Bioactive Compounds Enhance the Biocompatibility and the Physical Properties of a Glass Ionomer Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Cell Culture Process
2.2.1. Cell Culture Assays
Cell Viability by Protein Basic Residues Density (Sulforhodamine B Assay-SRB)
Cell Proliferation and Function Assay at the Mitochondrial Level (Vybrant® MTT Proliferation Assay)
2.2.2. Analysis of HaCaT Cell Morphology by Microscopy
2.2.3. Live/Dead® Viability/Cytotoxicity Assay
2.3. Physical Properties
2.3.1. Compressive Strength
2.3.2. Roughness Measurements
2.3.3. Hardness Measurements
2.4. Statistical Analysis
3. Results
3.1. Cell Culture Assays
3.1.1. SRB Assay
3.1.2. MTT Assay
3.1.3. Microscopic Analysis and Live/Dead® Viability/Cytotoxicity Assay
3.2. Physical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sidhu, S.K. Clinical evaluations of resin-modified glass-ionomer restorations. Dent. Mater. 2010, 26, 7–12. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatric Dentistry. Clinical Affairs Committee—Restorative Dentistry Subcommittee. Guideline on pediatric restorative dentistry. Pediatr. Dent. 2012, 34, 173–180. Available online: https://www.aapd.org/assets/1/7/G_Restorative.pdf (accessed on 3 November 2024).
- Chisini, L.A.; Collares, K.; Cademartori, M.G.; de Oliveira, L.J.C.; Conde, M.C.M.; Demarco, F.F.; Corrêa, M.B. Restorations in primary teeth: A systematic review on survival and reasons for failures. Int. J. Paediatr. Dent. 2018, 28, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Fierascu, R.C. Incorporation of Nanomaterials in Glass Ionomer Cements-Recent Developments and Future Perspectives: A Narrative Review. Nanomaterials 2022, 12, 3827. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.W.; Sidhu, S.K.; Czarnecka, B. Enhancing the Mechanical Properties of Glass-Ionomer Dental Cements: A Review. Materials 2020, 13, 2510. [Google Scholar] [CrossRef]
- de Castilho, A.R.F.; Rosalen, P.L.; de Souza Araújo, I.J.; Kitagawa, I.L.; Costa, C.A.G.A.; Janal, M.N.; Alves, M.C.; Duarte, S.; Lisboa Filho, P.N.; Stipp, R.N.; et al. Trans, trans-farnesol, an antimicrobial natural compound, improves glass ionomer cement properties. PLoS ONE 2019, 14, e0220718, Erratum in PLoS ONE 2021, 16, e0259549. [Google Scholar] [CrossRef]
- de Castilho, A.R.F.; Duque, C.; Kreling, P.F.; Pereira, J.A.; Paula, A.B.; Sinhoreti, M.A.C.; Puppin-Rontani, R.M. Doxycycline-containing glass ionomer cement for arresting residual caries: An in vitro study and a pilot trial. J. Appl. Oral. Sci. 2017, 26, e20170116. [Google Scholar] [CrossRef]
- de Castilho, A.R.F.; Duque, C.; Negrini, T.d.C.; Sacono, N.T.; de Paula, A.B.; de Souza Costa, C.A.; Spolidorio, D.M.P.; Puppin-Rontani, R.M. In vitro and in vivo investigation of the biological and mechanical behaviour of resin-modified glass-ionomer cement containing chlorhexidine. J. Dent. 2013, 41, 155–163. [Google Scholar] [CrossRef]
- Hegde, D.; Suprabha, B.S.; Rao, A. Organic antibacterial modifications of high-viscosity glass ionomer cement for atraumatic restorative treatment: A review. Jpn. Dent. Sci. Rev. 2024, 60, 22–31. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Xue, M.; Kang, Y.; Liu, D.; Wen, Y.; Zhao, D.; Guan, B. Engineered Biomaterials Trigger Remineralization and Antimicrobial Effects for Dental Caries Restoration. Molecules 2023, 28, 6373. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Singer, L.; Bourauel, C. Herbalism and glass-based materials in dentistry: Review of the current state of the art. J. Mater. Sci. Mater. Med. 2023, 34, 60. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Seils, J.; Abranches, J.; Burne, R.A.; Bowen, W.H.; Quivey, R.G. Influence of apigenin on gtf gene expression in Streptococcus mutans UA159. Antimicrob. Agents Chemother. 2006, 50, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.W.; Chen, L.B.; Lin, X.J.; Attin, T.; Yu, H. Dual function of quercetin as an MMP inhibitor and crosslinker in preventing dentin erosion and abrasion: An in situ/in vivo study. Dent. Mater. 2022, 38, e297–e307. [Google Scholar] [CrossRef]
