Shear Stress Quantification in Tissue Engineering Bioreactor Heart Valves: A Computational Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. FSI Simulations
2.2. GOA and Flow Rate Selection
2.3. CFD Simulations
3. Results
3.1. The 24.6 mm Valve
3.2. The 18.45 mm Valve
3.3. The 12.3 mm Valve
3.4. WSS Distribution within the Leaflet
3.5. Regression Models of Shear Stress
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nkomo, V.T.; Gardin, J.M.; Skelton, T.N.; Gottdiener, J.S.; Scott, C.G.; Enriquez-Sarano, M. Burden of valvular heart diseases: A population-based study. Lancet 2006, 368, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J. ESC/EACTS Guidelines on the management of valvular heart disease. Eur. Heart J. 2012, 33, 2371–2372. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Caulo, E.A.; Otero-Forero, J.J.; Sánchez-Espín, G.; Mataró, M.J.; Guzón, A.; Porras, C.; Villaescusa, J.; Such, M.; Melero, J.M. 15 Years Outcomes Following Bioprosthetic versus Mechanical Aortic Valve Replacement in Patients Aged 50–65 Years with Isolated Aortic Stenosis. Cir. Cardiovasc. 2018, 25, 135–140. [Google Scholar] [CrossRef]
- Nachlas, A.L.Y.; Li, S.; Davis, M.E. Developing a Clinically Relevant Tissue Engineered Heart Valve—A Review of Current Approaches. Adv. Healthc. Mater. 2017, 6, 1700918. [Google Scholar] [CrossRef]
- Kostyunin, A.E.; Yuzhalin, A.E.; Rezvova, M.A.; Ovcharenko, E.A.; Glushkova, T.V.; Kutikhin, A.G. Degeneration of Bioprosthetic Heart Valves: Update 2020. J. Am. Heart Assoc. 2020, 9, 19. [Google Scholar] [CrossRef]
- Konsek, H.; Sherard, C.; Bisbee, C.; Kang, L.; Turek, J.W.; Rajab, T.K. Growing Heart Valve Implants for Children. J. Cardiovasc. Dev. Dis. 2023, 10, 148. [Google Scholar] [CrossRef]
- Schoen, F.J.; Hoerstrup, S.P. Heart Valve Tissue Engineering. In Biomaterials Science: An Introduction to Materials, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 1246–1261. [Google Scholar] [CrossRef]
- Mirani, B.; Parvin Nejad, S.; Simmons, C.A. Recent Progress Toward Clinical Translation of Tissue-Engineered Heart Valves. Can. J. Cardiol. 2021, 37, 1064–1077. [Google Scholar] [CrossRef]
- Nejad, S.P.; Blaser, M.C.; Santerre, J.P.; Caldarone, C.A.; Simmons, C.A. Biomechanical conditioning of tissue engineered heart valves: Too much of a good thing? Adv. Drug Deliv. Rev. 2016, 96, 161–175. [Google Scholar] [CrossRef]
- Berry, J.L.; Steen, J.A.; Williams, J.K.; Jordan, J.E.; Atala, A.; Yoo, J.J. Bioreactors for development of tissue engineered heart valves. Ann. Biomed. Eng. 2010, 38, 3272–3279. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.B.; Tranquillo, R.T. Tissue-Engineered Heart Valves. In Heart Valves: From Design to Clinical Implantation; Iaizzo, P.A., Bianco, R.W., Hill, A.J., St. Louis, J.D., Eds.; Springer: Boston, MA, USA, 2013; pp. 261–280. [Google Scholar] [CrossRef]
- Hoerstrup, S.P.; Sodian, R.; Daebritz, S.; Wang, J.; Bacha, E.A.; Martin, D.P.; Moran, A.M.; Guleserian, K.J.; Sperling, J.S.; Kaushal, S.; et al. Functional living trileaflet heart valves grown in vitro. Circulation 2000, 102, Iii-44–Iii-49. [Google Scholar] [CrossRef]
- VeDepo, M.; Buse, E.; Quinn, R.; Hopkins, R.; Converse, G. Extended bioreactor conditioning of mononuclear cell–seeded heart valve scaffolds. J. Tissue Eng. 2018, 9, 2041731418767216. [Google Scholar] [CrossRef]
