Fracture Resistance of a Bone-Level Two-Piece Zirconia Oral Implant System—The Influence of Artificial Loading and Hydrothermal Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Investigated Implants
2.2. Experimental Zirconia Implant
2.3. Preparation of Samples for Artificial Loading and Hydrothermal Aging in the Artificial Chewing Simulator
2.4. Mechanical Loading and Hydrothermal Aging
2.5. Phase and Microstructural Composition Beneath the Surface
2.6. Quasi-Static Loading Assessment
2.7. Statistical Analyses
3. Results
3.1. Mechanical Loading and Hydrothermal Aging Assessment
3.2. Phase and Microstructural Composition Beneath the Surface
3.3. Quasi-Static Loading Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pieralli, S.; Kohal, R.J.; Jung, R.E.; Vach, K.; Spies, B.C. Clinical Outcomes of Zirconia Dental Implants: A Systematic Review. J. Dent. Res. 2017, 96, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.; Gallucci, G.; Lin, W.-S.; Pjetursson, B.; Polido, W.; Roehling, S.; Sailer, I.; Aghaloo, T.; Albera, H.; Bohner, L.; et al. Group 2 ITI Consensus Report: Prosthodontics and Implant Dentistry. Clin. Oral Implant. Res. 2018, 29 (Suppl. 16), 215–223. [Google Scholar] [CrossRef] [PubMed]
- Brunello, G.; Rauch, N.; Becker, K.; Hakimi, A.R.; Schwarz, F.; Becker, J. Two-Piece Zirconia Implants in the Posterior Mandible and Maxilla: A Cohort Study with a Follow-up Period of 9 Years. Clin. Oral Implant. Res. 2022, 33, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Gahlert, M.; Kniha, H.; Laval, S.; Gellrich, N.-C.; Bormann, K.-H. Prospective Clinical Multicenter Study Evaluating the 5-Year Performance of Zirconia Implants in Single-Tooth Gaps. Int. J. Oral Maxillofac. Implant. 2022, 37, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Dahl, E.; Enbom, L.; Engevall, S.; Engquist, B.; Eriksson, A.R.; Feldmann, G.; Freiberg, N.; Glantz, P.O.; Kjellman, O. Osseointegrated Oral Implants. A Swedish Multicenter Study of 8139 Consecutively Inserted Nobelpharma Implants. J. Periodontol. 1988, 59, 287–296. [Google Scholar] [CrossRef]
- Buser, D.A.; Tonetti, M. Clinical Trials on Implants in Regenerated Bone. Ann. Periodontol. 1997, 2, 329–342. [Google Scholar] [CrossRef]
- Jung, R.E.; Zembic, A.; Pjetursson, B.E.; Zwahlen, M.; Thoma, D.S. Systematic Review of the Survival Rate and the Incidence of Biological, Technical, and Aesthetic Complications of Single Crowns on Implants Reported in Longitudinal Studies with a Mean Follow-up of 5 Years. Clin. Oral Implant. Res. 2012, 23 (Suppl. 6), 2–21. [Google Scholar] [CrossRef] [PubMed]
- Pjetursson, B.E.; Thoma, D.; Jung, R.; Zwahlen, M.; Zembic, A. A Systematic Review of the Survival and Complication Rates of Implant-Supported Fixed Dental Prostheses (FDPs) after a Mean Observation Period of at Least 5 Years. Clin. Oral Implant. Res. 2012, 23 (Suppl. 6), 22–38. [Google Scholar] [CrossRef]
- Egusa, H.; Ko, N.; Shimazu, T.; Yatani, H. Suspected Association of an Allergic Reaction with Titanium Dental Implants: A Clinical Report. J. Prosthet. Dent. 2008, 100, 344–347. [Google Scholar] [CrossRef]
