A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. TNA Preparation
2.3. Drug Loading
2.4. Surface Morphology and Properties
2.5. Drug Release
2.6. Cell Culture
2.7. Cell Viability Assay
2.8. Cell Morphology
2.9. Live/Dead Staining Assay
2.10. Cellular Uptake Studies on Drug
2.11. Statistical Analyses
3. Results
3.1. Characterization of Samples
3.2. In Vitro Drug Release of DOX
3.3. Biocompatibility
3.4. Anti-Cancer Evaluation In Vitro
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franceschini, N.; Cleton-Jansen, A.; Bovée, J. Bone: Conventional osteosarcoma. Atlas. Genet. Cytogenet. Oncol. Haematol. 2019, 8, 2042. [Google Scholar] [CrossRef]
- Lin, P.P.; Patel, S. Osteosarcoma. In Bone Sarcoma; Lin, P.P., Patel, S., Eds.; Springer: Boston, MA, USA, 2013; pp. 75–97. [Google Scholar]
- Chabner, B.A.; Roberts, T.G. Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cranmer, L.; Larsen, B.T.; Kuo, P.H.; Kopp, L.M. Recurrent Osteosarcoma Presenting as an Isolated Bone Marrow Relapse. J. Pediatr. Hematol. Oncol. 2017, 39, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone biomaterials and interactions with stem cells. Bone Res. 2017, 5, 17059. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Gad, S.F.; Chobisa, D.; Li, Y.; Yeo, Y. Local drug delivery systems for inflammatory diseases: Status quo, challenges, and opportunities. J. Control. Release 2021, 330, 438–460. [Google Scholar] [CrossRef]
- Takahashi, M.; Sato, K.; Togawa, G.; Takada, Y. Mechanical Properties of Ti-Nb-Cu Alloys for Dental Machining Applications. J. Funct. Biomater. 2022, 13, 263. [Google Scholar] [CrossRef]
- Sass, J.-O.; Sellin, M.-L.; Kauertz, E.; Johannsen, J.; Weinmann, M.; Stenzel, M.; Frank, M.; Vogel, D.; Bader, R.; Jonitz-Heincke, A. Advanced Ti–Nb–Ta Alloys for Bone Implants with Improved Functionality. J. Funct. Biomater. 2024, 15, 46. [Google Scholar] [CrossRef]
- Han, X.; Ma, J.; Tian, A.; Wang, Y.; Li, Y.; Dong, B.; Tong, X.; Ma, X. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf. B Biointerfaces 2023, 227, 113339. [Google Scholar] [CrossRef]
- Vishnu, J.; Kesavan, P.; Shankar, B.; Dembińska, K.; Swiontek Brzezinska, M.; Kaczmarek-Szczepańska, B. Engineering Antioxidant Surfaces for Titanium-Based Metallic Biomaterials. J. Funct. Biomater. 2023, 14, 344. [Google Scholar] [CrossRef]
- Meng, F.; Yin, Z.; Ren, X.; Geng, Z.; Su, J. Construction of Local Drug Delivery System on Titanium-Based Implants to Improve Osseointegration. Pharmaceutics 2022, 14, 1069. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Gao, Y.; Zhao, D.; Zhang, W.; Zhao, W.; Wu, M.; Cui, Y.; Li, Q.; Zhang, Z.; Ma, C. Titanium Implants and Local Drug Delivery Systems Become Mutual Promoters in Orthopedic Clinics. Nanomaterials 2022, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Baranwal, A.K.; Keerthiga, G.; Mohan, L.; Dutta, S.D.; Gupta, P.; Lim, K.-T.; Santra, T.S. Controlled and localized drug delivery using Titania nanotubes. Mater. Today Commun. 2022, 32, 103843. [Google Scholar] [CrossRef]
- Wang, K.; Jin, H.; Song, Q.; Huo, J.; Zhang, J.; Li, P. Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants. Drug Deliv. Transl. Res. 2021, 11, 1456–1474. [Google Scholar] [CrossRef]
