Theoretical Model for In Vivo Induction of Chemotherapy Sensitization Using miRNA Packaged in Distinct Layered Liposomes
Abstract
:1. Introduction
2. Gene Delivery
2.1. Fundamentals of Gene Therapy
2.2. RNA Purpose and Stabilization
3. Liposome Synthesis
4. Liposome Purification
5. Liposome PEGylation
6. Laser Usage
7. In Vivo Mechanism of Action
8. Discussion and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2022, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A. Cancer Classification at the Crossroads. Cancers 2020, 12, 980. [Google Scholar] [CrossRef] [PubMed]
- Carcinoma vs. Sarcoma: Location, Prevalence and Prognosis. Available online: https://www.healthline.com/health/carcinoma-vs-sarcoma#location (accessed on 21 April 2024).
- Grünewald, T.G.; Alonso, M.; Avnet, S.; Banito, A.; Burdach, S.; Cidre-Aranaz, F.; Di Pompo, G.; Distel, M.; Dorado-Garcia, H.; Garcia-Castro, J.; et al. Sarcoma Treatment in the Era of Molecular Medicine. EMBO Mol. Med. 2020, 12, e11131. [Google Scholar] [CrossRef]
- Matasar, M.J.; Zelenetz, A.D. Overview of Lymphoma Diagnosis and Management. Radiol. Clin. N. Am. 2008, 46, 175–198. [Google Scholar] [CrossRef]
- Anderson, K.C.; Carrasco, R.D. Pathogenesis of Myeloma. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 249–274. [Google Scholar] [CrossRef]
- About Leukemia. Available online: https://www.health.ny.gov/statistics/cancer/registry/abouts/leukemia.htm (accessed on 21 April 2024).
- Caruso, G.; Nanni, A.; Curcio, A.; Lombardi, G.; Somma, T.; Minutoli, L.; Caffo, M. Impact of Heavy Metals on Glioma Tumorigenesis. Int. J. Mol. Sci. 2023, 24, 15432. [Google Scholar] [CrossRef]
- Cancer Staging—NCI. Available online: https://www.cancer.gov/about-cancer/diagnosis-staging/staging (accessed on 20 April 2024).
- Cancer Staging Systems|ACS. Available online: https://www.facs.org/quality-programs/cancer-programs/american-joint-committee-on-cancer/cancer-staging-systems/ (accessed on 20 April 2024).
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. (Eds.) TNM Classification of Malignant Tumours, 8th ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 20–30. [Google Scholar]
- Goodman, M. Managing the Side Effects of Chemotherapy. Semin. Oncol. Nurs. 2007, 5, 29–52. [Google Scholar] [CrossRef]
- Luqmani, Y.A. Mechanisms of Drug Resistance in Cancer Chemotherapy. Med. Princ. Pract. 2005, 14, 35–48. [Google Scholar] [CrossRef]
- Majeed, H.; Gupta, V. Adverse Effects of Radiation Therapy; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Gomathi, M.; Ayisha Hamna, T.P.; Jijo, A.J.; Saradha Devi, K.M.; Arul, N.; Balachandar, V. Recent Advances in Radiotherapy and Its Associated Side Effects in Cancer—A Review. J. Basic Appl. Zool. 2019, 80, 14. [Google Scholar] [CrossRef]
- Taylor, C.W.; Kirby, A.M. Cardiac Side-Effects From Breast Cancer Radiotherapy. Clin. Oncol. 2015, 27, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R. A Review of Proton Therapy—Current Status and Future Directions. Precis. Radiat. Oncol. 2022, 6, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Lami, M.S.; Ghosh, A.; Das, R.; Tallei, T.E.; Fatimawali; Islam, F.; Dhama, K.; Begum, M.Y.; Aldahish, A.; et al. Hormonal Therapy for Gynecological Cancers: How Far Has Science Progressed toward Clinical Applications? Cancers 2022, 14, 759. [Google Scholar] [CrossRef] [PubMed]
- Luengo-Fernandez, R.; Leal, J.; Gray, A.; Sullivan, R. Economic Burden of Cancer across the European Union: A Population-Based Cost Analysis. Lancet Oncol. 2013, 14, 1165–1174. [Google Scholar] [CrossRef]
