A Finite Element Method Study on a Simulation of the Thermal Behaviour of Four Methods for the Restoration of Class II Cavities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dental Material
2.2. Hardware and Equipment
2.3. Software
2.4. Work Method
2.5. Virtual Models of the Upper Permanent First Molar Specific to Restorative Techniques
2.5.1. Virtual Model of the Upper Permanent First Molar with Carious Cavity
2.5.2. Virtual Exterior Model of the Upper Permanent First Molar
2.5.3. External Virtual Models of Dentin and Pulp of the Upper Permanent First Molar
2.5.4. Modelling of Direct Access, Occlusal–Distal, Vertical Slot and Horizontal Slot External Cavities
2.5.5. Virtual Model of the Intact Upper Permanent First Molar
2.5.6. Virtual Model of Composite Fillings Used in Cavity Restoration
2.5.7. Virtual Models of the Restored Molar for Direct Access, Occlusal–Distal, Vertical Slot and Horizontal Slot Cavities
2.6. Simulation of the Thermal Behaviour of the Virtual Models of the Molar Analysed after Cavity Restoration in the Finishing and Polishing Process
2.6.1. Common Conditions
2.6.2. Simulation of the Thermal Behaviour of the Virtual Models of the Molar Analysed after Direct Access Cavity Restoration in the Finishing and Polishing Process
2.6.3. Simulation of the Thermal Behaviour of the Virtual Models of the Molar Analysed after Occlusal–Distal Cavity Restoration
2.6.4. Simulation of the Thermal Behaviour of the Virtual Models of the Molar Analysed after Restoration of the Vertical Slot Cavity in the Finishing and Polishing Process
2.6.5. Simulation of the Thermal Behaviour of the Virtual Models of the Molar Analysed after Restoration of the Horizontal Slot Cavity in the Finishing and Polishing Process
3. Results
3.1. Results of the Simulation of the Thermal Behaviour of the Virtual Models of the Molar Analysed after Direct Access Cavity Restoration in the Finishing and Polishing Process
3.2. Results of Simulating the Thermal Behaviour of Virtual Models of the Molar Analysed after Occlusal–Distal Cavity Restoration in the Finishing and Polishing Process
3.3. Results of Simulating the Thermal Behaviour of Virtual Models of the Analysed Molar after Restoration of the Vertical Slot Cavity in the Finishing and Polishing Process
3.4. Results of the Simulation of the Thermal Behaviour of the Virtual Models of the Analysed Molar after Restoration of the Horizontal Slot Cavity in the Finishing and Polishing Process
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Köhler, B.; Rasmusson, C.G.; Odman, P. A five-year clinical evaluation of Class II composite resin restorations. J. Dent. 2000, 28, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Montagner, A.F.; Sande, F.H.; Müller, C.; Cenci, M.S.; Susin, A.H. Survival, reasons for failure and clinical characteristics of anterior/posterior composites: 8-year findings. Braz. Dent. J. 2018, 29, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Demarco, F.F.; Collares, K.; Correa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J. Should my composite restorations last forever? Why are they failing? Braz. Oral Res. 2017, 31, 56. [Google Scholar] [CrossRef] [PubMed]
- Correa, M.B.; Peres, M.A.; Peres, K.G.; Horta, B.L.; Barros, A.D.; Demarco, F.F. Amalgam or composite resin? Factors influen cing the choice of restorative material. J. Dent. 2012, 40, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Ziwniewska, I.; Macieljczyk, M.; Zalewska, A. The Effect of Selected Dental Materials Used in Conservative Dentistry, Endodontics, Surgery, and Orthodontics as Well as during the Periodontal Treatment on the Redox Balance in the Oral Cavity. Int. J. Mol. Sci. 2020, 21, 9684. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, A.; Attin, T. Treatment of proximal caries lesions by tunnel restorations. Dent. Mater. 2007, 23, 1461–1467. [Google Scholar] [CrossRef]