- Zhao, D.-P.; Tang, J.-C.; Nie, H.-M.; Zhang, Y.; Chen, Y.-K.; Zhang, X.; Li, H.-X.; Yan, M. Macro-micron-nano-featured surface topography of Ti-6Al-4V alloy for biomedical applications. Rare Met. 2018, 37, 1055–1063. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, Z.; Tang, J.; Wang, A.; Zhao, D.; Yang, Y. Early Antimicrobial Evaluation of Nanostructured Surfaces Based on Bacterial Biological Properties. ACS Biomater. Sci. Eng. 2022, 8, 4976–4986. [Google Scholar] [CrossRef]
- Tang, H.; Zhao, D.; Wan, C.; Li, X.; Ji, X.; Tang, J.; Cao, Y.; Liu, Y. Influence of heterogeneous microstructures on anodization behavior and biocompatibility of Ti−15Zr alloy. Trans. Nonferrous Met. Soc. China 2023, 33, 2076–2089. [Google Scholar] [CrossRef]
- Kaur, G.; Willsmore, T.; Gulati, K.; Zinonos, I.; Wang, Y.; Kurian, M.; Hay, S.; Losic, D.; Evdokiou, A. Titanium wire implants with nanotube arrays: A study model for localized cancer treatment. Biomaterials 2016, 101, 176–188. [Google Scholar] [CrossRef]
- Wei, F.; Li, M.; Crawford, R.; Zhou, Y.; Xiao, Y. Exosome-integrated titanium oxide nanotubes for targeted bone regeneration. Acta Biomater. 2019, 86, 480–492. [Google Scholar] [CrossRef]
- Ma, T.; Wang, C.-X.; Ge, X.-Y.; Zhang, Y. Applications of Polydopamine in Implant Surface Modification. Macromol. Biosci. 2023, 23, 2300067. [Google Scholar] [CrossRef]
- Ryu, J.H.; Messersmith, P.B.; Lee, H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.-F.; Zhang, J.-J.; Xu, F.; Hu, L.-H.; Abdel-Halim, E.S.; Zhu, J.-J. pH-Sensitive Polydopamine Nanocapsules for Cell Imaging and Drug Delivery Based on Folate Receptor Targeting. J. Biomed. Nanotechnol. 2013, 9, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, X.; Qiu, H.; Li, P.; Qi, P.; Maitz, M.F.; You, T.; Shen, R.; Yang, Z.; Tian, W.; et al. Polydopamine Modified TiO2 Nanotube Arrays for Long-Term Controlled Elution of Bivalirudin and Improved Hemocompatibility. ACS Appl. Mater. Interfaces 2018, 10, 7649–7660. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Sui, J.; Wang, G.; Wang, Y.; Xu, K.; Qin, S.; Xu, S.; Ji, F.; Zhang, H. Polydopamine and hyaluronic acid immobilisation on vancomycin-loaded titanium nanotube for prophylaxis of implant infections. Colloids Surf. B Biointerfaces 2022, 216, 112582. [Google Scholar] [CrossRef] [PubMed]
- Abd-ellatef, G.E.F.; Gazzano, E.; El-Desoky, A.H.; Hamed, A.R.; Kopecka, J.; Belisario, D.C.; Costamagna, C.; Marie, M.A.S.; Fahmy, S.R.; Abdel-Hamid, A.-H.Z.; et al. Glabratephrin reverses doxorubicin resistance in triple negative breast cancer by inhibiting P-glycoprotein. Pharmacol. Res. 2022, 175, 105975. [Google Scholar] [CrossRef]
- Kowalski, D.; Kim, D.; Schmuki, P. TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today 2013, 8, 235–264. [Google Scholar] [CrossRef]
- Maher, S.; Kaur, G.; Lima-Marques, L.; Evdokiou, A.; Losic, D. Engineering of Micro- to Nanostructured 3D-Printed Drug-Releasing Titanium Implants for Enhanced Osseointegration and Localized Delivery of Anticancer Drugs. ACS Appl. Mater. Interfaces 2017, 9, 29562–29570. [Google Scholar] [CrossRef]
- De Santo, I.; Sanguigno, L.; Causa, F.; Monetta, T.; Netti, P.A. Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis. Analyst 2012, 137, 5076–5081. [Google Scholar] [CrossRef]
- Manders, E.M.M.; Stap, J.; Brakenhoff, G.J.; Driel, R.V.; Aten, J.A. Dynamics of three-dimensional replication patterns during the s-phase, analysed by double labelling of dna and confocal microscopy. J. Cell Sci. 1992, 103, 857–862. [Google Scholar] [CrossRef]
