0.5Mn-0.5Mg exhibited the highest ultimate tensile strength (369.6 MPa). The fine second phase improved the comprehensive properties of the alloy. On this basis, the comprehensive properties of the alloy can be improved by refining the second phase;
- The addition of magnesium improved the cytocompatibility. On the whole, Zn-0.5Mn-0.2Mg alloy had the best cytocompatibility, followed by Zn-0.5Mn-0.5Mg alloy, and, finally, Zn-0.5Mn-0.05Mg alloy. At present, when zinc alloys are used in orthopedic materials, most problems are related to insufficient strength and slow degradation rates. By adding magnesium, we improve the strength and speed up the degradation rate while also improving the cytocompatibility. Zn-Mn-Mg alloy is an excellent candidate for the future development of orthopedic materials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, P.; Sheng, Y.; Hou, R.; Iqbal, M.; Chen, L.; Li, J. Recent progress on coatings of biomedical magnesium alloy. Smart Mater. Med. 2022, 3, 104–116. [Google Scholar] [CrossRef]
- Venkateswarlu, B.; Sunil, B.R.; Kumar, R.S. Microstructure, mechanical properties and corrosion behavior of Rare Earths (RE) containing Mg-Zn alloy for biomedical applications. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Savaedi, Z.; Motallebi, R.; Mirzadeh, H.; Mehdinavaz Aghdam, R.; Mahmudi, R. Superplasticity of fine-grained magnesium alloys for biomedical applications: A comprehensive review. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101058. [Google Scholar] [CrossRef]
- Henderson, H.B.; Ramaswamy, V.; Wilson-Heid, A.E.; Kesler, M.S.; Allen, J.B.; Manuel, M.V. Mechanical and degradation property improvement in a biocompatible Mg-Ca-Sr alloy by thermomechanical processing. J. Mech. Behav. Biomed. Mater. 2018, 80, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Chaudry, U.M.; Hamad, K.; Jun, T.-S. Investigating the Microstructure, Crystallographic Texture and Mechanical Behavior of Hot-Rolled Pure Mg and Mg-2Al-1Zn-1Ca Alloy. Crystals 2022, 12, 1330. [Google Scholar] [CrossRef]
- Rybalchenko, O.V.; Anisimova, N.Y.; Kiselevsky, M.V.; Rybalchenko, G.V.; Martynenko, N.S.; Bochvar, N.R.; Tabachkova, N.Y.; Shchetinin, I.V.; Shibaeva, T.V.; Konushkin, S.V.; et al. Effect of equal-channel angular pressing on structure and properties of Fe-Mn-C alloys for biomedical applications. Mater. Today Commun. 2022, 30, 103048. [Google Scholar]
- Gambaro, S.; Paternoster, C.; Occhionero, B.; Fiocchi, J.; Biffi, C.A.; Tuissi, A.; Mantovani, D. Mechanical and degradation behavior of three Fe-Mn-C alloys for potential biomedical applications. Mater. Today Commun. 2021, 27, 102250. [Google Scholar] [CrossRef]
- Huang, T.; Cheng, J.; Zheng, Y.F. In vitro degradation and biocompatibility of Fe–Pd and Fe–Pt composites fabricated by spark plasma sintering. Mater. Sci. Eng. C 2014, 35, 43–53. [Google Scholar] [CrossRef]
- Ye, L.; Huang, H.; Sun, C.; Zhuo, X.; Dong, Q.; Liu, H.; Ju, J.; Xue, F.; Bai, J.; Jiang, J. Effect of grain size and volume fraction of eutectic structure on mechanical properties and corrosion behavior of as-cast Zn–Mg binary alloys. J. Mater. Res. Technol. 2022, 16, 1673–1685. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Yu, J.; Liu, X.-F.; Wang, L.-N. Fabrication and characterization of novel biodegradable Zn-Mn-Cu alloys. J. Mater. Sci. Technol. 2018, 34, 1008–1015. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Gao, X.-X.; Chen, H.-T.; Liu, X.-F.; Li, A.; Zhang, H.-J.; Wang, L.-N. Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement. Mater. Sci. Eng. C 2020, 116, 111197. [Google Scholar] [CrossRef]