- Butterfield, L.H. Cancer Vaccines. BMJ 2015, 350, h998. [Google Scholar] [CrossRef]
- Trapani, J.A.; Smyth, M.J. Functional Significance of the Perforin/Granzyme Cell Death Pathway. Nat. Rev. Immunol. 2002, 2, 735–747. [Google Scholar] [CrossRef]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-γ: An Overview of Signals, Mechanisms and Functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef]
- Folkman, J.; Ingber, D. Inhibition of Angiogenesis. Semin. Cancer Biol. 1992, 3, 89–96. [Google Scholar]
- Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The Challenge of Drug Resistance in Cancer Treatment: A Current Overview. Clin. Exp. Metastasis 2018, 35, 309–318. [Google Scholar] [CrossRef]
- Denham, J.W.; Hauer-Jensen, M. The Radiotherapeutic Injury-a Complex “Wound”. Radiother. Oncol. 2002, 63, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Dobbin, S.J.H.; Cameron, A.C.; Petrie, M.C.; Jones, R.J.; Touyz, R.M.; Lang, N.N. Toxicity of Cancer Therapy: What the Cardiologist Needs to Know about Angiogenesis Inhibitors. Heart 2018, 104, 1995–2002. [Google Scholar] [CrossRef]
- Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for Cancer: A Trigger for Metastases. Cancer Res. 2017, 77, 1548–1552. [Google Scholar] [CrossRef] [PubMed]
- Mueck, A.O.; Seeger, H. Hormone Therapy after Endometrial Cancer. Horm. Res. 2004, 62, 40–48. [Google Scholar]
- Yang, L.; Yu, H.; Dong, S.; Zhong, Y.; Hu, S. Recognizing and Managing on Toxicities in Cancer Immunotherapy. Tumor Biol. 2017, 39, 1010428317694542. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Maggiore, A.; Di Risola, D.; Federico, R.; D’Erme, M.; Francioso, A.; Mosca, L. Natural Deep Eutectic Solvents Protect RNA from Thermal-Induced Degradation. Arch. Biochem. Biophys. 2023, 745, 109714. [Google Scholar] [CrossRef]
- Mattick, J.S.; Makunin, I.V. Non-Coding RNA. Hum. Mol. Genet. 2006, 15, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Bu, P. Non-Coding RNA in Cancer. Essays Biochem. 2021, 65, 625–639. [Google Scholar]
- Wassarman, K.M.; Saecker, R.M. Synthesis-Mediated Release of a Small RNA Inhibitor of RNA Polymerase. Science 2006, 314, 1601–1603. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, D.; Xiong, M.; Zhang, L. Noncoding RNA for Cancer Gene Therapy. In Recent Results in Cancer Research; Springer New York LLC: New York, NY, USA, 2016; Volume 209, pp. 51–60. [Google Scholar]
- Kaur, G.; Gupta, S.K.; Singh, P.; Ali, V.; Kumar, V.; Verma, M. Drug-Metabolizing Enzymes: Role in Drug Resistance in Cancer. Clin. Transl. Oncol. 2020, 22, 1667–1680. [Google Scholar] [CrossRef]
- Iyanagi, T. Molecular Mechanism of Phase I and Phase II Drug-Metabolizing Enzymes: Implications for Detoxification. Int. Rev. Cytol. 2007, 260, 35–112. [Google Scholar]
- Shyu, A.B.; Wilkinson, M.F.; Van Hoof, A. Messenger RNA Regulation: To Translate or to Degrade. EMBO J. 2008, 27, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Hentze, M.W.; Castello, A.; Schwarzl, T.; Preiss, T. A Brave New World of RNA-Binding Proteins. Nat. Rev. Mol. Cell Biol. 2018, 19, 327–341. [Google Scholar] [CrossRef]
- Re, A.; Joshi, T.; Kulberkyte, E.; Morris, Q.; Workman, C.T. RNA–Protein Interactions: An Overview. Methods Mol. Biol. 2014, 1097, 491–521. [Google Scholar] [CrossRef]
- Shade, C.W. Liposomes as Advanced Delivery Systems for Nutraceuticals. Integr. Med. 2016, 15, 33–36. [Google Scholar]
