Unveiling the Potential of Rice Straw Nanofiber-Reinforced HDPE for Biomedical Applications: Investigating Mechanical and Tribological Characteristics
Abstract
:1. Introduction
2. Experimental Work
2.1. Nanocomposite Preparation
2.2. Characterization and Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sydow, Z.; Sydow, M.; Wojciechowski, Ł.; Bieńczak, K. Tribological performance of composites reinforced with the agricultural, industrial and post-consumer wastes: A review. Materials 2021, 14, 1863. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yu, J.; Zhang, Z.; Lu, C. Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr. Polym. 2011, 85, 245–250. [Google Scholar] [CrossRef]
- Hassan, M.; Berglund, L.; Hassan, E.; Abou-Zeid, R.; Oksman, K. Effect of xylanase pretreatment of rice straw unbleached soda and neutral sulfite pulps on isolation of nanofibers and their properties. Cellulose 2018, 25, 2939–2953. [Google Scholar] [CrossRef]
- Taha, M.; Hassan, M.; Dewidare, M.; Kamel, M.A.; Ali, W.Y.; Dufresne, A. Evaluation of eco-friendly cellulose and lignocellulose nanofibers from rice straw using Multiple Quality Index. Egypt. J. Chem. 2021, 64, 4707–4717. [Google Scholar] [CrossRef]
- Nabhan, A.; Ameer, A.K.; Rashed, A. Tribological and Mechanical Properties of HDPE Reinforced by Al2O3 Nanoparticles for Bearing Materials. Int. J. Adv. Sci. Technol. 2019, 28, 481–489. [Google Scholar]
- Patil, N.A.; Njuguna, J.; Kandasubramanian, B. UHMWPE for biomedical applications: Performance and functionalization. Eur. Polym. J. 2020, 125, 109529. [Google Scholar] [CrossRef]
- Dowson, D. The History of Tribology in America. 1981. Available online: https://asmedigitalcollection.asme.org/tribology/article-abstract/103/3/323/411403/The-History-of-Tribology-in-America?redirectedFrom=fulltext (accessed on 9 July 2023).
- Di Puccio, F.; Mattei, L. Biotribology of artificial hip joints. World J. Orthop. 2015, 6, 77. [Google Scholar] [CrossRef]
- Yousif, B.F.; Lau, S.T.W.; McWilliam, S. Polyester composite based on betelnut fibre for tribological applications. Tribol. Int. 2010, 43, 503–511. [Google Scholar] [CrossRef]
- Rajkumar, K.; Sirisha, P.; Sankar, M.R. Tribomechanical and Surface Topographical Investigations of Poly Methyl Methacrylate-Seashell Particle based Biocomposite. Procedia Mater. Sci. 2014, 5, 1248–1257. [Google Scholar] [CrossRef] [Green Version]
- Fouly, A.; Nabhan, A.; Badran, A. Mechanical and Tribological Characteristics of PMMA Reinforced by Natural Materials. Egypt. J. Chem. 2022, 65, 543–553. [Google Scholar] [CrossRef]
- Gu, D.; Wang, S.; Zhang, J.; Liu, K.; Chen, S.; Chen, X.; Wang, Z.; Liu, J. Improved Tribological Properties of Poly (methyl methacrylate) Based Composites by the Synergistic Effect of Incorporating Ultra-High Molecular Weight Polyethylene and Heat Treatment. J. Mater. Eng. Perform. 2022, 31, 5898–5905. [Google Scholar] [CrossRef]
- Emre, G.; Akkus, A.; Karamış, M.B. Wear resistance of polymethyl methacrylate (PMMA) with the addition of bone ash, hydroxylapatite and keratin. IOP Conf. Ser. Mater. Sci. Eng. 2018, 295, 12004. [Google Scholar] [CrossRef] [Green Version]
- Gallab, M.; Taha, M.; Rashed, A.; Nabhan, A. Effect of Low Content of Al2O3 Nanoparticles on the Mechanical and Tribological Properties of Polymethyl Methacrylate as a Denture Base Material. Egypt. J. Chem. 2022, 65, 1–9. [Google Scholar] [CrossRef]
