Randomized Clinical Trial: Bone Bioactive Liquid Improves Implant Stability and Osseointegration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Study Population Inclusion and Exclusion Criteria
2.3. Clinical Procedures
2.4. Surgical Technique
2.5. RFA and ISQ Measurements
2.6. CBCT Image Analysis Using ImageJ and Ilastik Programs
2.7. Procedures for Measurement of Post-Surgical Pain, Safety, and Discomfort
2.8. Preparation of the Titanium Discs and DPPSCs’ Osteogenic Differentiation
2.9. Atomic Force Microscopy (AFM)
2.10. Scanning Electron Microscopy
2.11. Extracellular Calcium Accumulation and Quantification
2.12. Alkaline Phosphatase (ALP) Activity
2.13. Macrophage Cultures and Levels of Secreted Inflammatory Markers
2.14. Statistical and Analytical Methods
3. Results
3.1. BBL Treatments Reduced VAS
3.2. BBL Treatments Improved the ISQ Values
3.3. CBCT Data Analysis
3.4. Titanium Discs’ Characterization
3.5. DPPSC Osteogenic Differentiation on Discs
3.6. Macrophages’ Inflammatory Marker Levels
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sargozaie, N.; Moeintaghavi, A.; Shojaie, H. Comparing the Quality of Life of Patients Requesting Dental Implants Before and After Implant. Open Dent. J. 2017, 11, 485–491. [Google Scholar] [CrossRef] [PubMed]
- D’Addazio, G.; Xhajanka, E.; Cerone, P.; Santilli, M.; Rexhepi, I.; Caputi, S.; Sinjari, B. Traditional Removable Partial Dentures versus Implant-Supported Removable Partial Dentures: A Retrospective, Observational Oral Health-Related Quality-of-Life Study. Prosthesis 2021, 3, 361–369. [Google Scholar] [CrossRef]
- Mittal, Y.; Jindal, G.; Garg, S. Bone manipulation procedures in dental implants. Indian J. Dent. 2016, 7, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Saini, M.; Singh, Y.; Arora, P.; Arora, V.; Jain, K. Implant biomaterials: A comprehensive review. World J. Clin. Cases 2015, 3, 52–57. [Google Scholar] [CrossRef]
- Parithimarkalaignan, S.; Padmanabhan, T.V. Osseointegration: An update. J. Indian Prosthodont. Soc. 2013, 13, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.; Mehra, D.; Prasad, D. Osseointegrated supported prosthesis—Surgical techniques for hard and soft tissue grafting. J. Dent. Implant. 2014, 4, 72–77. [Google Scholar] [CrossRef]
- Lin, H.K.; Pan, Y.H.; Salamanca, E.; Lin, Y.T.; Chang, W.J. Prevention of Bone Resorption by HA/β-TCP + Collagen Composite after Tooth Extraction: A Case Series. Int. J. Environ. Res. Public Health 2019, 16, 4616. [Google Scholar] [CrossRef] [PubMed]
- Pietrokovski, J.; Massler, M. Alveolar ridge resorption following tooth extraction. J. Prosthet. Dent. 1967, 17, 21–27. [Google Scholar] [CrossRef]
- Ihde, S.; Sipic, O. Functional and Esthetic Indication for Dental Implant Treatment and Immediate Loading (2) Case Report and Considerations: Typical Attitudes of Dentists (and their Unions) toward Tooth Extractions and the Prevention of Early, Effective, and Helpful Dental Implant Treatment in the European Union. Ann. Maxillofac. Surg. 2019, 9, 470–474. [Google Scholar]
- Saleem, M.; Kaushik, M.; Ghai, A.; Tomar, N.; Singh S: Ligaplants:, A. Revolutionary Concept in Implant Dentistry. Ann. Maxillofac. Surg. 2020, 10, 195–197. [Google Scholar] [CrossRef]
