Plant Gel-Mediated Synthesis of Gold-Coated Nanoceria Using Ferula gummosa: Characterization and Estimation of Its Cellular Toxicity toward Breast Cancer Cell Lines
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Powder Diffraction (XRD)
2.2. Fourier-Transform Infrared Spectroscopy (FTIR)
2.3. Field Emission Scanning Electron Microscopy (FESEM)
2.4. Transmission Electron Microscopy (TEM)
2.5. Dynamic Light Scattering (DLS) and Zeta Potential (ζ Potential)
2.6. Cell Toxicity Properties of Biosynthesized Nanocomposites
3. Materials and Methods
3.1. Instruments and Materials
3.2. Synthesis of Au-Coated Nanoceria (Au/Nanoceria)
3.3. Cellular Toxicity Test
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farhangi, M.J.; Es-Haghi, A.; Yazdi, M.E.T.; Rahdar, A.; Baino, F. MOF-Mediated Synthesis of CuO/CeO2 Composite Nanoparticles: Characterization and Estimation of the Cellular Toxicity against Breast Cancer Cell Line (MCF-7). J. Funct. Biomater. 2021, 12, 53. [Google Scholar] [CrossRef]
- Alabyadh, T.; Albadri, R.; Es-Haghi, A.; Yazdi, M.E.T.; Ajalli, N.; Rahdar, A.; Thakur, V.K. ZnO/CeO2 Nanocomposites: Metal-Organic Framework-Mediated Synthesis, Characterization, and Estimation of Cellular Toxicity toward Liver Cancer Cells. J. Funct. Biomater. 2022, 13, 139. [Google Scholar] [CrossRef] [PubMed]
- Corsi, F.; Caputo, F.; Traversa, E.; Ghibelli, L. Not only redox: The multifaceted activity of cerium oxide nanoparticles in cancer prevention and therapy. Front. Oncol. 2018, 8, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Liu, Y.; Sun, S.; Wang, J.; Li, Q.; Yan, R.; Gao, Y.; Liu, H.; Liu, S.; Hao, W.; et al. Catalytic patch with redox Cr/CeO2 nanozyme of noninvasive intervention for brain trauma. Theranostics 2021, 11, 2806. [Google Scholar] [CrossRef] [PubMed]
- Abid, S.A.; Taha, A.A.; Ismail, R.A.; Mohsin, M. Antibacterial and cytotoxic activities of cerium oxide nanoparticles prepared by laser ablation in liquid. Environ. Sci. Pollut. Res. 2020, 27, 30479–30489. [Google Scholar] [CrossRef]
- Yaghoobi, Z.; Rahdar, A.; Sankar, V.; Amini, N. Exploring the cytotoxicity of CeO2 nanoparticles: A compendious approach. J. Nanoanalysis 2020, 7, 83–95. [Google Scholar]
- Basudan, S.A. Investigating the Effect of Cerium Oxide Nanoparticles in Male Albino Mice Cardiovascular System; King Abdul-Aziz University: Jeddah, Saudi Arabia, 2019. [Google Scholar]
- Ma, H.; Liu, Z.; Koshy, P.; Sorrell, C.C.; Hart, J.N. DFT Investigation of Biocatalytic Mechanisms from pH-Driven, Multi-Enzyme, Biomimetic Behavior in CeO2. arXiv 2021, arXiv:210410994. [Google Scholar]
- Abbas, F.; Iqbal, J.; Maqbool, Q.; Jan, T.; Ullah, M.O.; Nawaz, B.; Nazar, M.; Naqvi, M.S.H.; Ahmad, I. ROS mediated malignancy cure performance of morphological, optical, and electrically tuned Sn doped CeO2 nanostructures. AIP Adv. 2017, 7, 095205. [Google Scholar] [CrossRef] [Green Version]
- Es-Haghi, A.; Yazdi, M.E.T.; Sharifalhoseini, M.; Baghani, M.; Yousefi, E.; Rahdar, A.; Baino, F. Application of Response Surface Methodology for Optimizing the Therapeutic Activity of ZnO Nanoparticles Biosynthesized from Aspergillus niger. Biomimetics 2021, 6, 34. [Google Scholar] [CrossRef]