- Zhang, S.; Xu, Y.; Wang, B.; Qiao, W.; Liu, D.; Li, Z. Cationic Compounds Used in Lipoplexes and Polyplexes for Gene Delivery. J. Control. Release 2004, 100, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Simberg, D.; Weisman, S.; Talmon, Y.; Barenholz, Y. DOTAP (and Other Cationic Lipids): Chemistry, Biophysics, and Transfection. Crit. Rev. Ther. Drug Carr. Syst. 2004, 21, 257–317. [Google Scholar] [CrossRef]
- Anderson, D.; Jessee, J.; Fisher Scientific, T. DMRIE-C Reagent for Transfection of Suspension Cells and for RNA Transfections. Focus 1995, 17, 84–87. [Google Scholar]
- Luna, A.C.d.L.; Saraiva, G.K.V.; Chierice, G.O.; Hesse, H.; Maria, D.A. Antiproliferative and Proapoptotic Effects of DODAC/Synthetic Phosphoethanolamine on Hepatocellular Carcinoma Cells. BMC Pharmacol. Toxicol. 2018, 19, 44. [Google Scholar] [CrossRef] [PubMed]
- Doskocz, J.; Dałek, P.; Przybyło, M.; Trzebicka, B.; Foryś, A.; Kobyliukh, A.; Iglič, A.; Langner, M. The Elucidation of the Molecular Mechanism of the Extrusion Process. Materials 2021, 14, 4278. [Google Scholar] [CrossRef]
- Manzoor, S.; Hussain, S.Z.; Amin, T.; Bashir, O.; Naseer, B.; Jabeen, A.; Fayaz, U.; Nisar, N.; Mushtaq, A.; Yousouf, M.; et al. The Use of Extrusion Technology for Encapsulation of Bioactive Components for Their Improved Stability and Bioavailability. Nutr. Food Sci. 2022, 53, 959–976. [Google Scholar] [CrossRef]
- Olson, F.; Hunt, C.; Szoka, F.; Vail, W.; Papahadjopoulos, D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. et Biophys. Acta (BBA) Biomembr. 1979, 557, 9–23. [Google Scholar] [CrossRef]
- Mini-Extruder Extrusion Technique|Avanti Polar Lipids (En-US). Available online: https://avantilipids.com/divisions/equipment-products/mini-extruder-extrusion-technique (accessed on 27 March 2024).
- Zhang, H. Thin-Film Hydration Followed by Extrusion Method for Liposome Preparation. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2017; Volume 1522, pp. 17–22. [Google Scholar]
- Alavizadeh, S.H.; Badiee, A.; Golmohammadzadeh, S.; Jaafari, M.R. The Influence of Phospholipid on the Physicochemical Properties and Anti-Tumor Efficacy of Liposomes Encapsulating Cisplatin in Mice Bearing C26 Colon Carcinoma. Int. J. Pharm. 2014, 473, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Gabizon, A.; Papahadjopoulos, D. Liposome Formulations with Prolonged Circulation Time in Blood and Enhanced Uptake by Tumors. Proc. Natl. Acad. Sci. USA 1988, 85, 6949–6953. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Woo Joo, S.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Haukanes, B.I.; Kvam, C. Application of Magnetic Beads in Bioassays. Biotechnology 1993, 11, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic Nanoparticles: Preparation, Physical Properties, and Applications in Biomedicine. Nanoscale Res. Lett. 2012, 7, 144. [Google Scholar] [CrossRef]
- Idris, A.; Ismail, N.S.M.; Hassan, N.; Misran, E.; Ngomsik, A.F. Synthesis of Magnetic Alginate Beads Based on Maghemite Nanoparticles for Pb(II) Removal in Aqueous Solution. J. Ind. Eng. Chem. 2012, 18, 1582–1589. [Google Scholar] [CrossRef]
- Oliveira, R.R.; Cintra, E.R.; Sousa-Junior, A.A.; Moreira, L.C.; da Silva, A.C.G.; de Souza, A.L.R.; Valadares, M.C.; Carrião, M.S.; Bakuzis, A.F.; Lima, E.M. Paclitaxel-Loaded Lipid-Coated Magnetic Nanoparticles for Dual Chemo-Magnetic Hyperthermia Therapy of Melanoma. Pharmaceutics 2023, 15, 818. [Google Scholar] [CrossRef]
- Heparin Magnetic Particles—CD Bioparticles. Available online: https://www.cd-bioparticles.com/product/heparin-list-241.html (accessed on 17 March 2024).