- Otsuka, Y.; Kondo, T.; Aoki, H.; Goto, Y.; Kawaguchi, Y.; Waguri-Nagaya, Y.; Miyazawa, K.; Goto, S.; Aoyama, M. IL-1β promotes osteoclastogenesis by increasing the expression of IGF2 and chemokines in non-osteoclastic cells. J. Pharmacol. Sci. 2023, 151, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Li, P.; Yao, Z.; Zhang, Q.; Badell, I.R.; Schwarz, E.M.; O’Keefe, R.J.; Xing, L. TNF-alpha and pathologic bone resorption. Keio J. Med. 2005, 54, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Wajant, H.; Pfeffer, K.; Pfizenmaier, K.; Scheurich, P. Tumor necrosis factors in 1998. Cytokine Growth Factor Rev. 1998, 9, 297–302. [Google Scholar] [PubMed]
- Xu, J.; Yu, L.; Liu, F.; Wan, L.; Deng, Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: A review. Front. Immunol. 2023, 14, 1222129. [Google Scholar] [CrossRef]
- Seymour, G.J.; Gemmell, E. Cytokines in periodontal disease: Where to from here? Acta Odontol. Scand. 2001, 59, 167–173. [Google Scholar] [CrossRef]
- Huang, H.; Wu, G.; Hunziker, E. The clinical significance of implant stability quotient (ISQ) measurements: A literature review. J. Oral Biol. Craniofac. Res. 2020, 10, 629–638. [Google Scholar]
- Lozano-Carrascal, N.; Salomó-Coll, O.; Gilabert-Cerdà, M.; Farré-Pagés, N.; Gargallo-Albiol, J.; Hernández-Alfaro, F. Effect of implant macro-design on primary stability: A prospective clinical study. Med. Oral Patol. Oral Y Cir. Bucal. 2016, 21, e214–e221. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, A.; Saravi, B.; Lang, G.; Adolphs, N.; Hazard, D.; Giers, V.; Stoll, P. Factors Influencing Primary and Secondary Implant Stability—A Retrospective Cohort Study with 582 Implants in 272 Patients. Appl. Sci. 2020, 10, 8084. [Google Scholar] [CrossRef]
- Krischik, D.; Tokgöz, S.E.; van Orten, A.; Friedmann, A.; Bilhan, H. An In Vitro Evaluation of Primary Stability Values for Two Differently Designed Implants to Suit Immediate Loading in Very Soft Bone. Dent. J. 2021, 9, 5. [Google Scholar] [CrossRef]
- Gehrke, S.A.; da Silva Neto, U.T.; Rossetti, P.H.; Watinaga, S.E.; Giro, G.; Shibli, J.A. Stability of implants placed in fresh sockets versus healed alveolar sites: Early findings. Clin. Oral Implant. Res. 2016, 27, 577–582. [Google Scholar] [CrossRef]
- Ivanova, V.; Chenchev, I.; Zlatev, S.; Mijiritsky, E. Correlation between Primary, Secondary Stability, Bone Density, Percentage of Vital Bone Formation and Implant Size. Int. J. Environ. Res. Public Health 2021, 18, 6994. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.G.; Heo, S.J.; Koak, J.Y.; Kim, S.K.; Lee, S.Y. Effect of bone quality and implant surgical technique on implant stability quotient (ISQ) value. J. Adv. Prosthodont. 2011, 3, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Alassah, G.; Darwich, K.; Alkhouli, M.; Al-Nerabieah, Z. Evaluation of implant stability and bone loss using two different early loading protocols: Clinical study. Oral Surgery 2023, 16, 5–12. [Google Scholar] [CrossRef]
- Ayşe Sümeyye, A.; Volkan, A. Dental Implants in the Medically Compromised Patient Population. In Clinical Trials in Vulnerable Populations; Prostran, M., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Wychowański, P.; Starzyńska, A.; Jereczek-Fossa, B.A.; Iwanicka-Grzegorek, E.; Kosewski, P.; Adamska, P.; Woliński, J. The Effects of Smoking Cigarettes on Immediate Dental Implant Stability—A Prospective Case Series Study. Appl. Sci. 2021, 11, 27. [Google Scholar] [CrossRef]
- Ferres-Amat, E.; Al Madhoun, A.; Ferres-Amat, E.; Al Demour, S.; Ababneh, M.A.; Ferres-Padro, E.; Marti, C.; Carrio, N.; Barajas, M.; Atari, M. Histologic and Histomorphometric Evaluation of a New Bioactive Liquid BBL on Implant Surface: A Preclinical Study in Foxhound Dogs. Materials 2021, 14, 1725. [Google Scholar] [CrossRef]