- Shaikh, S.; Nazam, N.; Rizvi, S.M.D.; Ahmad, K.; Baig, M.H.; Lee, E.J.; Choi, I. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci. 2019, 20, 2468. [Google Scholar] [CrossRef] [Green Version]
- Hoseinzadeh, E.; Makhdoumi, P.; Taha, P.; Hossini, H.; Stelling, J.; Amjad Kamal, M. A review on nano-antimicrobials: Metal nanoparticles, methods and mechanisms. Curr. Drug Metab. 2017, 18, 120–128. [Google Scholar] [CrossRef]
- Mousavi-Kouhi, S.M.; Beyk-Khormizi, A.; Mohammadzadeh, V.; Ashna, M.; Es-Haghi, A.; Mashreghi, M.; Hashemzadeh, V.; Mozafarri, H.; Nadaf, M.; Yazdi, M.E.T. Biological synthesis and characterization of gold nanoparticles using Verbascum speciosum Schrad. and cytotoxicity properties toward HepG2 cancer cell line. Res. Chem. Intermed. 2021, 48, 167–178. [Google Scholar] [CrossRef]
- Shakerimanesh, K.; Bayat, F.; Shahrokhi, A.; Baradaran, A.; Yousefi, E.; Mashreghi, M.; Es-Haghi, A.; Yazdi, M.E.T. Biomimetic synthesis and characterisation of homogenouse gold nanoparticles and estimation of its cytotoxity against breast cancer cell line. Mater. Technol. 2022, 37, 2853–2860. [Google Scholar] [CrossRef]
- Zarharan, H.; Bagherian, M.; Rokhi, A.S.; Bajgiran, R.R.; Yousefi, E.; Heravian, P.; Khazrabig, M.N.; Es-Haghi, A.; Yazdi, M.E.T. The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. Arab. J. Chem. 2023, 16, 104806. [Google Scholar] [CrossRef]
- Mironava, T.; Hadjiargyrou, M.; Simon, M.; Jurukovski, V.; Rafailovich, M.H. Gold nanoparticles cellular toxicity and recovery: Effect of size, concentration and exposure time. Nanotoxicology 2009, 4, 120–137. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Hung, Y.-C.; Liau, I.; Huang, G.S. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 2009, 4, 858. [Google Scholar] [CrossRef] [Green Version]
- Bar-Ilan, O.; Albrecht, R.M.; Fako, V.E.; Furgeson, D.Y. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 2009, 5, 1897–1910. [Google Scholar] [CrossRef]
- Babu, K.S.; Anandkumar, M.; Tsai, T.Y.; Kao, T.H.; Inbaraj, B.S.; Chen, B.H. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. Int. J. Nanomed. 2014, 9, 5515–5531. [Google Scholar]
- Menchón, C.; Martín, R.; Apostolova, N.; Victor, V.M.; Álvaro, M.; Herance, J.R.; García, H. Gold nanoparticles supported on nanoparticulate ceria as a powerful agent against intracellular oxidative stress. Small 2012, 8, 1895–1903. [Google Scholar] [CrossRef]
- Thovhogi, N.; Diallo, A.; Gurib-Fakim, A.; Maaza, M. Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: Main physical properties. J. Alloys Compd. 2015, 647, 392–396. [Google Scholar] [CrossRef]
- Yazdi, M.E.T.; Darroudi, M.; Amiri, M.S.; Hosseini, H.A.; Nourbakhsh, F.; Mashreghi, M.; Farjadi, M.; Kouhi, S.M.M.; Mousavi, S.H. Anticancer, antimicrobial, and dye degradation activity of biosynthesised silver nanoparticle using Artemisia kopetdaghensis. Micro Nano Lett. 2020, 15, 1046–1050. [Google Scholar] [CrossRef]
- Fouda, A.; Eid, A.M.; Guibal, E.; Hamza, M.F.; Hassan, S.E.-D.; Alkhalifah, D.H.M.; El-Hossary, D. Green Synthesis of Gold Nanoparticles by Aqueous Extract of Zingiber officinale: Characterization and Insight into Antimicrobial, Antioxidant, and In Vitro Cytotoxic Activities. Appl. Sci. 2022, 12, 12879. [Google Scholar] [CrossRef]