- Sicilia, A.; Cuesta, S.; Coma, G.; Arregui, I.; Guisasola, C.; Ruiz, E.; Maestro, A. Titanium Allergy in Dental Implant Patients: A Clinical Study on 1500 Consecutive Patients. Clin. Oral Implant. Res. 2008, 19, 823–835. [Google Scholar] [CrossRef]
- Albrektsson, T.; Jemt, T.; Mölne, J.; Tengvall, P.; Wennerberg, A. On Inflammation-Immunological Balance Theory-A Critical Apprehension of Disease Concepts around Implants: Mucositis and Marginal Bone Loss May Represent Normal Conditions and Not Necessarily a State of Disease. Clin. Implant. Dent. Relat. Res. 2019, 21, 183–189. [Google Scholar] [CrossRef]
- Comino-Garayoa, R.; Cortés-Bretón Brinkmann, J.; Peláez, J.; López-Suárez, C.; Martínez-González, J.M.; Suárez, M.J. Allergies to Titanium Dental Implants: What Do We Really Know about Them? A Scoping Review. Biology 2020, 9, 404. [Google Scholar] [CrossRef]
- Hosoki, M.; Nishigawa, K.; Miyamoto, Y.; Ohe, G.; Matsuka, Y. Allergic Contact Dermatitis Caused by Titanium Screws and Dental Implants. J. Prosthodont. Res. 2016, 60, 213–219. [Google Scholar] [CrossRef]
- Alqahtani, A.R.; Gufran, K.; Silva, F.; Rocha, M.G.; Chang, J. A Clinical Case Report of a Potential Acute Allergic Reaction with Titanium Dental Implant. Case Rep. Dent. 2021, 2021, 5592934. [Google Scholar] [CrossRef]
- Poli, P.P.; de Miranda, F.V.; Polo, T.O.B.; Santiago Júnior, J.F.; Lima Neto, T.J.; Rios, B.R.; Assunção, W.G.; Ervolino, E.; Maiorana, C.; Faverani, L.P. Titanium Allergy Caused by Dental Implants: A Systematic Literature Review and Case Report. Materials 2021, 14, 5239. [Google Scholar] [CrossRef]
- Asmarz, H.Y.; Magrin, G.L.; Prado, A.M.; Passoni, B.B.; Magalhães Benfatti, C.A. Evaluation of Removal Torque and Internal Surface Alterations in Frictional Morse Taper Connections After Mechanical Loading Associated or Not with Oral Biofilm. Int. J. Oral Maxillofac. Implant. 2021, 36, 492–501. [Google Scholar] [CrossRef]
- Safioti, L.M.; Kotsakis, G.A.; Pozhitkov, A.E.; Chung, W.O.; Daubert, D.M. Increased Levels of Dissolved Titanium Are Associated With Peri-Implantitis—A Cross-Sectional Study. J. Periodontol. 2017, 88, 436–442. [Google Scholar] [CrossRef]
- De la Garza-Ramos, M.A.; Estupiñan-Lopez, F.H.; Gaona-Tiburcio, C.; Beltrán-Novelo, L.G.; Zambrano-Robledo, P.; Cabral-Miramontes, J.; Almeraya-Calderón, F. Electrochemical Behavior of Ti6Al4V Alloy Used in Dental Implants Immersed in Streptococcus Gordonii and Fusobacterium Nucleatum Solutions. Materials 2020, 13, 4185. [Google Scholar] [CrossRef]
- Liao, C.; Liang, S.; Wang, Y.; Zhong, T.; Liu, X. Sclerostin Is a Promising Therapeutic Target for Oral Inflammation and Regenerative Dentistry. J. Transl. Med. 2022, 20, 221. [Google Scholar] [CrossRef]
- Alhamad, M.; Barão, V.A.; Sukotjo, C.; Yerokhin, A.; Mathew, M.T. Unpredictable Electrochemical Processes in Ti Dental Implants: The Role of Ti Ions and Inflammatory Products. ACS Appl. Bio Mater. 2023, 6, 3661–3673. [Google Scholar] [CrossRef]