- Rashed, A.; Nabhan, A. Influence of adding nano graphene and hybrid SiO2-TiO2 nano particles on tribological characteristics of polymethyl methacrylate (PMMA). KGK-Kautsch. Gummi Kunststoffe 2018, 71, 32–37. [Google Scholar]
- Nabhan, A.; Taha, M.; Ghazaly, N.M. Filler loading effect of Al2O3/TiO2 nanoparticles on physical and mechanical characteristics of dental base composite (PMMA). Polym. Test. 2023, 117, 107848. [Google Scholar] [CrossRef]
- Dubey, U.; Kesarwani, S.; Verma, R.K. Incorporation of graphene nanoplatelets/hydroxyapatite in PMMA bone cement for characterization and enhanced mechanical properties of biopolymer composites. J. Thermoplast. Compos. Mater. 2022, 36, 1978–2008. [Google Scholar] [CrossRef]
- Sharma, V.; Gupta, R.K.; Kailas, S.V.; Basu, B. Probing lubricated sliding wear properties of HDPE/UHMWPE hybrid bionanocomposite. J. Biomater. Appl. 2022, 37, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.; Guezmil, M.; Bensalah, W.; Mezlini, S. Tribocorrosion behavior of 316 L and HDPE composites for orthopedic application. Mater. Today Commun. 2022, 31, 103582. [Google Scholar] [CrossRef]
- Chin, C.W.; Yousif, B.F. Potential of kenaf fibres as reinforcement for tribological applications. Wear 2009, 267, 1550–1557. [Google Scholar] [CrossRef]
- Shuhimi, F.F.; Abdollah, M.F.B.; Kalam, M.A.; Hassan, M.; Amiruddin, H. Tribological characteristics comparison for oil palm fibre/epoxy and kenaf fibre/epoxy composites under dry sliding conditions. Tribol. Int. 2016, 101, 247–254. [Google Scholar] [CrossRef]
- Elshemy, E.A.; Showaib, E.A. Effect of Filler Loading on Erosive Characteristics of Epoxy/SiO2 Coatings. Solid State Technol. 2020, 63, 7824–7833. [Google Scholar]
- Nirmal, U.; Hashim, J.; Low, K.O. Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribol. Int. 2012, 47, 122–133. [Google Scholar] [CrossRef]
- Kulkarni, D.; Musale, S.; Panzade, P.; Paiva-Santos, A.C.; Sonwane, P.; Madibone, M.; Choundhe, P.; Giram, P.; Cavalu, S. Surface functionalization of nanofibers: The multifaceted approach for advanced biomedical applications. Nanomaterials 2022, 12, 3899. [Google Scholar] [CrossRef]
- Chand, N.; Dwivedi, U.K. Effect of coupling agent on abrasive wear behaviour of chopped jute fibre-reinforced polypropylene composites. Wear 2006, 261, 1057–1063. [Google Scholar] [CrossRef]
- Browning, B.L. Methods of Wood Chemistry. Volumes I & II; John Wiley & Sons: New York, NY, USA, 1967. [Google Scholar]
- Sato, A.; Kabusaki, D.; Okumura, H.; Nakatani, T.; Nakatsubo, F.; Yano, H. Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Compos. Part A Appl. Sci. Manuf. 2016, 83, 72–79. [Google Scholar] [CrossRef]
- Hassan, M.L.; Mathew, A.P.; Hassan, E.A.; Fadel, S.M.; Oksman, K. Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. J. Reinf. Plast. Compos. 2014, 33, 26–36. [Google Scholar] [CrossRef]
- Patnaik, P. Dean’s Analytical Chemistry Handbook; McGraw-Hill Education: Singapore, 2004. [Google Scholar]
- Hassan, M.L.; Mathew, A.P.; Hassan, E.A.; El-Wakil, N.A.; Oksman, K. Nanofibers from bagasse and rice straw: Process optimization and properties. Wood Sci. Technol. 2012, 46, 193–205. [Google Scholar] [CrossRef]
- Lengowski, E.C.; de Muñiz, G.I.B.; de Andrade, A.S.; Simon, L.C.; Nisgoski, S. Caracterização morfológica, física e térmica de celuloses microfibriladas. Rev. Árvore 2018, 42. Available online: https://www.scielo.br/j/rarv/a/W6gmFfKNWSGxhzz5kt6pCDR/?format=pdf&lang=en (accessed on 9 July 2023).