- Bohaty, B.S.; Ye, Q.; Misra, A.; Sene, F.; Spencer, P. Posterior composite restoration update: Focus on factors influencing form and function. Clin. Cosm. Investig. Dent. 2013, 5, 33. [Google Scholar] [CrossRef]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of Dental Materials guidance-Resin composites: Part I-Mechanical properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Carreira, M.; Antunes, P.V.; Ramalho, A.; Paula, A.; Carrilho, E. Thermocycling effect on mechanical and tribological characterization of two indirect dental restorative materials. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 1–17. [Google Scholar] [CrossRef]
- Țuculină, M.J.; Staicu, A.N.; Munteanu, M.C.; Cumpătă, C.N.; Dimitriu, B.; Rîcă, A.M.; Beznă, M.C.; Popa, D.L.; Popescu, A.D.; Țîrcă, T. Study on the Restoration of Class II Carious Cavities by Virtual Methods: Simulation of Mechanical Behavior. J. Funct. Biomater. 2023, 14, 354. [Google Scholar] [CrossRef]
- Reise, M.; Kranz, S.; Heyder, M.; Beck, J.; Roth, C.; Guellmar, A.; von Eggeling, F.; Schubert, U.; Löffler, B.; Sigusch, B. Salivary Pellicle Formed on Dental Composites Evaluated by Mass Spectrometry—An In Situ Study. Molecules 2023, 28, 6804. [Google Scholar] [CrossRef] [PubMed]
- Gradinaru, I.; Vasiliu, A.L.; Bargan, A.; Checherita, L.E.; Ciubotaru, B.-I.; Armencia, A.O.; Istrate, B.; Dascalu, C.G.; Antohe, M.E. The Influence of Beverages on Resin Composites: An In Vitro Study. Biomedicines 2023, 11, 2571. [Google Scholar] [CrossRef]
- Chatzistavrou, X.; Paraskevopoulos, K.M.; Salih, V.; Boccaccini, A.R.; Kasuga, T. Ag-Doped Sol-Gel Derived Novel Composite Materials for Dental Applications. KEM 2011, 493, 637–642. [Google Scholar] [CrossRef]
- Moszner, N.; Salz, U. New developments of polymeric dental composites. Prog. Polym. Sci. 2001, 26, 535–576. [Google Scholar] [CrossRef]
- Jakubinek, M.B.; O’Neill, C.; Felix, C.; Price, R.B.; White, M.A. Temperature excursions at the pulp–dentin junction during the curing of light-activated dental restorations. Dent. Mater. J. 2008, 24, 1468–1476. [Google Scholar] [CrossRef]
- Aggarwal, V.; Singla, M.; Miglani, S. Effect of thermal and mechanical loading on marginal adaptation and microtensile bond strength of a self-etching adhesive with caries-affected dentin. J. Conserv. Dent. 2011, 14, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.S.; Dewey, W.A.; Jacobs, H.R. Thermal properties of teeth. J. Dent. Res. 1970, 49, 752–755. [Google Scholar] [CrossRef]
- Eissa, M.F.; El-Shamy, H.M.; Hanafy, H.S. Structural and Dielectric Properties of Sterilized Human Teeth. Phys. Int. 2012, 3, 22–27. [Google Scholar] [CrossRef]
- Lopes, G.C.; Franke, M.; Maia, H.P. Effect of fi nishing time and techniques on marginal sealing ability of two composite restorative materials. J. Prosthet. Dent. 2002, 88, 32–36. [Google Scholar] [CrossRef]
- Spierings, T.A.; Peters, M.C.; Plasschaert, A.J. Thermal trauma to teeth. Endod. Dent. Traumatol. 1985, 1, 123–129. [Google Scholar] [CrossRef]
- Lau, X.E.; Liu, X.; Chua, H.; Wang, W.J.; Dias, M.; Choiet, J.J.E. Heat generated during dental treatments affecting intrapulpal temperature: A review. Clin. Oral Investig. 2023, 27, 2277–2297. [Google Scholar] [CrossRef] [PubMed]
- Hannah, C.M.; Smith, G.A. The surface finish of composite restorative materials. Br. Dent. J. 1973, 135, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Ravi, R.K.; Alla, R.K.; Shammas, M.; Devarhubli, A. Dental Composites-A Versatile Restorative Material: An Overview. Indian J. Dent. Sci. 2013, 5, 111–115. [Google Scholar]
- Choi, N.S.; Gu, J.U.; Arakawa, K. Acoustic emission characterization of the marginal disintegration of dental composite restoration. Compos. Part A Appl. Sci. Manuf. 2011, 42, 604–611. [Google Scholar] [CrossRef]
- Oqton: Manufacturing Software Solutions. Available online: http://www.geomagic.com/en (accessed on 19 October 2022).