- Delgado-Ruiz, R.; Romanos, G. Potential Causes of Titanium Particle and Ion Release in Implant Dentistry: A Systematic Review. Int. J. Mol. Sci. 2018, 19, 3585. [Google Scholar] [CrossRef]
- Peñarrieta-Juanito, G.; Sordi, M.B.; Henriques, B.; Dotto, M.E.R.; Teughels, W.; Silva, F.S.; Magini, R.S.; Souza, J.C.M. Surface Damage of Dental Implant Systems and Ions Release after Exposure to Fluoride and Hydrogen Peroxide. J. Periodontal Res. 2019, 54, 46–52. [Google Scholar] [CrossRef]
- Kotsakis, G.A.; Black, R.; Kum, J.; Berbel, L.; Sadr, A.; Karoussis, I.; Simopoulou, M.; Daubert, D. Effect of Implant Cleaning on Titanium Particle Dissolution and Cytocompatibility. J. Periodontol. 2021, 92, 580–591. [Google Scholar] [CrossRef]
- Sridhar, S.; Abidi, Z.; Wilson, T.G.; Valderrama, P.; Wadhwani, C.; Palmer, K.; Rodrigues, D.C. In Vitro Evaluation of the Effects of Multiple Oral Factors on Dental Implants Surfaces. J. Oral Implant. 2016, 42, 248–257. [Google Scholar] [CrossRef]
- Sridhar, S.; Wang, F.; Wilson, T.G.; Valderrama, P.; Palmer, K.; Rodrigues, D.C. Multifaceted Roles of Environmental Factors toward Dental Implant Performance: Observations from Clinical Retrievals and in Vitro Testing. Dent. Mater. 2018, 34, e265–e279. [Google Scholar] [CrossRef]
- Siddiqui, D.A.; Guida, L.; Sridhar, S.; Valderrama, P.; Wilson, T.G.; Rodrigues, D.C. Evaluation of Oral Microbial Corrosion on the Surface Degradation of Dental Implant Materials. J. Periodontol. 2019, 90, 72–81. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Akagawa, Y.; Nikai, H.; Tsuru, H. Tissue Compatibility and Stability of a New Zirconia Ceramic in Vivo. J. Prosthet. Dent. 1992, 68, 322–326. [Google Scholar] [CrossRef]
- Akagawa, Y.; Ichikawa, Y.; Nikai, H.; Tsuru, H. Interface Histology of Unloaded and Early Loaded Partially Stabilized Zirconia Endosseous Implant in Initial Bone Healing. J. Prosthet. Dent. 1993, 69, 599–604. [Google Scholar] [CrossRef]
- Akagawa, Y.; Hosokawa, R.; Sato, Y.; Kamayama, K. Comparison between Freestanding and Tooth-Connected Partially Stabilized Zirconia Implants after Two Years’ Function in Monkeys: A Clinical and Histologic Study. J. Prosthet. Dent. 1998, 80, 551–558. [Google Scholar] [CrossRef]
- Degidi, M.; Artese, L.; Scarano, A.; Perrotti, V.; Gehrke, P.; Piattelli, A. Inflammatory Infiltrate, Microvessel Density, Nitric Oxide Synthase Expression, Vascular Endothelial Growth Factor Expression, and Proliferative Activity in Peri-Implant Soft Tissues around Titanium and Zirconium Oxide Healing Caps. J. Periodontol. 2006, 77, 73–80. [Google Scholar] [CrossRef]
- Degidi, M.; Artese, L.; Franceschini, N.; Sulpizio, S.; Piattelli, A.; Piccirilli, M.; Perrotti, V.; Iezzi, G. Matrix Metalloproteinases 2, 3, 8, 9, and 13 in the Peri-Implant Soft Tissues around Titanium and Zirconium Oxide Healing Caps. Int. J. Oral Maxillofac. Implant. 2013, 28, 1546–1551. [Google Scholar] [CrossRef]