- Sjostrom, E. Wood Chemistry: Fundamentals and Applications; Gulf Professional Publishing: Houston, TX, USA, 1993. [Google Scholar]
- Kawamoto, H.; Watanabe, T.; Saka, S. Strong interactions during lignin pyrolysis in wood–a study by in situ probing of the radical chain reactions using model dimers. J. Anal. Appl. Pyrolysis 2015, 113, 630–637. [Google Scholar] [CrossRef]
- An, L.; Shao, Z.; Armstrong, J.N.; Huang, Y.; Hu, Y.; Li, Z.; Faghihi, D.; Ren, S. Hierarchical structural engineering of ultrahigh-molecular-weight polyethylene. ACS Appl. Mater. Interfaces 2020, 12, 50024–50032. [Google Scholar] [CrossRef]
- Pennells, J.; Godwin, I.D.; Amiralian, N.; Martin, D.J. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 2020, 27, 575–593. [Google Scholar] [CrossRef]
- Yasim-Anuar, T.A.T.; Ariffin, H.; Norrrahim, M.N.F.; Hassan, M.A.; Tsukegi, T.; Nishida, H. Sustainable one-pot process for the production of cellulose nanofiber and polyethylene/cellulose nanofiber composites. J. Clean. Prod. 2019, 207, 590–599. [Google Scholar] [CrossRef]
- Mannan, T.M.; Soares, J.B.P.; Berry, R.M.; Hamad, W.Y. In-situ production of polyethylene/cellulose nanocrystal composites. Can. J. Chem. Eng. 2016, 94, 2107–2113. [Google Scholar] [CrossRef]
- Yang, X.; Biswas, S.K.; Han, J.; Tanpichai, S.; Li, M.C.; Chen, C.; Zhu, S.; Das, A.K.; Yano, H. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 2021, 33, 2002264. [Google Scholar] [CrossRef] [PubMed]
- Amini, E.; Hafez, I.; Tajvidi, M.; Bousfield, D.W. Cellulose and lignocellulose nanofibril suspensions and films: A comparison. Carbohydr. Polym. 2020, 250, 117011. [Google Scholar] [CrossRef]
- Rodrigues, M.M.; Baldin, E.K.K.; Fontoura, C.P.; Leidens, L.M.; Barbieri, R.A.; Frassini, R.; de Fraga Malfatti, C.; Roesch-Ely, M.; Figueroa, C.A.; Aguzzoli, C. Correction: Overview of sterilization methods for UHMWPE through surface analysis. Mater. Adv. 2020, 1, 3606. [Google Scholar] [CrossRef]
- Rocha, D.B.; Rosa, D.D.S. Coupling effect of starch coated fibers for recycled polymer/wood composites. Compos. Part B Eng. 2019, 172, 1–8. [Google Scholar] [CrossRef]
- Guo, H.; Xu, T.; Zhou, S.; Jiang, F.; Jin, L.; Song, N.; Ding, P. A technique engineered for improving thermal conductive properties of polyamide-6 composites via hydroxylated boron nitride masterbatch-based melt blending. Compos. Part B Eng. 2021, 212, 108716. [Google Scholar] [CrossRef]
- Mariano, M.; El Kissi, N.; Dufresne, A. Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur. Polym. J. 2015, 69, 208–223. [Google Scholar] [CrossRef]
- Wang, S.; Feng, Q.; Sun, J.; Gao, F.; Fan, W.; Zhang, Z.; Li, X.; Jiang, X. Nanocrystalline cellulose improves the biocompatibility and reduces the wear debris of ultrahigh molecular weight polyethylene via weak binding. ACS Nano 2016, 10, 298–306. [Google Scholar] [CrossRef]
- Hwang, H.J.; Jung, S.L.; Cho, K.H.; Kim, Y.J.; Jang, H. Tribological performance of brake friction materials containing carbon nanotubes. Wear 2010, 268, 519–525. [Google Scholar] [CrossRef]