- Mooney, E.C.; Holden, S.E.; Xia, X.J.; Li, Y.; Jiang, M.; Banson, C.N.; Zhu, B.; Sahingur, S.E. Quercetin Preserves Oral Cavity Health by Mitigating Inflammation and Microbial Dysbiosis. Front. Immunol. 2021, 12, 774273. [Google Scholar] [CrossRef]
- Chen, H.; Xie, S.; Gao, J.; He, L.; Luo, W.; Tang, Y.; Weir, M.D.; Oates, T.W.; Xu, H.H.K.; Yang, D. Flavonoid Baicalein Suppresses Oral Biofilms and Protects Enamel Hardness to Combat Dental Caries. Int. J. Mol. Sci. 2022, 23, 10593. [Google Scholar] [CrossRef]
- Feldman, M.; Santos, J.; Grenier, D. Comparative evaluation of two structurally related flavonoids, isoliquiritigenin and liquiritigenin, for their oral infection therapeutic potential. J. Nat. Prod. 2011, 74, 1862–1867. [Google Scholar] [CrossRef]
- De Castilho, A.; Rosalen, P.; Oliveira, M.; Sánchez, J.; Duarte, S.; Murata, R.; Puppin-Rontani, R.M. Cytotoxicity and physical properties of glass ionomer cement containing flavonoids. In Proceedings of the 2019 IADR/AADR/CADR General Session, Vancouver, BC, Canada, 20–23 March 2019; Abstract 2121. [Google Scholar]
- Orellana, E.A.; Kasinski, A.L. Sulforhodamine B (SRB) Assay in Cell Culture to Investigate Cell Proliferation. Bio. Protoc. 2016, 6, e1984. [Google Scholar] [CrossRef]
- ISO 9917-1:2007; Dentistry—Water-Based Cements—Part 1: Powder/Liquid Acid-Base Cements. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 4287; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions, and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 1997.
- ISO 4545; Metallic Materials—Knoop Hardness Test. International Organization for Standardization: Geneva, Switzerland, 2017.
- Jeon, J.G.; Rosalen, P.L.; Falsetta, M.L.; Koo, H. Natural products in caries research: Current (limited) knowledge, challenges and future perspective. Caries. Res. 2011, 45, 243–263. [Google Scholar] [CrossRef]
- Shahi, S.; Özcan, M.; Dizaj, S.M.; Sharifi, S.; Al-Haj Husain, N.; Eftekhari, A.; Ahmadian, E. A review on potential toxicity of dental material and screening their biocompatibility. Toxicol. Mech. Methods 2019, 29, 368–377. [Google Scholar] [CrossRef]
- Paula, A.B.; Laranjo, M.; Coelho, A.S.; Abrantes, A.M.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Ferreira, M.M.; Botelho, M.F.; Marto, C.M.; Carrilho, E. Accessing the Cytotoxicity and Cell Response to Biomaterials. J. Vis. Exp. 2021, 173, e61512. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute Screening Services. NCI-60 DTP Human Tumor Cell Line Screen. 2014. Available online: https://dtp.cancer.gov/discovery_development/nci-60/ (accessed on 3 November 2024).
- Rodríguez-Chávez, J.L.; Coballase-Urrutia, E.; Sicilia-Argumedo, G.; Ramírez-Apan, T.; Delgado, G. Toxicological evaluation of the natural products and some semisynthetic derivatives of Heterotheca inuloides Cass (Asteraceae). J. Ethnopharmacol. 2015, 175, 256–265. [Google Scholar] [CrossRef] [PubMed]
- van Tonder, A.; Joubert, A.M.; Cromarty, A.D. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res. Notes 2015, 8, 47. [Google Scholar] [CrossRef]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 1991, 83, 757–766. [Google Scholar] [CrossRef]
- Keepers, Y.P.; Pizao, P.E.; Peters, G.J.; van Ark-Otte, J.; Winograd, B.; Pinedo, H.M. Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur. J. Cancer 1991, 27, 897–900. [Google Scholar] [CrossRef]
- Jaeger, A.; Weiss, D.G.; Jonas, L.; Kriehuber, R. Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology 2012, 296, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Colombo, I.; Sangiovanni, E.; Maggio, R.; Mattozzi, C.; Zava, S.; Corbett, Y.; Fumagalli, M.; Carlino, C.; Corsetto, P.A.; Scaccabarozzi, D.; et al. HaCaT Cells as a Reliable In Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediat. Inflamm. 2017, 2017, 7435621. [Google Scholar] [CrossRef]
- Freires, I.A.; de Alencar, S.M.; Rosalen, P.L. A pharmacological perspective on the use of Brazilian Red Propolis and its isolated compounds against human diseases. Eur. J. Med. Chem. 2016, 110, 267–279. [Google Scholar] [CrossRef]