- Kohal, R.-J.; Schwindling, F.S.; Bächle, M.; Spies, B.C. Peri-Implant Bone Response to Retrieved Human Zirconia Oral Implants after a 4-Year Loading Period: A Histologic and Histomorphometric Evaluation of 22 Cases. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 1622–1631. [Google Scholar] [CrossRef]
- Altmann, B.; Rabel, K.; Kohal, R.J.; Proksch, S.; Tomakidi, P.; Adolfsson, E.; Bernsmann, F.; Palmero, P.; Fürderer, T.; Steinberg, T. Cellular Transcriptional Response to Zirconia-Based Implant Materials. Dent. Mater. 2017, 33, 241–255. [Google Scholar] [CrossRef]
- Sala, L.; Zufía, J.; Blasi, G.; Carrillo-de-Albornoz, A. Clinical Evaluation and Patient Related Outcomes of One- and Two-Piece Zirconia Implants at Five Years of Loading: A Case Series Study. J. Esthet. Restor. Dent. 2023, 35, 577–585. [Google Scholar] [CrossRef]
- Spitznagel, F.A.; Balmer, M.; Wiedemeier, D.B.; Jung, R.E.; Gierthmuehlen, P.C. Clinical Outcomes of All-Ceramic Single Crowns and Fixed Dental Prostheses Supported by Ceramic Implants: A Systematic Review and Meta-Analyses. Clin. Oral Implant. Res. 2022, 33, 1–20. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.J.A.; Salvi, G.E. Peri-Implant Mucositis. J. Clin. Periodontol. 2018, 45 (Suppl. 20), S237–S245. [Google Scholar] [CrossRef]
- Preis, V.; Kammermeier, A.; Handel, G.; Rosentritt, M. In Vitro Performance of Two-Piece Zirconia Implant Systems for Anterior Application. Dent. Mater. 2016, 32, 765–774. [Google Scholar] [CrossRef]
- Bethke, A.; Pieralli, S.; Kohal, R.-J.; Burkhardt, F.; von Stein-Lausnitz, M.; Vach, K.; Spies, B.C. Fracture Resistance of Zirconia Oral Implants In Vitro: A Systematic Review and Meta-Analysis. Materials 2020, 13, 562. [Google Scholar] [CrossRef]
- ISO 14801:2016; Dentistry—Implants—Dynamic Fatigue Test for Endosseous Dental Implants. European Committee for Standardization: Brussels, Belgium, 2017; pp. 1–14.
- Lettry, S.; Seedhom, B.B.; Berry, E.; Cuppone, M. Quality Assessment of the Cortical Bone of the Human Mandible. Bone 2003, 32, 35–44. [Google Scholar] [CrossRef]
- Kohal, R.-J.; Schikofski, T.; Adolfsson, E.; Vach, K.; Patzelt, S.B.M.; Nold, J.; Wemken, G. Fracture Resistance of a Two-Piece Zirconia Implant System after Artificial Loading and/or Hydrothermal Aging-An In Vitro Investigation. J. Funct. Biomater. 2023, 14, 567. [Google Scholar] [CrossRef]
- Erneklint, C.; Ödman, P.; Örtengren, U.; Karlsson, S. An in Vitro Load Evaluation of a Conical Implant System with 2 Abutment Designs and 3 Different Retaining-Screw Alloys. Int. J. Oral Maxillofac. Implant. 2006, 21, 733–737. [Google Scholar]
- Morneburg, T.R.; Pröschel, P.A. In Vivo Forces on Implants Influenced by Occlusal Scheme and Food Consistency. Int. J. Prosthodont. 2003, 16, 481–486. [Google Scholar]
- DeLong, R.; Sakaguchi, R.L.; Douglas, W.H.; Pintado, M.R. The Wear of Dental Amalgam in an Artificial Mouth: A Clinical Correlation. Dent. Mater. 1985, 1, 238–242. [Google Scholar] [CrossRef]
- Sakaguchi, R.L.; Douglas, W.H.; DeLong, R.; Pintado, M.R. The Wear of a Posterior Composite in an Artificial Mouth: A Clinical Correlation. Dent. Mater. 1986, 2, 235–240. [Google Scholar] [CrossRef]