- Alamri, H.; Low, I.M. Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites. Polym. Compos. 2012, 33, 589–600. [Google Scholar] [CrossRef]
- Sharip, N.S.; Ariffin, H.; Yasim-Anuar, T.A.T.; Andou, Y.; Shirosaki, Y.; Jawaid, M.; Tahir, P.M.; Ibrahim, N.A. Melt-vs. non-melt blending of complexly processable ultra-high molecular weight polyethylene/cellulose nanofiber bionanocomposite. Polymers 2021, 13, 404. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Zhang, P.; Jian, G.; Luo, H.; Yu, X. UHMWPE Modified by Halogenating Reagents: Study on the Improvement of Hydrophilicity and Tribological Properties. Tribol. Trans. 2022, 65, 193–209. [Google Scholar] [CrossRef]
- El-Wakil, N.A.; Kassem, N.F.; Hassan, M.L. Hydroxypropyl cellulose/rice straw oxidized cellulose nanocrystals nanocomposites and their use in paper coating. Ind. Crops Prod. 2016, 93, 186–192. [Google Scholar] [CrossRef]
- Shi, G.; Cao, Z.; Yan, X.; Wang, Q. In-situ fabrication of a UHMWPE nanocomposite reinforced by SiO2 nanospheres and its tribological performance. Mater. Chem. Phys. 2019, 236, 121778. [Google Scholar] [CrossRef]
Injection-Molding Conditions | |
---|---|
Injection temperature | 200 °C |
Mold temperature | 65 °C |
Injection speed (velocity) | 100 rpm |
Injection time | 15 s |
Hold time | 9 s |
Hold pressure | 550 bar |
Load (N) | Friction Coefficient (%) | Wear (%) | ||||||
---|---|---|---|---|---|---|---|---|
HDPE-01 | HDPE-02 | HDPE-03 | HDPE-04 | HDPE-01 | HDPE-02 | HDPE-03 | HDPE-04 | |
2 | 3.8 | 3 | 8.5 | 11.3 | 12.5 | 12.5 | 25 | 37.5 |
4 | 2.2 | 0.5 | 8.7 | 17.3 | 20 | 10 | 30 | 50 |
6 | 5 | 2 | 11.5 | 19 | 25 | 25 | 33.3 | 50 |
8 | 2.013 | 5.4 | 17.4 | 19 | 40 | 46.7 | 46.7 | 60 |
10 | 1.1 | 4 | 11 | 18.2 | 20 | 40 | 46.7 | 53.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, M.; Fouly, A.; Abdo, H.S.; Alnaser, I.A.; Abouzeid, R.; Nabhan, A. Unveiling the Potential of Rice Straw Nanofiber-Reinforced HDPE for Biomedical Applications: Investigating Mechanical and Tribological Characteristics. J. Funct. Biomater. 2023, 14, 366. https://doi.org/10.3390/jfb14070366
Taha M, Fouly A, Abdo HS, Alnaser IA, Abouzeid R, Nabhan A. Unveiling the Potential of Rice Straw Nanofiber-Reinforced HDPE for Biomedical Applications: Investigating Mechanical and Tribological Characteristics. Journal of Functional Biomaterials. 2023; 14(7):366. https://doi.org/10.3390/jfb14070366
Chicago/Turabian StyleTaha, Mohamed, Ahmed Fouly, Hany S. Abdo, Ibrahim A. Alnaser, Ragab Abouzeid, and Ahmed Nabhan. 2023. "Unveiling the Potential of Rice Straw Nanofiber-Reinforced HDPE for Biomedical Applications: Investigating Mechanical and Tribological Characteristics" Journal of Functional Biomaterials 14, no. 7: 366. https://doi.org/10.3390/jfb14070366
APA StyleTaha, M., Fouly, A., Abdo, H. S., Alnaser, I. A., Abouzeid, R., & Nabhan, A. (2023). Unveiling the Potential of Rice Straw Nanofiber-Reinforced HDPE for Biomedical Applications: Investigating Mechanical and Tribological Characteristics. Journal of Functional Biomaterials, 14(7), 366. https://doi.org/10.3390/jfb14070366