- Quara. Available online: https://www.quora.com/What-is-ANSYS-software (accessed on 11 May 2023).
- Ansys. Available online: https://www.ansys.com/ (accessed on 13 January 2023).
- Inas. Available online: https://www.inas.ro/ro/ (accessed on 12 June 2023).
- Xie, H.W.; Deng, S.; Zhang, Y.; Zhang, J. Simulation study on convective heat transfer of the tongue in closed mouth. ICSESS 2017, 8, 802–805. [Google Scholar]
- Toparli, M.; Gökay, N.; Aksoy, T. An investigation of temperature and stress distribution on a restored maxillary second premolar tooth using a three-dimensional finite element method. J. Oral Rehabil. 2000, 27, 1077–1081. [Google Scholar] [PubMed]
- Rees, J.S.; Jacobsen, P.H. The effect of cuspal flexure on a buccal Class V restoration: A finite element study. J. Dent. 1998, 26, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Korioth, T.W.; Versluis, A. Modeling the mechanical behavior of the jaws and their related structures by finite element (FE) analysis. Crit. Rev. Oral Biol. Med. 1997, 8, 90–104. [Google Scholar] [CrossRef]
- Ausiello, P.; Franciosa, P.; Martorelli, M.; Watts, D.C. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth. Dent. Mater. 2011, 27, 423–430. [Google Scholar] [CrossRef]
- Hashemipour, M.A.; Mohammadpour, A.; Nassab, S.A. Transient thermal and stress analysis of maxillary second premolar tooth using an exact three-dimensional model. Indian J. Dent. Res. 2010, 21, 158–164. [Google Scholar] [CrossRef]
- Masouras, K.; Silikas, N.; Watts, D.C. Correlation of filler content and elastic properties of resin-composites. Dent. Mater. J. 2008, 24, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Alnazzawi, A.; Watts, D.C. Simultaneous determination of polymerization shrinkage, exotherm and thermal expansion coefficient for dental resin-composites. Dent. Mater. J. 2012, 28, 1240–1249. [Google Scholar] [CrossRef]
- Nica, I.; Rusu, V.; Paun, A.; Stefanescu, C.; Vizureanu, P.; Aluculesei, A. Thermal properties of nanofilled and microfilled restorative composites. Composites 2009, 18, 20. [Google Scholar]
- Krämer, N.; García-Godoy, F.; Frankenberger, R. Evaluation of resin composite materials. Part II: In vivo investigations. Am. J. Dent. 2005, 18, 75–81. [Google Scholar] [PubMed]
- Casselli, D.S.M.; Silva, A.L.F.; Casselli, H.; Martins, L.R.M. Effect of cavity preparation design on the fracture resistance of directly and indirectly restored premolars. Braz. J. Oral Sci. 2015, 7, 1636–1640. [Google Scholar]
- Teixeira, E.; Rizzante, F.; Ishikiriama, S.; Mondelli, J.; Furuse, A.; Mondelli, R.; Bombonatti, J. Fracture strength of the remaining dental structure after different cavity preparation designs. Gen. Dent. 2016, 64, 33–36. [Google Scholar] [PubMed]
- Choi, K.K.; Ferracane, J.L.; Ryu, G.J.; Choi, S.M.; Lee, M.J.; Park, S.J. Effects of Cavity Configuration on Composite Restoration. Oper. Dent. 2004, 29, 462–469. [Google Scholar]
- Spierings, T.A.M.; Peters, M.C.R.B.; Bosman, F.; Plasschaert, A.J.M. The influence of cavity geometry on heat transmission in restored teeth. J. Dent. 1986, 14, 47–51. [Google Scholar] [CrossRef]
- Chladek, G.; Basa, K.; Żmudzki, J.; Malara, P.; Nowak, A.J.; Kasperski, J. Influence of aging solutions on wear resistance and hardness of selected resin-based dental composites. Acta Bioeng. Biomech. 2016, 18, 43–52. [Google Scholar]