- Yang, H.; Jia, B.; Zhang, Z.; Qu, X.; Li, G.; Lin, W.; Zhu, D.; Dai, K.; Zheng, Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020, 11, 401. [Google Scholar] [CrossRef] [Green Version]
- Venezuela, J.; Dargusch, M. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019, 87, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Sun, J.; Zhou, F.; Yang, Y.; Chang, R.; Qiu, K.; Pu, Z.; Li, L.; Zheng, Y. Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application. Mater. Des. 2016, 94, 95–104. [Google Scholar] [CrossRef]
- Huang, H.; Liu, H.; Wang, L.; Ren, K.; Yan, K.; Li, Y.; Jiang, J.; Ma, A.; Xue, F.; Bai, J. Multi-interactions of dislocations and refined microstructure in a high strength and toughness Zn-Mg-Mn alloy. J. Mater. Res. Technol. 2020, 9, 14116–14121. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Yu, J.; Liu, X.-F. Microalloyed Zn-Mn alloys: From extremely brittle to extraordinarily ductile at room temperature. Mater. Des. 2018, 144, 343–352. [Google Scholar] [CrossRef]
- Guo, P.; Li, F.; Yang, L.; Bagheri, R.; Zhang, Q.; Li, B.; Cho, K.; Song, Z. Ultra-fine-grained Zn-0.5Mn alloy processed by multi-pass hot extrusion: Grain refinement mechanism and room-temperature superplasticity. Mater. Sci. Eng. A 2019, 748, 262–266. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, X.; Shi, Z.; Gao, X.; Li, H.; Zhao, F.; Wang, J.; Wang, L. Development of a high-strength Zn-Mn-Mg alloy for ligament reconstruction fixation. Acta Biomater. 2021, 119, 485–489. [Google Scholar] [CrossRef]
- Pachla, W.; Przybysz, S.; Jarzębska, A.; Bieda, M.; Sztwiertnia, K.; Kulczyk, M.; Skiba, J. Structural and mechanical aspects of hypoeutectic Zn–Mg binary alloys for biodegradable vascular stent applications. Bioact. Mater. 2021, 6, 26–44. [Google Scholar] [CrossRef]
- Jia, B.; Zhang, Z.; Zhuang, Y.; Yang, H.; Han, Y.; Wu, Q.; Jia, X.; Yin, Y.; Qu, X.; Zheng, Y.; et al. High-strength biodegradable zinc alloy implants with antibacterial and osteogenic properties for the treatment of MRSA-induced rat osteomyelitis. Biomaterials 2022, 287, 121663. [Google Scholar] [CrossRef]
- Duan, J.; Li, L.; Liu, C.; Suo, Y.; Wang, X.; Yang, Y. Novel Zn-2Cu-0.2Mn-xLi (x = 0, 0.1 and 0.38) alloys developed for potential biodegradable implant applications. J. Alloy. Compd. 2022, 916, 165478. [Google Scholar] [CrossRef]
- Guo, H.; Hu, J.; Shen, Z.; Du, D.; Zheng, Y. In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis. Acta Biomater. 2021, 121, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ren, T.; Guo, P.; Yang, L.; Shi, Y.; Sun, W.; Song, Z. Strengthening mechanism and biocompatibility of degradable Zn-Mn alloy with different Mn content. Mater. Today Commun. 2022, 31, 103639. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Y.; Xu, X.; Lu, Y.; Chen, L.; Li, D.; Dai, Y.; Kang, Y.; Yu, K. Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn-0.8%Li-(Mg, Ag) alloys for guided bone regeneration. Mater. Sci. Eng. C 2019, 99, 1021–1034. [Google Scholar] [CrossRef]