- Taghavizadeh Yazdi, M.E.; Hamidi, A.; Amiri, M.S.; Kazemi Oskuee, R.; Hosseini, H.A.; Hashemzadeh, A.; Darroudi, M. Eco-friendly and plant-based synthesis of silver nanoparticles using Allium giganteum and investigation of its bactericidal, cytotoxicity, and photocatalytic effects. Mater. Technol. 2019, 34, 490–497. [Google Scholar] [CrossRef]
- Yazdi, M.E.T.; Khara, J.; Housaindokht, M.R.; Sadeghnia, H.R.; Bahabadi, S.E.; Amiri, M.S.; Mosawee, H.; Taherzadeh, D.; Darroudi, M. Role of Ribes khorassanicum in the biosynthesis of AgNPs and their antibacterial properties. IET Nanobiotechnol. 2018, 13, 189–192. [Google Scholar] [CrossRef]
- Zarei, M.; Karimi, E.; Oskoueian, E.; Es-Haghi, A.; Yazdi, M.E.T. Comparative study on the biological effects of sodium citrate-based and apigenin-based synthesized silver nanoparticles. Nutr. Cancer 2021, 73, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Mobaraki, F.; Momeni, M.; Barghbani, M.; Far, B.F.; Hosseinian, S.; Hosseini, S.M. Extract-mediated biosynthesis and characterization of gold nanoparticles: Exploring their protective effect against cyclophosphamide-induced oxidative stress in rat testis. J. Drug Deliv. Sci. Technol. 2022, 71, 103306. [Google Scholar] [CrossRef]
- Ovais, M.; Raza, A.; Naz, S.; Islam, N.U.; Khalil, A.T.; Ali, S.; Khan, M.A.; Shinwari, Z.K. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl. Microbiol. Biotechnol. 2017, 101, 3551–3565. [Google Scholar] [CrossRef]
- Mohammadzadeh, V.; Barani, M.; Amiri, M.S.; Yazdi, M.E.T.; Hassanisaadi, M.; Rahdar, A.; Varma, R.S. Applications of plant-based nanoparticles in nanomedicine: A review. Sustain. Chem. Pharm. 2022, 25, 100606. [Google Scholar] [CrossRef]
- Nadaf, M.; Halimi Khalil Abad, M.; Gholami, A.; Taghavizadeh Yazdi, M.E.; Iriti, M.; Mottaghipisheh, J. Phenolic content and antioxidant activity of different Iranian populations of Anabasis aphylla L. Nat. Prod. Res. 2022, 20, 1–5. [Google Scholar] [CrossRef]
- Amiri, M.S.; Yazdi, M.E.T.; Rahnama, M. Medicinal plants and phytotherapy in Iran: Glorious history, current status and future prospects. Plant Sci. Today 2021, 8, 95–111. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Venditti, A.; Sarker, S.D.; Nahar, L.; Akbarzadeh, A. The genus Ferula: Ethnobotany, phytochemistry and bioactivities—A review. Ind. Crops Prod. 2019, 129, 350–394. [Google Scholar] [CrossRef]
- Panahi, M.; Banasiak, ł.; Piwczyński, M.; Puchałka, R.; Kanani, M.R.; Oskolski, A.A.; Modnicki, D.; Miłobędzka, A.; Spalik, K. Taxonomy of the traditional medicinal plant genus Ferula (Apiaceae) is confounded by incongruence between nuclear rDNA and plastid DNA. Bot. J. Linn. Soc. 2018, 188, 173–189. [Google Scholar] [CrossRef]
- Javanshir, S.; Soukhtanloo, M.; Jalili-Nik, M.; Yazdi, A.J.; Amiri, M.S.; Ghorbani, A. Evaluation Potential Antidiabetic Effects of Ferula latisecta in Streptozotocin-Induced Diabetic Rats. J. Pharmacopunct. 2020, 23, 158. [Google Scholar] [CrossRef]
- Amiri, M.S.; Joharchi, M.R. Ethnobotanical knowledge of Apiaceae family in Iran: A review. Avicenna J. Phytomedicine 2016, 6, 621. [Google Scholar]
- Amiri, M.S.; Mohammadzadeh, V.; Yazdi, M.E.T.; Barani, M.; Rahdar, A.; Kyzas, G.Z. Plant-based gums and mucilages applications in pharmacology and nanomedicine: A review. Molecules 2021, 26, 1770. [Google Scholar] [CrossRef]