- Pieniak, D.; Niewczas, A.; Kordos, P. Influence of thermal fatigue and ageing on the microhardness of polymer-ceramic composites for bio-medical applications. Eksploatacja i Niezawodnosc 2012, 14, 181–188. [Google Scholar]
- Zach, L.; Cohen, G. Pulp response to external heat. Oral Surg. 1965, 19, 515–530. [Google Scholar] [CrossRef]
- Baldissara, P.; Catapano, S.; Scott, R. Clinical and histological evaluation of thermal injury thresholds in human teeth: A preliminary study. J. Oral Rehabil. 1997, 24, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Raab, W.H.; Müller, H. Temperature-dependent changes in the microcirculation of the dental pulp. Dtsch. Zahnarztl. Z. 1989, 44, 496–497. [Google Scholar] [PubMed]
- Nilsen, B.W.; Mouhat, M.; Haukland, T.; Örtengren, U.T.; Mercer, J.B. Heat Development in the Pulp Chamber During Curing Process of Resin-Based Composite Using Multi-Wave LED Light Curing Unit. Clin. Cosmet. Investig. Dent. 2020, 8, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Mousavinasab, S.M.; Taromi, Z.; Zajkani, E. Thermal rise during photopolymerization and degree of conversion of bulk fill and conventional resin composites. Dent. Res. J. 2020, 17, 293–299. [Google Scholar]
- Lempel, E.; Őri, Z.; Kincses, D.; Lovász, B.V.; Kunsági-Máté, S.; Szalma, J. Degree of conversion and in vitro temperature rise of pulp chamber during polymerization of flowable and sculptable conventional, bulk-fill and short-fibre reinforced resin composites. Dent. Mater. J. 2021, 37, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.P.; Coelho, A.; Paula, A.; Amaro, I.; Saraiva, J.; Ferreira, M.M.; Marto, C.M.; Carrilho, E. The Influence of Irrigation during the Finishing and Polishing of Composite Resin Restorations—A Systematic Review of In Vitro Studies. Materials 2021, 14, 1675. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, N. An Invitro Study to Evaluate the Rise in Pulpal Temperature During Finishing and Polishing of A) Composite, b) Resin Modified Glass Ionomer, C) Compomer Restorations. ProQuest Dissertations Publishing. PQDT 2005, 1, 20–40. [Google Scholar]
- Ercoli, C.; Rotella, M.; Funkenbusch, P.D.; Russell, S.; Feng, C. In vitro comparison of the cutting efficiency and temperature pro-duction of 10 different rotary cutting instruments. Part I: Turbine. J. Prosthet. Dent. 2009, 101, 248–261. [Google Scholar] [CrossRef]
- Farah, R.I. Effect of cooling water temperature on the temperature changes in pulp chamber and at handpiece head during high-speed tooth preparation. Restor. Dent. Endod. 2018, 44, 3. [Google Scholar] [CrossRef]
- Raab, W.H. Temperature related changes in pulpal micro-circulation. Proc. Finn. Dent. Soc. 1992, 88, 469–479. [Google Scholar]
- Dodge, W.W.; Dale, R.A.; Cooley, R.L.; Duke, E.S. Comparison of wet and dry finishing of resin composites with aluminum oxide discs. Dent. Mater. 1991, 7, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Nasoohi, N.; Hoorizad, M.; Tabatabaei, S.F. Effects of Wet and Dry Finishing and Polishing on Surface Roughness and Microhardness of Composite Resins. J. Dent. 2017, 14, 69–75. [Google Scholar]
- Janeczek, M.; Herman, K.; Fita, K.; Dudek, K.; Kowalczyk-Zając, M.; Czajczyńska-Waszkiewicz, A.; Piesiak-Pańczyszyn, D.; Kosior, P.; Dobrzyński, M. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials. BioMed Res. Int. 2016, 2016, 4158376. [Google Scholar] [CrossRef] [PubMed]
- Your Home. Available online: https://www.yourhome.gov.au/passive-design/thermal-mass (accessed on 12 June 2023).