- Krejci, I.; Lutz, F. In-vitro-Testverfahren zur Evaluation dentaler Restaurationssysteme. 3. Korrelation mit In-vivo-Resultaten. Schweiz. Monatsschr Zahnmed. 1990, 100, 1445–1449. [Google Scholar]
- DeLong, R.; Douglas, W.H. An Artificial Oral Environment for Testing Dental Materials. IEEE Trans. Biomed. Eng. 1991, 38, 339–345. [Google Scholar] [CrossRef]
- Rosentritt, M.; Behr, M.; Gebhard, R.; Handel, G. Influence of Stress Simulation Parameters on the Fracture Strength of All-Ceramic Fixed-Partial Dentures. Dent. Mater. 2006, 22, 176–182. [Google Scholar] [CrossRef]
- Po, J.M.C.; Kieser, J.A.; Gallo, L.M.; Tésenyi, A.J.; Herbison, P.; Farella, M. Time-Frequency Analysis of Chewing Activity in the Natural Environment. J. Dent. Res. 2011, 90, 1206–1210. [Google Scholar] [CrossRef]
- Borchers, L.; Stiesch, M.; Bach, F.-W.; Buhl, J.-C.; Hübsch, C.; Kellner, T.; Kohorst, P.; Jendras, M. Influence of Hydrothermal and Mechanical Conditions on the Strength of Zirconia. Acta Biomater. 2010, 6, 4547–4552. [Google Scholar] [CrossRef]
- Lughi, V.; Sergo, V. Low Temperature Degradation -Aging- of Zirconia: A Critical Review of the Relevant Aspects in Dentistry. Dent. Mater. 2010, 26, 807–820. [Google Scholar] [CrossRef]
- Hannink, R.H.J.; Kelly, P.M.; Muddle, B.C. Transformation Toughening in Zirconia-Containing Ceramics. J. Eur. Ceram. Soc. 2000, 20, 461–487. [Google Scholar] [CrossRef]
- Chevalier, J.; Grandjean, S.; Kuntz, M.; Pezzotti, G. On the Kinetics and Impact of Tetragonal to Monoclinic Transformation in an Alumina/Zirconia Composite for Arthroplasty Applications. Biomaterials 2009, 30, 5279–5282. [Google Scholar] [CrossRef]
- Cotič, J.; Jevnikar, P.; Kocjan, A.; Kosmač, T. Complexity of the Relationships between the Sintering-Temperature-Dependent Grain Size, Airborne-Particle Abrasion, Ageing and Strength of 3Y-TZP Ceramics. Dent. Mater. 2016, 32, 510–518. [Google Scholar] [CrossRef]
- Cotič, J.; Kocjan, A.; Panchevska, S.; Kosmač, T.; Jevnikar, P. In Vivo Ageing of Zirconia Dental Ceramics—Part II: Highly-Translucent and Rapid-Sintered 3Y-TZP. Dent. Mater. 2021, 37, 454–463. [Google Scholar] [CrossRef]
- Cotič, J.; Jevnikar, P.; Kocjan, A. Ageing Kinetics and Strength of Airborne-Particle Abraded 3Y-TZP Ceramics. Dent. Mater. 2017, 33, 847–856. [Google Scholar] [CrossRef]
- Muñoz-Tabares, J.A.; Jiménez-Piqué, E.; Reyes-Gasga, J.; Anglada, M. Microstructural Changes in Ground 3Y-TZP and Their Effect on Mechanical Properties. Acta Mater. 2011, 59, 6670–6683. [Google Scholar] [CrossRef]
- Roa, J.J.; Turon-Vinas, M.; Anglada, M. Surface Grain Size and Texture after Annealing Ground Zirconia. J. Eur. Ceram. Soc. 2016, 36, 1519–1525. [Google Scholar] [CrossRef]
- Caravaca, C.F.; Flamant, Q.; Anglada, M.; Gremillard, L.; Chevalier, J. Impact of Sandblasting on the Mechanical Properties and Aging Resistance of Alumina and Zirconia Based Ceramics. J. Eur. Ceram. Soc. 2018, 38, 915–925. [Google Scholar] [CrossRef]