- Green, M.R.; Sambrook, J. Precipitation of RNA with Ethanol. Cold Spring Harb. Protoc. 2020, 2020, 89–91. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, S.; Lee, J.; Choi, J.; Kim, R.K.; Lee, S.J.; Sul, O.; Lee, S.B. Clogging-Free Microfluidics for Continuous Size-Based Separation of Microparticles. Sci. Rep. 2016, 6, 26531. [Google Scholar] [CrossRef]
- One of PEG Applications: Surface Modification|Biopharma PEG. Available online: https://www.biochempeg.com/article/63.html (accessed on 30 March 2024).
- Takeuchi, I.; Kanno, Y.; Uchiro, H.; Makino, K. Polyborane-Encapsulated Pegylated Liposomes Prepared Using Post-Insertion Technique for Boron Neutron Capture Therapy. J. Oleo Sci. 2019, 68, 1261–1270. [Google Scholar] [CrossRef]
- D’souza, A.A.; Shegokar, R. Polyethylene Glycol (PEG): A Versatile Polymer for Pharmaceutical Applications. Expert. Opin. Drug Deliv. 2016, 13, 1257–1275. [Google Scholar] [CrossRef]
- Geneva, I.I.; Cuzzo, B.; Fazili, T.; Javaid, W. Normal Body Temperature: A Systematic Review. Open Forum Infect. Dis. 2019, 6, ofz031. [Google Scholar] [CrossRef]
- Farkas, J.P.; Hoopman, J.E.; Kenkel, J.M. Five Parameters You Must Understand to Master Control of Your Laser/Light-Based Devices. Aesthet. Surg. J. 2013, 33, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Ultraviolet Radiation. Available online: https://ehs.lbl.gov/resource/documents/radiation-protection/non-ionizing-radiation/ultraviolet-radiation/ (accessed on 17 March 2024).
- Zhuo, S.; Zhang, F.; Yu, J.; Zhang, X.; Yang, G.; Liu, X. PH-Sensitive Biomaterials for Drug Delivery. Molecules 2020, 25, 5649. [Google Scholar] [CrossRef] [PubMed]
- Swietach, P. What Is PH Regulation, and Why Do Cancer Cells Need It? Cancer Metastasis Rev. 2019, 38, 5–15. [Google Scholar] [CrossRef]
- Nishino, M.; Matsuzaki, I.; Musangil, F.Y.; Takahashi, Y.; Iwahashi, Y.; Warigaya, K.; Kinoshita, Y.; Kojima, F.; Murata, S. Measurement and Visualization of Cell Membrane Surface Charge in Fixed Cultured Cells Related with Cell Morphology. PLoS ONE 2020, 15, e0236373. [Google Scholar] [CrossRef] [PubMed]
- Karmali, P.P.; Chaudhuri, A. Cationic Liposomes as Non-Viral Carriers of Gene Medicines: Resolved Issues, Open Questions, and Future Promises. Med. Res. Rev. 2007, 27, 696–722. [Google Scholar] [CrossRef] [PubMed]
- Kumar Verma, N.; Verma, N.K. A Brief Study on Liposomes. Asian J. Chem. Pharm. Res. 2014, 2, 623–634. [Google Scholar]
- Cooper, G.M. The Cell: A Molecular Approach. In The Cell: A Molecular Approach, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2000. [Google Scholar]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. From DNA to RNA. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Jörgensen, A.M.; Wibel, R.; Bernkop-Schnürch, A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. Small 2023, 19, e2206968. [Google Scholar] [CrossRef]
- Zhong, K.; Shi, Y.; Gao, Y.; Zhang, H.; Zhang, M.; Zhang, Q.; Cen, X.; Xue, M.; Qin, Y.; Zhao, Y.; et al. First-Line Induction Chemotherapy with High-Dose Methotrexate versus Teniposide in Patients with Newly Diagnosed Primary Central Nervous System Lymphoma: A Retrospective, Multicenter Cohort Study. BMC Cancer 2023, 23, 746. [Google Scholar] [CrossRef] [PubMed]
- Pucelikova, T.; Dangas, G.; Mehran, R. Contrast-Induced Nephropathy. Catheter. Cardiovasc. Interv. 2008, 71, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhang, S.; Wang, B.; Cui, S.; Yan, J. Toxicity of Cationic Lipids and Cationic Polymers in Gene Delivery. J. Control. Release 2006, 114, 100–109. [Google Scholar] [CrossRef] [PubMed]
Treatment | Description | Drawbacks |
---|---|---|