- Nadaf, M.; Amiri, M.S.; Joharchi, M.R.; Omidipour, R.; Moazezi, M.; Mohaddesi, B.; Yazdi, M.E.T.; Mottaghipisheh, J. Ethnobotanical Diversity of Trees and Shrubs of Iran: A Comprehensive Review. Int. J. Plant Biol. 2023, 14, 120–146. [Google Scholar] [CrossRef]
- Amiri, M.S.; Joharchi, M.R.; Nadaf, M.; Nasseh, Y. Ethnobotanical knowledge of Astragalus spp.: The world’s largest genus of vascular plants. Avicenna J. Phytomedicine 2020, 10, 128. [Google Scholar]
- Yazdi, M.E.T.; Nazarnezhad, S.; Mousavi, S.H.; Amiri, M.S.; Darroudi, M.; Baino, F.; Kargozar, S. Gum Tragacanth (GT): A Versatile Biocompatible Material beyond Borders. Molecules 2021, 26, 1510. [Google Scholar] [CrossRef]
- Ghorani-Azam, A.; Mottaghipisheh, J.; Amiri, M.S.; Mashreghi, M.; Hashemzadeh, A.; Haddad-Mashadrizeh, A.; Nourbakhsh, F.; Nadaf, M.; Qayoomian, M.; Yazdi, M.E.T.; et al. Resveratrol-Mediated Gold-Nanoceria Synthesis as Green Nanomedicine for Phytotherapy of Hepatocellular Carcinoma. Front. Biosci. Landmark 2022, 27, 227. [Google Scholar] [CrossRef]
- Nadaf, M.; Joharchi, M.; Amiri, M.S. Ethnomedicinal uses of plants for the treatment of nervous disorders at the herbal markets of Bojnord, North Khorasan Province, Iran. Avicenna J. Phytomedicine 2019, 9, 153. [Google Scholar]
- Mousavi, S.H.; Hosseini, A.; KajaviRad, A.; Bakhtiary, E.; Shahraki, S.; Havakhah, S.; Amiri, M.S. The evaluation and comparing of cytotoxic effects of Ferula gummosa gum, Scutellaria lindbergii, Kelussia odoratissima and Artemisia kopetdaghensis extracts on ACHN cell line. Iran. J. Pharm. Res. IJPR 2017, 16, 1104. [Google Scholar]
- Emami, S.; Nadjafi, F.; Amine, G.; Amiri, M.; Khosravi Mt, N.M. Les espèces de plantes médicinales utilisées par les guérisseurs traditionnels dans la province de Khorasan, nord-est de l’Iran. J. Ethnopharmacol. 2012, 48, 48–59. [Google Scholar]
- Mehrnia, M.; Akaberi, M.; Amiri, M.; Nadaf, M.; Emami, S. Ethnopharmacological studies of medicinal plants in central Zagros, Lorestan Province, Iran. J. Ethnopharmacol. 2021, 280, 114080. [Google Scholar] [CrossRef] [PubMed]
- Fereydouni, N.; Sadeghnia, H.R.; Mobarhan, M.G.; Movaffagh, J.; Rahimi, V.B.; Hashemzadeh, A.; Mardani, Z.; Darroudi, M. Nanoceria: Polyphenol-based green synthesis, mechanism of formation, and evaluation of their cytotoxicity on L929 and HFFF2 cells. J. Mol. Struct. 2019, 1186, 23–30. [Google Scholar] [CrossRef]
- Yazdi, M.E.T.; Darroudi, M.; Amiri, M.S.; Zarrinfar, H.; Hosseini, H.A.; Mashreghi, M.; Mozafarri, H.; Ghorbani, A.; Mousavi, S.H. Antimycobacterial, Anticancer, Antioxidant and Photocatalytic Activity of Biosynthesized Silver Nanoparticles Using Berberis Integerrima. Iran. J. Sci. Technol. Trans. A Sci. 2021, 46, 1–11. [Google Scholar]
- Darroudi, M.; Yazdi, M.E.T.; Amiri, M.S. Plant-Mediated Biosynthesis of Nanoparticles. In 21st Century Nanoscience–A Handbook; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–18. [Google Scholar]
- Mobaraki, F.; Momeni, M.; Yazdi, M.E.T.; Meshkat, Z.; Toosi, M.S.; Hosseini, S.M. Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells. Process Biochem. 2021, 111, 167–177. [Google Scholar] [CrossRef]
- Yazdi, M.E.T.; Nourbakhsh, F.; Mashreghi, M.; Mousavi, S.H. Ultrasound-based synthesis of ZnO·Ag2O3 nanocomposite: Characterization and evaluation of its antimicrobial and anticancer properties. Res. Chem. Intermed. 2021, 47, 1285–1296. [Google Scholar] [CrossRef]