- Kennamer, A.; Sierad, L.; Pascal, R.; Rierson, N.; Albers, C.; Harpa, M.; Cotoi, O.; Harceaga, L.; Olah, P.; Terezia, P.; et al. Bioreactor conditioning of valve scaffolds seeded internally with adult stem cells. Tissue Eng. Regen. Med. 2016, 13, 507–515. [Google Scholar] [CrossRef]
- Deb, N.; Lacerda, C.M.R. Valvular Endothelial Cell Response to the Mechanical Environment—A Review. Cell Biochem. Biophys. 2021, 79, 695–709. [Google Scholar] [CrossRef]
- Deb, N.; Ali, M.S.; Mathews, A.; Chang, Y.W.; Lacerda, C.M.R. Shear type and magnitude affect aortic valve endothelial cell morphology, orientation, and differentiation. Exp. Biol. Med. 2021, 246, 2278–2289. [Google Scholar] [CrossRef]
- Sucosky, P.; Balachandran, K.; Elhammali, A.; Jo, H.; Yoganathan, A.P. Altered Shear Stress Stimulates Upregulation of Endothelial VCAM-1 and ICAM-1 in a BMP-4– and TGF-β1–Dependent Pathway. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 254. [Google Scholar] [CrossRef]
- Sun, L.; Chandra, S.; Sucosky, P. Ex Vivo Evidence for the Contribution of Hemodynamic Shear Stress Abnormalities to the Early Pathogenesis of Calcific Bicuspid Aortic Valve Disease. PLoS ONE 2012, 7, e48843. [Google Scholar] [CrossRef]
- Hoehn, D.; Sun, L.; Sucosky, P. Role of pathologic shear stress alterations in aortic valve endothelial activation. Cardiovasc. Eng. Technol. 2010, 1, 165–178. [Google Scholar] [CrossRef]
- Weston, M.W.; LaBorde, D.V.; Yoganathan, A.P. Estimation of the Shear Stress on the Surface of an Aortic Valve Leaflet. Ann. Biomed. Eng. 1999, 27, 572–579. [Google Scholar] [CrossRef]
- Yap, C.H.; Saikrishnan, N.; Yoganathan, A.P. Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech. Model. Mechanobiol. 2012, 11, 231–244. [Google Scholar] [CrossRef]
- Yap, C.H. Experimental Technique of Measuring Dynamic Fluid Shear Stress on the Aortic Surface of the Aortic Valve Leaflet. J. Biomech. Eng. 2011, 133, 061007. [Google Scholar] [CrossRef]
- Stevenson, D.M.; Yoganathan, A.P.; Williams, F.P. Numerical simulation of steady turbulent flow through trileaflet aortic heart valves—II. Results on five models. J. Biomech. 1985, 18, 909–926. [Google Scholar] [CrossRef]
- Cao, K.; Bukač, M.; Sucosky, P. Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 603–613. [Google Scholar] [CrossRef]
- VeDepo, M.C.; Detamore, M.S.; Hopkins, R.A.; Converse, G.L. Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve. J. Tissue Eng. 2016, 8, 2041731417726327. [Google Scholar] [CrossRef]
- Benson, D.J. Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 1992, 99, 235–394. [Google Scholar] [CrossRef]
- Luraghi, G.; Migliavacca, F.; Matas, J.F.R. Study on the Accuracy of Structural and FSI Heart Valves Simulations. Cardiovasc. Eng. Technol. 2018, 9, 723–738. [Google Scholar] [CrossRef]
- Luraghi, G.; Wu, W.; De Gaetano, F.; Matas, J.F.R.; Moggridge, G.D.; Serrani, M.; Stasiak, J.; Costantino, M.L.; Migliavacca, F. Evaluation of an aortic valve prosthesis: Fluid-structure interaction or structural simulation? J. Biomech. 2017, 58, 45–51. [Google Scholar] [CrossRef]
- Hasan, A.; Ragaert, K.; Swieszkowski, W.; Selimović, Š.; Paul, A.; Camci-Unal, G.; Mofrad, M.R.; Khademhosseini, A. Biomechanical properties of native and tissue engineered heart valve constructs. J. Biomech. 2014, 47, 1949–1963. [Google Scholar] [CrossRef]