- Ferres-Amat, E.; Al Madhoun, A.; Ferres-Amat, E.; Carrio, N.; Barajas, M.; Al-Madhoun, A.S.; Ferres-Padro, E.; Marti, C.; Atari, M. Comparison of 0.12% Chlorhexidine and a New Bone Bioactive Liquid, BBL, in Mouthwash for Oral Wound Healing: A Randomized, Double Blind Clinical Human Trial. J. Pers. Med. 2022, 12, 1725. [Google Scholar] [CrossRef]
- Kim, D.G.; Elias, K.L.; Jeong, Y.H.; Kwon, H.J.; Clements, M.; Brantley, W.A.; Lee, D.J.; Han, J.S. Differences between buccal and lingual bone quality and quantity of peri-implant regions. J. Mech. Behav. Biomed. Mater. 2016, 60, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Benic, G.I.; Eisner, B.M.; Jung, R.E.; Basler, T.; Schneider, D.; Hammerle, C.H.F. Hard tissue changes after guided bone regeneration of peri-implant defects comparing block versus particulate bone substitutes: 6-month results of a randomized controlled clinical trial. Clin. Oral Implant. Res. 2019, 30, 1016–1026. [Google Scholar] [CrossRef]
- Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.N.; Kausler, B.X.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M.; et al. Ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 2019, 16, 1226–1232. [Google Scholar] [CrossRef]
- Haefeli, M.; Elfering, A. Pain assessment. European spine journal: Official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. Eur. Spine J. 2006, 15, S17–S24. [Google Scholar] [CrossRef]
- Atari, M.; Caballe-Serrano, J.; Gil-Recio, C.; Giner-Delgado, C.; Martinez-Sarra, E.; Garcia-Fernandez, D.A.; Barajas, M.; Hernandez-Alfaro, F.; Ferres-Padro, E.; Giner-Tarrida, L. The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D. Bone 2012, 50, 930–941. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Toldra, R.; Dosta, P.; Montori, S.; Ramos, V.; Atari, M.; Borros, S. Improvement of osteogenesis in dental pulp pluripotent-like stem cells by oligopeptide-modified poly(beta-amino ester)s. Acta Biomater. 2017, 53, 152–164. [Google Scholar] [CrossRef]
- Nunez-Toldra, R.; Martinez-Sarra, E.; Gil-Recio, C.; Carrasco, M.A.; Al Madhoun, A.; Montori, S.; Atari, M. Dental pulp pluripotent-like stem cells (DPPSC), a new stem cell population with chromosomal stability and osteogenic capacity for biomaterials evaluation. BMC Cell Biol. 2017, 18, 21. [Google Scholar] [CrossRef]
- Maher, A.; Nunez-Toldra, R.; Carrio, N.; Ferres-Padro, E.; Ali, H.; Montori, S.; Al Madhoun, A. The Effect of Commercially Available Endodontic Cements and Biomaterials on Osteogenic Differentiation of Dental Pulp Pluripotent-Like Stem Cells. Dent. J. 2018, 6, 48. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, S.; Ahn, C. Sample size considerations for split-mouth design. Stat. Methods Med. Res. 2017, 26, 2543–2551. [Google Scholar] [CrossRef] [PubMed]
- Stadlinger, B.; Lode, A.T.; Eckelt, U.; Range, U.; Schlottig, F.; Hefti, T.; Mai, R. Surface-conditioned dental implants: An animal study on bone formation. J. Clin. Periodontol. 2009, 36, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Valverde, N.; Flores-Fraile, J.; Ramirez, J.M.; Sousa, B.M.; Herrero-Hernandez, S.; Lopez-Valverde, A. Bioactive Surfaces vs. Conventional Surfaces in Titanium Dental Implants: A Comparative Systematic Review. J. Clin. Med. 2020, 9, 2047. [Google Scholar] [CrossRef]