Surgery | Resection of malignant tissues from the body utilizing specialized surgical instruments, resulting in tumor eradication and prevention from neoplastic cell dissemination to distant anatomical sites. | Prolonged recovery duration; risk of complications; cosmetic effects; incomplete removal leading to risk of disease recurrence. |
Chemotherapy | Utilization of pharmacological agents that impede proliferation and functional activities of neoplastic cells. | Non-selective cytotoxicity; development of resistance; psychological impact; immune system suppression. |
Radiation therapy | DNA integrity disruption and free-radical synthesis through exposure to high-energy waves and/or particles. | Healthy tissue damage; secondary cancer development through ionizing radiation exposure; limited penetration. |
Hormone therapy | Manipulation or blockage of hormonal receptors. | Osteoporosis and bone loss; ovarian function suppression; potential for disease recurrence. |
Cancer vaccines | Initiation of an immunological cascade within the host organism meant to discern and assail neoplastic cellular entities. | Tumor heterogeneity; immunosuppressive tumor microenvironment; limited efficacy. |
Angiogenesis inhibition | Deliberate thwarting of neovascularization, the main instrument in furnishing tumors with nutrients crucial for sustenance and proliferation. | Resistance development; healthy tissue toxicity; delayed onset of action. |
Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|
Biocompatible, nonimmunogenic, non-toxic | Susceptible to fast clearance from the bloodstream | Counteracting chemotherapy resistance | Contrast-induced nephropathy in patients with renal dysfunctions |
Targeted delivery | Not applicable to blood cancers | Reducing the costs of chemotherapy by eliminating the need to develop novel drugs | Scars, pigmentary disorders, and hair loss as side effects to laser usage |
L2s do not aggregate due to their similar surface charge; therefore, preventing the formation of clots | The treatment must be put on hold if the patient is dealing with fever in order to prevent the liposomes from changing their fluidity and leak the encapsulated contents | Adverse effects caused by the toxicity of cationic lipids | |
Attaches to target cells through electromagnetic interactions, hence healthy cells are not affected | |||
Cost effectiveness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipu, R.-I.; Stănişteanu, M.-L.; Andrei, M.-A.; Banciu, D.D.; Banciu, A. Theoretical Model for In Vivo Induction of Chemotherapy Sensitization Using miRNA Packaged in Distinct Layered Liposomes. J. Funct. Biomater. 2024, 15, 298. https://doi.org/10.3390/jfb15100298
Cipu R-I, Stănişteanu M-L, Andrei M-A, Banciu DD, Banciu A. Theoretical Model for In Vivo Induction of Chemotherapy Sensitization Using miRNA Packaged in Distinct Layered Liposomes. Journal of Functional Biomaterials. 2024; 15(10):298. https://doi.org/10.3390/jfb15100298
Chicago/Turabian StyleCipu, Ruxandra-Ioana, Mihai-Laurențiu Stănişteanu, Mihaela-Aurelia Andrei, Daniel Dumitru Banciu, and Adela Banciu. 2024. "Theoretical Model for In Vivo Induction of Chemotherapy Sensitization Using miRNA Packaged in Distinct Layered Liposomes" Journal of Functional Biomaterials 15, no. 10: 298. https://doi.org/10.3390/jfb15100298
APA StyleCipu, R. -I., Stănişteanu, M. -L., Andrei, M. -A., Banciu, D. D., & Banciu, A. (2024). Theoretical Model for In Vivo Induction of Chemotherapy Sensitization Using miRNA Packaged in Distinct Layered Liposomes. Journal of Functional Biomaterials, 15(10), 298. https://doi.org/10.3390/jfb15100298