- Sepahi, S.; Gerayli, S.; Delirrad, M.; Yazdi, M.E.T.; Zare-Zardini, H.; Bushehri, B.; Ghorani-Azam, A. Biochemical responses as early and reliable biomarkers of organophosphate and carbamate pesticides intoxication: A systematic literature review. J. Biochem. Mol. Toxicol. 2022, 37, e23285. [Google Scholar] [CrossRef]
- Yazdi, M.E.T.; Amiri, M.S.; Nourbakhsh, F.; Rahnama, M.; Forouzanfar, F.; Mousavi, S.H. Bio-indicators in cadmium toxicity: Role of HSP27 and HSP70. Environ. Sci. Pollut. Res. 2021, 28, 26359–26379. [Google Scholar] [CrossRef]
- Yazdi, M.E.; Amiri, M.S.; Darroudi, M. Biopolymers in the Synthesis of Different Nanostructures. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Mobaraki, F.; Momeni, M.; Jahromi, M.; Kasmaie, F.M.; Barghbani, M.; Yazdi, M.E.T.; Meshkat, Z.; Shandiz, F.H.; Hosseini, S.M. Apoptotic, antioxidant and cytotoxic properties of synthesized AgNPs using green tea against human testicular embryonic cancer stem cells. Process Biochem. 2022, 119, 106–118. [Google Scholar] [CrossRef]
- Seyedi, Z.; Amiri, M.S.; Mohammadzadeh, V.; Hashemzadeh, A.; Haddad-Mashadrizeh, A.; Mashreghi, M.; Qayoomian, M.; Hashemzadeh, M.R.; Simal-Gandara, J.; Yazdi, M.E.T. Icariin: A Promising Natural Product in Biomedicine and Tissue Engineering. J. Funct. Biomater. 2023, 14, 44. [Google Scholar] [CrossRef]
- Yazdi, M.E.T.; Amiri, M.S.; Akbari, S.; Sharifalhoseini, M.; Nourbakhsh, F.; Mashreghi, M.; Yousefi, E.; Abbasi, M.R.; Modarres, M.; Es-Haghi, A. Green synthesis of silver nanoparticles using helichrysum graveolens for biomedical applications and wastewater treatment. BioNanoScience 2020, 10, 1121–1127. [Google Scholar] [CrossRef]
- Taghavizadeh Yazdi, M.Q.; Beigoli, S.; Boskabady, M.H. Recent advances in nanoparticle applications in respiratory disorders: A Review. Front. Pharmacol. 2023, 14, 1059343. [Google Scholar]
- Mousavi-Kouhi, S.M.; Beyk-Khormizi, A.; Amiri, M.S.; Mashreghi, M.; Yazdi, M.E.T. Silver-zinc oxide nanocomposite: From synthesis to antimicrobial and anticancer properties. Ceram. Int. 2021, 47, 21490–21497. [Google Scholar] [CrossRef]
- Tang, J.L.; Moonshi, S.S.; Ta, H.T. Nanoceria: An innovative strategy for cancer treatment. Cell. Mol. Life Sci. 2023, 80, 46. [Google Scholar] [CrossRef]
- Gagnon, J.; Fromm, K.M. Toxicity and protective effects of cerium oxide nanoparticles (nanoceria) depending on their preparation method, particle size, cell type, and exposure route. Eur. J. Inorg. Chem. 2015, 2015, 4510–4517. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Das, S.; Munusamy, P.; Self, W.; Baer, D.R.; Sayle, D.C.; Seal, S. Behavior of nanoceria in biologically-relevant environments. Environ. Sci. Nano 2014, 1, 516–532. [Google Scholar] [CrossRef]
- Rotoli, B.M.; Bussolati, O.; Costa, A.L.; Blosi, M.; Di Cristo, L.; Zanello, P.P.; Bianchi, M.G.; Visigalli, R.; Bergamaschi, E. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages. J. Nanoparticle Res. 2012, 14, 1069. [Google Scholar] [CrossRef]
- Ashna, M.; Es-Haghi, A.; Noghondar, M.K.; Al Amara, D.; Yazdi, M.E.T. Greener synthesis of cerium oxide nanoemulsion using pollen grains of Brassica napus and evaluation of its antitumour and cytotoxicity properties. Mater. Technol. 2022, 37, 525–532. [Google Scholar] [CrossRef]