- Oates, T.W.; Valderrama, P.; Bischof, M.; Nedir, R.; Jones, A.; Simpson, J.; Toutenburg, H.; Cochran, D.L. Enhanced implant stability with a chemically modified SLA surface: A randomized pilot study. Int. J. Oral Maxillofac. Implant. 2007, 22, 755–760. [Google Scholar]
- Lech, A.; Butruk-Raszeja, B.A.; Ciach, T.; Lawniczak-Jablonska, K.; Kuzmiuk, P.; Bartnik, A.; Wachulak, P.; Fiedorowicz, H. Surface Modification of PLLA, PTFE and PVDF with Extreme Ultraviolet (EUV) to Enhance Cell Adhesion. Int. J. Mol. Sci. 2020, 21, 9679. [Google Scholar] [CrossRef]
- Elias, C.N.; Oshida, Y.; Lima, J.H.C.; Muller, C.A. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J. Mech. Behav. Biomed. Mater. 2008, 1, 234–242. [Google Scholar] [CrossRef]
- Scarano, A.; Inchingolo, F.; Murmura, G.; Traini, T.; Piattelli, A.; Lorusso, F. Three-Dimensional Architecture and Mechanical Properties of Bovine Bone Mixed with Autologous Platelet Liquid, Blood, or Physiological Water: An In Vitro Study. Int. J. Mol. Sci. 2018, 19, 1230. [Google Scholar] [CrossRef] [PubMed]
- Casado, P.L.; Canullo, L.; de Almeida Filardy, A.; Granjeiro, J.M.; Barboza, E.P.; Leite Duarte, M.E. Interleukins 1beta and 10 expressions in the periimplant crevicular fluid from patients with untreated periimplant disease. Implant. Dent. 2013, 22, 143–150. [Google Scholar] [CrossRef]
- Duarte, P.M.; de Mendonca, A.C.; Maximo, M.B.; Santos, V.R.; Bastos, M.F.; Nociti Junior, F.H. Differential cytokine expressions affect the severity of peri-implant disease. Clin. Oral Implant. Res. 2009, 20, 514–520. [Google Scholar] [CrossRef]
- Moheng, P.; Feryn, J.M. Clinical and biologic factors related to oral implant failure: A 2-year follow-up study. Implant. Dent. 2005, 14, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Li, H.; Chen, G.; Peng, S.; Luo, X.; Xiong, S.; Zhu, H.; Shuai, C. A CuS@g-C3N4 heterojunction endows scaffold with synergetic antibacterial effect. Colloids Surf. B Biointerfaces 2023, 230, 113512. [Google Scholar] [CrossRef] [PubMed]
- Faot, F.; Bielemann, A.M.; Schuster, A.J.; Marcello-Machado, R.M.; Del Bel Cury, A.A.; Nascimento, G.G.; Chagas-Junior, O.L. Influence of Insertion Torque on Clinical and Biological Outcomes before and after Loading of Mandibular Implant-Retained Overdentures in Atrophic Edentulous Mandibles. Biomed. Res. Int. 2019, 2019, 8132520. [Google Scholar] [CrossRef]
- Walker, L.R.; Morris, G.A.; Novotny, P.J. Implant insertional torque values predict outcomes. J. Oral Maxillofac. Surg. 2011, 69, 1344–1349. [Google Scholar] [CrossRef]
- Trisi, P.; Perfetti, G.; Baldoni, E.; Berardi, D.; Colagiovanni, M.; Scogna, G. Implant micromotion is related to peak insertion torque and bone density. Clin. Oral Implant. Res. 2009, 20, 467–471. [Google Scholar] [CrossRef]
- Trisi, P.; Berardini, M.; Falco, A.; Podaliri Vulpiani, M. Validation of value of actual micromotion as a direct measure of implant micromobility after healing (secondary implant stability). An in vivo histologic and biomechanical study. Clin. Oral Implant. Res. 2016, 27, 1423–1430. [Google Scholar] [CrossRef]
- Javed, F.; Romanos, G.E. The role of primary stability for successful immediate loading of dental implants. A literature review. J. Dent. 2010, 38, 612–620. [Google Scholar] [CrossRef]