- BOLTE, S.; CORDELIÈRES, F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224, 213–232. [Google Scholar] [CrossRef]
- Tsiourvas, D.; Tsetsekou, A.; Arkas, M.; Diplas, S.; Mastrogianni, E. Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates. J. Mater. Sci. Mater. Med. 2011, 22, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Yang, L.; Kang, Q.; Cai, Q. In situ ATR-FTIR and UV-Visible spectroscopy study of photocatalytic oxidation of ethanol over TiO2 nanotubes. Anal. Lett. 2011, 44, 1114–1125. [Google Scholar] [CrossRef]
- Cong, Y.; Xia, T.; Zou, M.; Li, Z.; Peng, B.; Guo, D.; Deng, Z. Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. J. Mater. Chem. B 2014, 2, 3450–3461. [Google Scholar] [CrossRef] [PubMed]
- Vona, D.; Cicco, S.R.; Ragni, R.; Leone, G.; Marco, L.P.; Farinola, G.M. Biosilica/polydopamine/silver nanoparticles composites: New hybrid multifunctional heterostructures obtained by chemical modification of Thalassiosira weissflogii silica shells. MRS Commun. 2018, 8, 911–917. [Google Scholar] [CrossRef]
- Jayakumar, R.; Nair, A.; Rejinold, N.S.; Maya, S.; Nair, S.V. Doxorubicin-loaded pH-responsive chitin nanogels for drug delivery to cancer cells. Carbohydr. Polym. 2012, 87, 2352–2356. [Google Scholar] [CrossRef]
- Ingole, P.G.; Choi, W.; Kim, K.H.; Park, C.H.; Choi, W.K.; Lee, H.K. Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation. Chem. Eng. J. 2014, 243, 137–146. [Google Scholar] [CrossRef]
- Ji, X.-w.; Liu, P.-t.; Tang, J.-c.; Wan, C.-j.; Yang, Y.; Zhao, Z.-l.; Zhao, D.-p. Different antibacterial mechanisms of titania nanotube arrays at various growth phases of E. coli. Trans. Nonferrous Met. Soc. China 2021, 31, 3821–3830. [Google Scholar] [CrossRef]
- Jarosz, M.; Pawlik, A.; Szuwarzyński, M.; Jaskuła, M.; Sulka, G.D. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism. Colloids Surf. B Biointerfaces 2016, 143, 447–454. [Google Scholar] [CrossRef]
- Peppas, N.A.; Narasimhan, B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. J. Control. Release 2014, 190, 75–81. [Google Scholar] [CrossRef]
- Cascone, S. Modeling and comparison of release profiles: Effect of the dissolution method. Eur. J. Pharm. Sci. 2017, 106, 352–361. [Google Scholar] [CrossRef]
- Wu, I.Y.; Bala, S.; Škalko-Basnet, N.; di Cagno, M.P. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur. J. Pharm. Sci. 2019, 138, 105026. [Google Scholar] [CrossRef] [PubMed]
- Paarakh, M.P.; Jose, P.A.; Setty, C.M.; Peterchristoper, G.V. Release Kinetics—Concepts and applications. Int. J. Pharm. Res. Technol. (IJPRT) 2023, 8, 12–20. [Google Scholar] [CrossRef]
- Moses, M.A.; Brem, H.; Langer, R. Advancing the field of drug delivery: Taking aim at cancer. Cancer Cell 2003, 4, 337–341. [Google Scholar] [CrossRef]
- Qi, G.; Wang, S.; Yin, Q.; Zhang, Z.; Wen, X.; Hao, L. A pH-Responsive Nanoplatform Based on Magnetic Mesoporous Silica Nanoparticles for Enhanced Treatment of Pancreatic Cancer. ACS Appl. Nano Mater. 2023, 6, 23184–23195. [Google Scholar] [CrossRef]
- Song, Y.-Y.; Schmidt-Stein, F.; Bauer, S.; Schmuki, P. Amphiphilic TiO2 Nanotube Arrays: An Actively Controllable Drug Delivery System. J. Am. Chem. Soc. 2009, 131, 4230–4232. [Google Scholar] [CrossRef]