- Troca, V.B.; Fernandes, K.B.; Terrile, A.E.; Marcucci, M.C.; Andrade, F.B.; Wang, L. Effect of green propolis addition to physical mechanical properties of glass ionomer cements. J. Appl. Oral Sci. 2011, 19, 100–105. [Google Scholar] [CrossRef]
- Altunsoy, M.; Tanrıver, M.; Türkan, U.; Uslu, M.E.; Silici, S. In Vitro Evaluation of Microleakage and Microhardness of Ethanolic Extracts of Propolis in Different Proportions Added to Glass Ionomer Cement. J. Clin. Pediatr. Dent. 2016, 40, 136–140. [Google Scholar] [CrossRef]
- Subramaniam, P.; Girish Babu, K.L.; Neeraja, G.; Pillai, S. Does Addition of Propolis to Glass Ionomer Cement Alter its Physicomechanical Properties? An In Vitro Study. J. Clin. Pediatr. Dent. 2016, 40, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, A.R.; Balehosur, D.V.; Basappa, N. Comparative Evaluation of Shear Bond Strength and Fluoride Release of Conventional Glass Ionomer with 1% Ethanolic Extract of Propolis Incorporated Glass Ionomer Cement -Invitro Study. J. Clin. Diagn. Res. 2016, 10, ZC88–ZC91. [Google Scholar] [CrossRef] [PubMed]
- Pinto, I.C.; Seibert, J.B.; Pinto, L.S.; Santos, V.R.; de Sousa, R.F.; Sousa, L.R.D.; Amparo, T.R.; Dos Santos, V.M.R.; do Nascimento, A.M.; de Souza, G.H.B.; et al. Preparation of glass-ionomer cement containing ethanolic Brazilian pepper extract (Schinus terebinthifolius Raddi) fruits: Chemical and biological assays. Sci. Rep. 2020, 10, 22312. [Google Scholar] [CrossRef] [PubMed]
- Szliszka, E.; Krol, W. Polyphenols Isolated from Propolis Augment TRAIL-Induced Apoptosis in Cancer Cells. Evid. Based Complement Alternat. Med. 2013, 2013, 731940. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan Lathikumari, S.; Saraswathy, M. Modifications of polyalkenoic acid and its effect on glass ionomer cement. Mater. Adv. 2024, 5, 2719–2735. [Google Scholar] [CrossRef]
- Moshaverinia, A.; Roohpour, N.; Chee, W.; Schricker, S.R. A review of powder modifications in conventional glass-ionomer dental cements. J. Mater. 2011, 21, 1319–1328. [Google Scholar] [CrossRef]
- Hu, J.; Du, X.; Huang, C.; Fu, D.; Ouyang, X.; Wang, Y. Antibacterial and physical properties of EGCG-containing glass ionomer cements. J. Dent. 2013, 41, 927–934. [Google Scholar] [CrossRef]
Groups | Mechanical Properties | ||
---|---|---|---|
Roughness (µM) | Hardness (KHN) | Compressive Strength (MPa) | |
GIC (no compound) | 0.73 ± 0.2 a | 44.16 ± 8.0 a | 23.87 ± 8.9 a |
GIC + Apigenin | 0.74 ± 0.4 a | 51.60 ± 6.2 a | 30.80 ± 10.2 a |
GIC + Liquiritigenin | 0.61 ± 0.3 a | 52.10 ± 7.2 a | 21.57 ± 6.9 a |
GIC + Naringenin | 0.91 ± 0.5 a | 60.38 ± 14.6 b | 27.42 ± 9.1 a |
GIC + Quercetin | 0.94 ± 0.4 a | 70.85 ± 10.8 b | 34.47 ± 13.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castilho, A.R.F.; Rosalen, P.L.; Oliveira, M.Y.; Burga-Sánchez, J.; Duarte, S.; Murata, R.M.; Rontani, R.M.P. Bioactive Compounds Enhance the Biocompatibility and the Physical Properties of a Glass Ionomer Cement. J. Funct. Biomater. 2024, 15, 332. https://doi.org/10.3390/jfb15110332
de Castilho ARF, Rosalen PL, Oliveira MY, Burga-Sánchez J, Duarte S, Murata RM, Rontani RMP. Bioactive Compounds Enhance the Biocompatibility and the Physical Properties of a Glass Ionomer Cement. Journal of Functional Biomaterials. 2024; 15(11):332. https://doi.org/10.3390/jfb15110332
Chicago/Turabian Stylede Castilho, Aline Rogéria Freire, Pedro Luiz Rosalen, Marina Yasbeck Oliveira, Jonny Burga-Sánchez, Simone Duarte, Ramiro Mendonça Murata, and Regina Maria Puppin Rontani. 2024. "Bioactive Compounds Enhance the Biocompatibility and the Physical Properties of a Glass Ionomer Cement" Journal of Functional Biomaterials 15, no. 11: 332. https://doi.org/10.3390/jfb15110332
APA Stylede Castilho, A. R. F., Rosalen, P. L., Oliveira, M. Y., Burga-Sánchez, J., Duarte, S., Murata, R. M., & Rontani, R. M. P. (2024). Bioactive Compounds Enhance the Biocompatibility and the Physical Properties of a Glass Ionomer Cement. Journal of Functional Biomaterials, 15(11), 332. https://doi.org/10.3390/jfb15110332