- Gaiser, B.K.; Fernandes, T.F.; Jepson, M.A.; Lead, J.R.; Tyler, C.R.; Baalousha, M.; Biswas, A.; Britton, G.J.; Cole, P.A.; Johnston, B.D.; et al. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ. Toxicol. Chem. 2011, 31, 144–154. [Google Scholar] [CrossRef]
- De Marzi, L.; Monaco, A.; De Lapuente, J.; Ramos, D.; Borras, M.; Di Gioacchino, M.; Santucci, S.; Poma, A. Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro. Int. J. Mol. Sci. 2013, 14, 3065–3077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Liang, X. Progress in research on gold nanoparticles in cancer management. Medicine 2019, 98, e15311. [Google Scholar] [CrossRef] [PubMed]
- Titus, D.; Samuel, E.J.J.; Roopan, S.M. Nanoparticle characterization techniques. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 303–319. [Google Scholar]
Calculated Values | Experimental Values (Au/Nanoceria) | ||||||
---|---|---|---|---|---|---|---|
No. | h | k | l | d (A) | 2Theta(deg) | d (A) | 2Theta(deg) |
1 | 1 | 1 | 1 | 3.12 | 28.55 | 3.12 | 28.59 |
2 | 2 | 0 | 0 | 2.71 | 33.08 | 2.71 | 33.09 |
3 | 2 | 2 | 0 | 1.91 | 47.49 | 1.92 | 47.43 |
4 | 3 | 1 | 1 | 1.63 | 56.33 | 1.64 | 56.12 |
5 | 2 | 2 | 2 | 1.56 | 59.10 | 1.56 | 59.22 |
6 | 4 | 0 | 0 | 1.35 | 69.41 | 1.35 | 69.68 |
7 | 3 | 3 | 1 | 1.24 | 76.74 | 1.24 | 76.47 |
8 | 4 | 2 | 0 | 1.21 | 79.08 | 1.21 | 78.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi-Kouhi, S.M.; Beyk-Khormizi, A.; Amiri, M.S.; Mashreghi, M.; Hashemzadeh, A.; Mohammadzadeh, V.; Alavi, F.; Mottaghipisheh, J.; Sarafraz Ardakani, M.R.; Taghavizadeh Yazdi, M.E. Plant Gel-Mediated Synthesis of Gold-Coated Nanoceria Using Ferula gummosa: Characterization and Estimation of Its Cellular Toxicity toward Breast Cancer Cell Lines. J. Funct. Biomater. 2023, 14, 332. https://doi.org/10.3390/jfb14070332
Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Hashemzadeh A, Mohammadzadeh V, Alavi F, Mottaghipisheh J, Sarafraz Ardakani MR, Taghavizadeh Yazdi ME. Plant Gel-Mediated Synthesis of Gold-Coated Nanoceria Using Ferula gummosa: Characterization and Estimation of Its Cellular Toxicity toward Breast Cancer Cell Lines. Journal of Functional Biomaterials. 2023; 14(7):332. https://doi.org/10.3390/jfb14070332
Chicago/Turabian StyleMousavi-Kouhi, Seyed Mousa, Abdollah Beyk-Khormizi, Mohammad Sadegh Amiri, Mohammad Mashreghi, Alireza Hashemzadeh, Vahideh Mohammadzadeh, Fariba Alavi, Javad Mottaghipisheh, Mohammad Reza Sarafraz Ardakani, and Mohammad Ehsan Taghavizadeh Yazdi. 2023. "Plant Gel-Mediated Synthesis of Gold-Coated Nanoceria Using Ferula gummosa: Characterization and Estimation of Its Cellular Toxicity toward Breast Cancer Cell Lines" Journal of Functional Biomaterials 14, no. 7: 332. https://doi.org/10.3390/jfb14070332
APA StyleMousavi-Kouhi, S. M., Beyk-Khormizi, A., Amiri, M. S., Mashreghi, M., Hashemzadeh, A., Mohammadzadeh, V., Alavi, F., Mottaghipisheh, J., Sarafraz Ardakani, M. R., & Taghavizadeh Yazdi, M. E. (2023). Plant Gel-Mediated Synthesis of Gold-Coated Nanoceria Using Ferula gummosa: Characterization and Estimation of Its Cellular Toxicity toward Breast Cancer Cell Lines. Journal of Functional Biomaterials, 14(7), 332. https://doi.org/10.3390/jfb14070332