- Carter, J.L.; Kelly, C.A.; Jenkins, M.J. Enhanced adhesion of PEDOT: PSS to substrates using polydopamine as a primer. Polym. J. 2024, 56, 115–120. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Dong, X.; Wang, Y.; Chong, X.; Yu, T.; Zhang, F.; Chen, D.; Zhang, L.; Gao, J.; et al. A Micelle Self-Assembled from Doxorubicin-Arabinoxylan Conjugates with pH-Cleavable Bond for Synergistic Antitumor Therapy. Nanoscale Res. Lett. 2017, 12, 73. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Attia, A.A.; Helmy, M.W.; Hemdan, I.H.; Abouelanwar, M.E. Doxorubicin drug release behavior from amino-silanated graphene oxide nanocarrier. Diam. Relat. Mater. 2023, 131, 109569. [Google Scholar] [CrossRef]
- Tang, H.; Zhao, W.; Yu, J.; Li, Y.; Zhao, C. Recent Development of pH-Responsive Polymers for Cancer Nanomedicine. Molecules 2019, 24, 4. [Google Scholar] [CrossRef]
- Zheng, Q.; Lin, T.; Wu, H.; Guo, L.; Ye, P.; Hao, Y.; Guo, Q.; Jiang, J.; Fu, F.; Chen, G. Mussel-inspired polydopamine coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. Int. J. Pharm. 2014, 463, 22–26. [Google Scholar] [CrossRef]
- Shen, M.-Y.; Chen, Y.-H.; Yeh, N.-T.; Wang, T.-H.; Chiang, W.-H. Acidity/hydrogen peroxide-responsive PEGylated chitosan-modified polydopamine nanoparticles to realize effective photothermal conversion and intracellular drug delivery. Eur. Polym. J. 2023, 197, 112365. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving biocompatibility for next generation of metallic implants. Prog. Mater. Sci. 2023, 133, 101053. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, R.; Cui, X.; Hu, C.; Chen, Z. A pH-sensitive carbonic anhydrase Ⅸ-targeted near-infrared probe for fluorescent sensing and imaging of hypoxic osteosarcoma. Sens. Actuators B Chem. 2023, 379, 133171. [Google Scholar] [CrossRef]
- Becker, H.M. Carbonic anhydrase IX and acid transport in cancer. Br. J. Cancer 2020, 122, 157–167. [Google Scholar] [CrossRef]
- Takacova, M.; Kajanova, I.; Kolarcikova, M.; Lapinova, J.; Zatovicova, M.; Pastorekova, S. Understanding metabolic alterations and heterogeneity in cancer progression through validated immunodetection of key molecular components: A case of carbonic anhydrase IX. Cancer Metastasis Rev. 2021, 40, 1035–1053. [Google Scholar] [CrossRef]
TNA-DOX | TNA-PDA-DOX | |||
k1 | k2 | k1 | k2 | |
pH = 7.4 | 0.199 | 0.012 | 0.070 | 0.008 |
pH = 6.5 | 0.283 | 0.020 | 0.182 | 0.012 |
pH = 6.0 | 0.307 | 0.022 | 0.195 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Q.; Wan, C.; Zhang, Z.; Liu, H.; Liu, P.; Huang, Q.; Zhao, D. A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy. J. Funct. Biomater. 2024, 15, 312. https://doi.org/10.3390/jfb15100312
Xiao Q, Wan C, Zhang Z, Liu H, Liu P, Huang Q, Zhao D. A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy. Journal of Functional Biomaterials. 2024; 15(10):312. https://doi.org/10.3390/jfb15100312
Chicago/Turabian StyleXiao, Qinle, Changjun Wan, Zhe Zhang, Hui Liu, Pingting Liu, Qianli Huang, and Dapeng Zhao. 2024. "A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy" Journal of Functional Biomaterials 15, no. 10: 312. https://doi.org/10.3390/jfb15100312
APA StyleXiao, Q., Wan, C., Zhang, Z., Liu, H., Liu, P., Huang, Q., & Zhao, D. (2024). A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy. Journal of Functional Biomaterials, 15(10), 312. https://doi.org/10.3390/jfb15100312