- Singh, A.; Kavitha, S.; Lakshmi Narayanan, L. A comparative evaluation of pulp chamber temperature rise associated with polishing of light cure composite restoration using 2 different polishing systems. J. Conserv. Dent. Endod. 2006, 9, 21–31. [Google Scholar] [CrossRef]
- Mirzakoucheki Boroujeni, P.; Daneshpour, N.; Zare Jahromi, M. The Effect of Different Polishing Methods and Composite Resin Thickness on Temperature Rise of Composite Restorative Materials. J. Iran. Dent. Assoc. 2013, 25, 28–34. [Google Scholar]
- Linsuwanont, P.; Palamara, J.E.A.; Messer, H.H. An investigation of thermal stimulation in intact teeth. Arch. Oral Biol. 2007, 52, 218–227. [Google Scholar] [CrossRef]
Component | Young’s Modulus [GPa] | Poisson’s Ratio | Density [kg/m3] | Thermal Conductivity [W/m·K] | Specific Heat [J/g × K] |
---|---|---|---|---|---|
Enamel | 80 | 0.33 | 2.800 | 0.84 | 750 |
Dentin | 20 | 0.31 | 2.000 | 0.36 | 1.302 |
Pulp | 0.003 | 0.45 | 1.000 | 0.0418 | 4200 |
Filtek Supreme XT | 5.76 | 0.45 | 1.500 | 1.18 | 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staicu, A.N.; Țuculină, M.J.; Cumpătă, C.N.; Rîcă, A.M.; Beznă, M.C.; Popa, D.L.; Popescu, A.D.; Diaconu, O.A. A Finite Element Method Study on a Simulation of the Thermal Behaviour of Four Methods for the Restoration of Class II Cavities. J. Funct. Biomater. 2024, 15, 86. https://doi.org/10.3390/jfb15040086
Staicu AN, Țuculină MJ, Cumpătă CN, Rîcă AM, Beznă MC, Popa DL, Popescu AD, Diaconu OA. A Finite Element Method Study on a Simulation of the Thermal Behaviour of Four Methods for the Restoration of Class II Cavities. Journal of Functional Biomaterials. 2024; 15(4):86. https://doi.org/10.3390/jfb15040086
Chicago/Turabian StyleStaicu, Adela Nicoleta, Mihaela Jana Țuculină, Cristian Niky Cumpătă, Ana Maria Rîcă, Maria Cristina Beznă, Dragoș Laurențiu Popa, Alexandru Dan Popescu, and Oana Andreea Diaconu. 2024. "A Finite Element Method Study on a Simulation of the Thermal Behaviour of Four Methods for the Restoration of Class II Cavities" Journal of Functional Biomaterials 15, no. 4: 86. https://doi.org/10.3390/jfb15040086
APA StyleStaicu, A. N., Țuculină, M. J., Cumpătă, C. N., Rîcă, A. M., Beznă, M. C., Popa, D. L., Popescu, A. D., & Diaconu, O. A. (2024). A Finite Element Method Study on a Simulation of the Thermal Behaviour of Four Methods for the Restoration of Class II Cavities. Journal of Functional Biomaterials, 15(4), 86. https://doi.org/10.3390/jfb15040086