- Yang, L.; Guo, P.; Niu, Z.; Li, F.; Song, Z.; Xu, C.; Liu, H.; Sun, W.; Ren, T. Influence of Mg on the mechanical properties and degradation performance of as-extruded Zn-Mg-Ca alloys: In vitro and in vivo behavior. J. Mech. Behav. Biomed. Mater. 2019, 95, 220–231. [Google Scholar] [CrossRef]
- Shi, Z.; Bai, W.; Liu, X.; Zhang, H.; Yin, Y.; Wang, L. Significant refinement of coarse (Fe, Mn)Zn13 phase in biodegradable Zn–1Mn-0.1Fe alloy with minor addition of rare earth elements. Mater. Charact. 2019, 158, 109993. [Google Scholar] [CrossRef]
- Liu, X.; Sun, J.; Yang, Y.; Zhou, F.; Pu, Z.; Li, L.; Zheng, Y. Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn–Mg–Sr alloys as biodegradable metals. Mater. Lett. 2016, 162, 242–245. [Google Scholar] [CrossRef]
- Sek, J.; Vojtěch, D.; Ilov, I.; Michalcov, A.; Maixner, J. Microstructure and mechanical properties of the micrograined hypoeutectic Zn-Mg alloy. Int. J. Miner. Metall. Mater. 2016, 23, 1167. [Google Scholar]
- Zhao, M.; Jin, L.; Dong, J.; Wang, F. Influence of twinning behavior on mechanical property of pure zinc deformed at room temperature. Chin. J. Nonferrous Met. 2018, 28, 1808. [Google Scholar]
- Yue, R.; Zhang, J.; Ke, G.; Jia, G.; Huang, H.; Pei, J.; Kang, B.; Zeng, H.; Yuan, G. Effects of extrusion temperature on microstructure, mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5Fe alloy. Mater. Sci. Eng. C 2019, 105, 110106. [Google Scholar] [CrossRef]
- Guo, P. Reseach on Microstructure Evolution and Performance of Biodegradable Ultrafine-Grained Zn-Mn Alloy. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- He, G.; Liu, Z.; Liu, F. Effects of dislocation slip behaviour and second-phase particles on hot rolled texture of an Al-Cu-Mg alloy with a high Cu/Mg ratio. J. Alloys Compd. 2022, 911, 165085. [Google Scholar] [CrossRef]
- Li, L.; Jiao, H.; Liu, C.; Yang, L.; Suo, Y.; Zhang, R.; Liu, T.; Cui, J. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements. J. Mater. Sci. Technol. 2022, 103, 244–260. [Google Scholar] [CrossRef]
- Liu, X.; Sun, J.; Qiu, K.; Yang, Y.; Pu, Z.; Li, L.; Zheng, Y. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn–1.5Mg alloy. J. Alloys Compd. 2016, 664, 444–452. [Google Scholar] [CrossRef]
- Shuai, C.; Zhong, S.; Dong, Z.; He, C.; Shuai, Y.; Yang, W.; Peng, S. Peritectic-eutectic transformation of intermetallic in Zn alloy: Effects of Mn on the microstructure, strength and ductility. Mater. Charact. 2022, 190, 112054. [Google Scholar] [CrossRef]
- Xiao, C.; Wang, L.; Ren, Y.; Sun, S.; Zhang, E.; Yan, C.; Liu, Q.; Sun, X.; Shou, F.; Duan, J.; et al. Indirectly extruded biodegradable Zn-0.05wt%Mg alloy with improved strength and ductility: In vitro and in vivo studies. J. Mater. Sci. Technol. 2018, 34, 1618–1627. [Google Scholar] [CrossRef]
- Tong, X.; Zhu, L.; Wang, K.; Shi, Z.; Huang, S.; Li, Y.; Ma, J.; Wen, C.; Lin, J. Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications. Acta Biomater. 2022, 142, 361–373. [Google Scholar] [CrossRef]
- Vojtěch, D.; Kubásek, J.; Šerák, J.; Novák, P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011, 7, 3515–3522. [Google Scholar] [CrossRef]
- Kubasek, J.; Vojtěch, D. Zn-based alloys as an alternative biodegradable materials. Proc. Metal 2012, 5, 23–25. [Google Scholar]
- Lou, D.; Zhang, M.; Lv, J.; Li, B.; Wang, X.; Shi, J.; Ren, Y.; Li, H.; Qin, G. Effects of Fe addition on the microstructures and mechanical properties of as-extruded Zn-0.2Mg alloys. J. Alloys Compd. 2022, 896, 162912. [Google Scholar] [CrossRef]