- Chintapalli, R.K.; Mestra Rodriguez, A.; Garcia Marro, F.; Anglada, M. Effect of Sandblasting and Residual Stress on Strength of Zirconia for Restorative Dentistry Applications. J. Mech. Behav. Biomed. Mater. 2014, 29, 126–137. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L. Ceramics for Medical Applications: A Picture for the next 20 Years. J. Eur. Ceram. Soc. 2009, 29, 1245–1255. [Google Scholar] [CrossRef]
- Kosmac, T.; Oblak, C.; Jevnikar, P.; Funduk, N.; Marion, L. The Effect of Surface Grinding and Sandblasting on Flexural Strength and Reliability of Y-TZP Zirconia Ceramic. Dent. Mater. 1999, 15, 426–433. [Google Scholar] [CrossRef]
- Mirt, T.; Abram, A.; van del Velde, N.; Jerman, I.; Bermejo, R.; Kocjan, A.; Jevnikar, P. Effect of Airborne-Particle Abrasion of Yttria-Containing Zirconia Dental Ceramics on Mechanical Properties before and after Regeneration Firing. J. Eur. Ceram. Soc. 2022, 42, 5035–5044. [Google Scholar] [CrossRef]
- Xu, Z.H.; Yang, Y.; Huang, P.; Li, X. Determination of interfacial properties of thermal barrier coatings by shear test and inverse finite element method. Acta Mater. 2010, 58, 5972–5979. [Google Scholar] [CrossRef]
- ISO 13356:2015; Implants for Surgery: Ceramic Materials Based on Yttria-Stabilized Tetragonal Zirconia (Y-TZP). European Committee for Standardization: Brussels, Belgium, 2015.
Group | Number of Specimens | Fracture Resistance [N] (Median) | Bending Moment [Ncm] (Median) |
---|---|---|---|
T-0 | 7 | 749 ± 208 a (767) | 411 ± 120 a (422) |
T-HL | 7 | 652 ± 256 a (701) | 356 ± 139 a (387) |
Z-0 | 7 | 828 ± 226 a (736) | 452 ± 124 a (408) |
Z-HL | 7 | 826 ± 114 a (860) | 456 ± 62 a (474) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohal, R.J.; Riesterer, E.; Vach, K.; Patzelt, S.B.M.; Iveković, A.; Einfalt, L.; Kocjan, A.; Hillebrecht, A.-L. Fracture Resistance of a Bone-Level Two-Piece Zirconia Oral Implant System—The Influence of Artificial Loading and Hydrothermal Aging. J. Funct. Biomater. 2024, 15, 122. https://doi.org/10.3390/jfb15050122
Kohal RJ, Riesterer E, Vach K, Patzelt SBM, Iveković A, Einfalt L, Kocjan A, Hillebrecht A-L. Fracture Resistance of a Bone-Level Two-Piece Zirconia Oral Implant System—The Influence of Artificial Loading and Hydrothermal Aging. Journal of Functional Biomaterials. 2024; 15(5):122. https://doi.org/10.3390/jfb15050122
Chicago/Turabian StyleKohal, Ralf J., Ellen Riesterer, Kirstin Vach, Sebastian B. M. Patzelt, Aljaž Iveković, Lara Einfalt, Andraž Kocjan, and Anna-Lena Hillebrecht. 2024. "Fracture Resistance of a Bone-Level Two-Piece Zirconia Oral Implant System—The Influence of Artificial Loading and Hydrothermal Aging" Journal of Functional Biomaterials 15, no. 5: 122. https://doi.org/10.3390/jfb15050122
APA StyleKohal, R. J., Riesterer, E., Vach, K., Patzelt, S. B. M., Iveković, A., Einfalt, L., Kocjan, A., & Hillebrecht, A. -L. (2024). Fracture Resistance of a Bone-Level Two-Piece Zirconia Oral Implant System—The Influence of Artificial Loading and Hydrothermal Aging. Journal of Functional Biomaterials, 15(5), 122. https://doi.org/10.3390/jfb15050122