- Garcia, D.; Kadem, L. What do you mean by aortic valve area: Geometric orifice area, effective orifice area, or gorlin area? J. Heart Valve Dis. 2006, 15, 601. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, D.M.; Yoganathan, A.P. Numerical simulation of steady turbulent flow through trileaflet aortic heart valves—I. computational scheme and methodology. J. Biomech. 1985, 18, 899–907. [Google Scholar] [CrossRef]
- Fluent, A. ANSYS Fluent User’s Guide, 2020R2, Section 7.4.11 Outflow Boundary Conditions; ANSYS: Canonsburg, PA, USA, 2020. [Google Scholar]
- Fry, D.L. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res. 1968, 22, 165–197. [Google Scholar] [CrossRef]
- Fry, D.L. Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog. Circ. Res. 1969, 24, 93–108. [Google Scholar] [CrossRef]
Valve Diameter (mm) | GOA (mm2) | % Max GOA |
---|---|---|
24.60 | 279.4 | 100 |
255.4 | 91.41 | |
218.4 | 78.17 | |
171.9 | 61.52 | |
129.5 | 46.35 | |
18.45 | 160.9 | 100 |
148.7 | 92.42 | |
118.9 | 73.90 | |
97.42 | 60.55 | |
76.79 | 47.73 | |
12.30 | 71.58 | 100 |
64.21 | 89.70 | |
54.34 | 75.92 | |
46.72 | 65.27 | |
39.73 | 55.50 |
Valve Diameter (mm) | GOA (mm2) | % Max GOA | Flow (L/min) | ||||
---|---|---|---|---|---|---|---|
5 | 11 | 18 | 24 | 30 | |||
24.60 | 279.4 | 100 | ✓ | ✓ | ✓ | ✓ | ✓ |
255.4 | 91.41 | ✓ | ✓ | ✓ | ✓ | ✓ | |
218.4 | 78.17 | ✓ | ✓ | ✓ | ✓ | ✓ | |
171.9 | 61.52 | ✓ | ✓ | ✓ | ✓ | ||
129.5 | 46.35 | ✓ | ✓ | ✓ | |||
18.45 | 160.9 | 100 | ✓ | ✓ | ✓ | ✓ | ✓ |
148.7 | 92.42 | ✓ | ✓ | ✓ | ✓ | ✓ | |
118.9 | 73.90 | ✓ | ✓ | ✓ | ✓ | ✓ | |
97.42 | 60.55 | ✓ | ✓ | ✓ | ✓ | ||
76.79 | 47.73 | ✓ | ✓ | ✓ | |||
12.30 | 71.58 | 100 | ✓ | ✓ | ✓ | ✓ | ✓ |
64.21 | 89.70 | ✓ | ✓ | ✓ | ✓ | ✓ | |
54.34 | 75.92 | ✓ | ✓ | ✓ | ✓ | ✓ | |
46.72 | 65.27 | ✓ | ✓ | ✓ | ✓ | ||
39.73 | 55.50 | ✓ | ✓ | ✓ |
Day | Observation | Estimated Peak WSS (Pa) | ||
---|---|---|---|---|
Peak Flow Rate (L/min) | Maximum GOA (mm2) | 50th Percentile | 99th Percentile | |
1 | 5 | 130 | 2.13 | 8.34 |
2 | 6.5 | 150 | 2.52 | 9.94 |
3 | 8 | 180 | 2.61 | 10.31 |
4 | 9.5 | 195 | 2.96 | 11.80 |
5 | 11 | 205 | 3.39 | 13.61 |
6 | 12 | 210 | 3.70 | 14.92 |
7 | 13.5 | 230 | 3.84 | 15.52 |
8 | 15 | 250 | 3.96 | 16.03 |
9 | 17 | 260 | 4.46 | 18.19 |
10 | 18 | 270 | 4.58 | 18.72 |
11 | 19.5 | 275 | 4.99 | 20.50 |
12 | 21 | 275 | 5.53 | 22.86 |
13 | 22.5 | 278 | 6.00 | 24.90 |
14 | 24 | 280 | 6.50 | 27.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dave, R.; Luraghi, G.; Sierad, L.; Migliavacca, F.; Kung, E. Shear Stress Quantification in Tissue Engineering Bioreactor Heart Valves: A Computational Approach. J. Funct. Biomater. 2024, 15, 76. https://doi.org/10.3390/jfb15030076
Dave R, Luraghi G, Sierad L, Migliavacca F, Kung E. Shear Stress Quantification in Tissue Engineering Bioreactor Heart Valves: A Computational Approach. Journal of Functional Biomaterials. 2024; 15(3):76. https://doi.org/10.3390/jfb15030076
Chicago/Turabian StyleDave, Raj, Giulia Luraghi, Leslie Sierad, Francesco Migliavacca, and Ethan Kung. 2024. "Shear Stress Quantification in Tissue Engineering Bioreactor Heart Valves: A Computational Approach" Journal of Functional Biomaterials 15, no. 3: 76. https://doi.org/10.3390/jfb15030076
APA StyleDave, R., Luraghi, G., Sierad, L., Migliavacca, F., & Kung, E. (2024). Shear Stress Quantification in Tissue Engineering Bioreactor Heart Valves: A Computational Approach. Journal of Functional Biomaterials, 15(3), 76. https://doi.org/10.3390/jfb15030076