- Li, Z.; Shi, Z.; Hao, Y.; Li, H.; Liu, X.; Volinsky, A.; Zhang, H.; Wang, L. High-performance hot-warm rolled Zn-0.8Li alloy with nano-sized metastable precipitates and sub-micron grains for biodegradable stents. J. Mater. Sci. Technol. 2019, 35, 2618–2624. [Google Scholar] [CrossRef]
- Jiang, J.; Qian, Y.; Huang, H.; Niu, J.; Yuan, G. Biodegradable Zn-Cu-Mn alloy with suitable mechanical performance and in vitro degradation behavior as a promising candidate for vascular stents. Biomater. Adv. 2022, 133, 112652. [Google Scholar] [CrossRef]
Alloy | Mn (wt.%) | Mg (wt.%) | Zn (wt.%) |
---|---|---|---|
Zn-0.5Mn-0.05Mg | 0.51 | 0.05 | Bal. |
Zn-0.5Mn-0.2Mg | 0.52 | 0.21 | Bal. |
Zn-0.5Mn-0.5Mg | 0.50 | 0.43 | Bal. |
Detected Point | Atomic Percentage (%) | Atomic Ratio | |||
---|---|---|---|---|---|
Mn | Mg | Zn | Zn/Mn | Zn/Mg | |
1 | 6.91 | 0 | 93.09 | 13.47 | 0 |
2 | 4.56 | 0 | 95.44 | 20.39 | 0 |
3 | 5.43 | 0 | 94.57 | 17.42 | 0 |
4 | 0 | 14.57 | 85.43 | 0 | 5.86 |
5 | 0 | 16.62 | 83.62 | 0 | 5.03 |
6 | 0 | 14.05 | 85.95 | 0 | 6.12 |
UTS (MPa) | YS (MPa) | Elongation(%) | HV0.2 | Ref. | |
---|---|---|---|---|---|
Zn-0.5Mn-0.05Mg | 336.8 ± 18.0 | 257.3 ± 14.1 | 27.1 ± 6.9 | 88.0 ± 1.7 | This paper |
Zn-0.5Mn-0.2Mg | 340.2 ± 11.6 | 264.1 ± 11.6 | 21.8 ± 4.8 | 92.6 ± 2.1 | This paper |
Zn-0.5Mn-0.5Mg | 369.6 ± 11.2 | 283.3 ± 8.1 | 17.4 ± 2.4 | 96.2 ± 2.7 | This paper |
Zn-0.5Mn | 205.6 ± 1.3 | <160.0 | 37.8 ± 0.2 | <60.0 | [32] |
Point | Element (at.%) | |||||||
---|---|---|---|---|---|---|---|---|
Zn | Ca | K | Cl | P | Mg | O | C | |
1 | 14.2 | 4.2 | 0.1 | 0.3 | 10.0 | 0.6 | 66.3 | 4.1 |
2 | 14.3 | 4.9 | 0 | 0.3 | 10.7 | 0.7 | 63.0 | 6.1 |
3 | 15.6 | 4.6 | 0 | 0.3 | 10.3 | 0.6 | 61.0 | 7.8 |
4 | 12.2 | 3.7 | 0.1 | 0 | 8.8 | 0.6 | 67.1 | 7.5 |
5 | 15.5 | 4.6 | 0 | 0 | 9.9 | 0.6 | 60.0 | 9.5 |
6 | 13.1 | 3.4 | 0.1 | 0 | 10.1 | 0.6 | 67.3 | 5.5 |
7 | 14.5 | 5.2 | 0 | 0 | 10.8 | 0.7 | 63.5 | 5.4 |
8 | 11.7 | 4.2 | 0 | 0 | 9.8 | 0.6 | 67.5 | 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Li, X.; Yang, L.; Zhu, X.; Wang, M.; Song, Z.; Liu, H.H.; Sun, W.; Dong, R.; Yue, J. Effect of Mg Contents on the Microstructure, Mechanical Properties and Cytocompatibility of Degradable Zn-0.5Mn-xMg Alloy. J. Funct. Biomater. 2023, 14, 195. https://doi.org/10.3390/jfb14040195
Yang L, Li X, Yang L, Zhu X, Wang M, Song Z, Liu HH, Sun W, Dong R, Yue J. Effect of Mg Contents on the Microstructure, Mechanical Properties and Cytocompatibility of Degradable Zn-0.5Mn-xMg Alloy. Journal of Functional Biomaterials. 2023; 14(4):195. https://doi.org/10.3390/jfb14040195
Chicago/Turabian StyleYang, Lingbo, Xing Li, Lijing Yang, Xinglong Zhu, Manli Wang, Zhenlun Song, Huinan Hannah Liu, Wensheng Sun, Ruihong Dong, and Jiqiang Yue. 2023. "Effect of Mg Contents on the Microstructure, Mechanical Properties and Cytocompatibility of Degradable Zn-0.5Mn-xMg Alloy" Journal of Functional Biomaterials 14, no. 4: 195. https://doi.org/10.3390/jfb14040195
APA StyleYang, L., Li, X., Yang, L., Zhu, X., Wang, M., Song, Z., Liu, H. H., Sun, W., Dong, R., & Yue, J. (2023). Effect of Mg Contents on the Microstructure, Mechanical Properties and Cytocompatibility of Degradable Zn-0.5Mn-xMg Alloy. Journal of Functional Biomaterials, 14(4), 195. https://doi.org/10.3390/jfb14040195