- Pandis, N.; Walsh, T.; Polychronopoulou, A.; Katsaros, C.; Eliades, T. Split-mouth designs in orthodontics: An overview with applications to orthodontic clinical trials. Eur. J. Orthod. 2013, 35, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, M.E.; Jacobs, R.; Loubele, M.; Schutyser, F.; Suetens, P.; van Steenberghe, D. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clin. Oral Investig. 2006, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pepelassi, E.A.; Tsiklakis, K.; Diamanti-Kipioti, A. Radiographic detection and assessment of the periodontal endosseous defects. J. Clin. Periodontol. 2000, 27, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.; Inou, N.; Takanishi, A.; Miller, A.J. Computer-assisted simulations in orthodontic diagnosis and the application of a new cone beam X-ray computed tomography. Orthod. Craniofac Res. 2003, 6, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Codari, M.; de Faria Vasconcelos, K.; Ferreira Pinheiro Nicolielo, L.; Haiter Neto, F.; Jacobs, R. Quantitative evaluation of metal artifacts using different CBCT devices, high-density materials and field of views. Clin. Oral Implant. Res. 2017, 28, 1509–1514. [Google Scholar] [CrossRef]
- Pauwels, R.; Jacobs, R.; Singer, S.R.; Mupparapu, M. CBCT-based bone quality assessment: Are Hounsfield units applicable? Dento Maxillo Facial Radiol. 2015, 44, 20140238. [Google Scholar] [CrossRef]
- Bornstein, M.M.; Scarfe, W.C.; Vaughn, V.M.; Jacobs, R. Cone beam computed tomography in implant dentistry: A systematic review focusing on guidelines, indications, and radiation dose risks. Int. J. Oral Maxillofac. Implant. 2014, 29, 55–77. [Google Scholar] [CrossRef]
Index | Upper Jaw | Lower Jaw | ||||
---|---|---|---|---|---|---|
Galaxy TSA | Galaxy TS | p-Value | Galaxy TSA | Galaxy TS | p-Value | |
Pain | 1.93 ± 0.39 | 3.41 ± 0.28 | 1.60 × 10−7 | 1.96 ± 0.30 | 2.85 ± 0.31 | 0.00001 |
Time | Upper Jaw | Lower Jaw | ||||
---|---|---|---|---|---|---|
Galaxy TSA | Galaxy TS | p-Value | Galaxy TSA | Galaxy TS | p-Value | |
Day 1 | 52.8 ± 0.41 | 52.72 ± 0.45 | 0.943 | 55.65 ± 0.45 | 55.02 ± 0.55 | 0.397 |
Day 7 | 53.18 ± 0.58 | 51.90 ± 0.38 | 0.020 | 56.88 ± 0.63 | 54.86 ± 0.40 | 0.010 |
Day 30 | 62.00 ± 0.59 | 55.38 ± 0.28 | 5 × 10−8 | 65.38 ± 0.41 | 58.89 ± 0.38 | 8 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Madhoun, A.; Meshal, K.; Carrió, N.; Ferrés-Amat, E.; Ferrés-Amat, E.; Barajas, M.; Jiménez-Escobar, A.L.; Al-Madhoun, A.S.; Saber, A.; Abou Alsamen, Y.; et al. Randomized Clinical Trial: Bone Bioactive Liquid Improves Implant Stability and Osseointegration. J. Funct. Biomater. 2024, 15, 293. https://doi.org/10.3390/jfb15100293
Al Madhoun A, Meshal K, Carrió N, Ferrés-Amat E, Ferrés-Amat E, Barajas M, Jiménez-Escobar AL, Al-Madhoun AS, Saber A, Abou Alsamen Y, et al. Randomized Clinical Trial: Bone Bioactive Liquid Improves Implant Stability and Osseointegration. Journal of Functional Biomaterials. 2024; 15(10):293. https://doi.org/10.3390/jfb15100293
Chicago/Turabian StyleAl Madhoun, Ashraf, Khaled Meshal, Neus Carrió, Eduard Ferrés-Amat, Elvira Ferrés-Amat, Miguel Barajas, Ana Leticia Jiménez-Escobar, Areej Said Al-Madhoun, Alaa Saber, Yazan Abou Alsamen, and et al. 2024. "Randomized Clinical Trial: Bone Bioactive Liquid Improves Implant Stability and Osseointegration" Journal of Functional Biomaterials 15, no. 10: 293. https://doi.org/10.3390/jfb15100293
APA StyleAl Madhoun, A., Meshal, K., Carrió, N., Ferrés-Amat, E., Ferrés-Amat, E., Barajas, M., Jiménez-Escobar, A. L., Al-Madhoun, A. S., Saber, A., Abou Alsamen, Y., Marti, C., & Atari, M. (2024). Randomized Clinical Trial: Bone Bioactive Liquid Improves Implant Stability and Osseointegration. Journal of Functional Biomaterials, 15(10), 293. https://doi.org/10.3390/jfb15100293