In Vitro Evaluation of Mechanical, Surface, and Optical Properties of Restorative Materials Applied with Different Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Color Stability and Surface Roughness Tests
2.2. Compressive Strength Test
2.3. Statistical Analysis
3. Results
3.1. Color Stability
3.2. Surface Roughness
3.3. Compressive Strength
4. Discussion
5. Conclusions
- Coffee negatively affects the color stability of high-viscosity bulk-fill resin composites, flowable bulk-fill resin composites, and high-viscosity glass ionomers;
- High-viscosity bulk-fill resin composites, flowable bulk-fill resin composites, and high-viscosity glass ionomers exhibit clinically acceptable surface roughness. Nonetheless, individuals must be advised to be careful about the consumption of beverages that may increase surface roughness;
- Flowable bulk-fill resin composites exhibit the highest compressive strength values but applying ultrasonic activation to the material negatively affects the compressive strength.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erkan, E. The selection of correct filling material by patient at direct posterior composite. Turkiye Clin. J. Restor. Dent-Spec. Top. 2015, 1, 71–74. [Google Scholar]
- Zanata, R.L. Textbook of Operative Dentistry, 3rd ed.; The Health Sciences Publisher: New Delhi, India, 2015; pp. 420–438. [Google Scholar]
- Kanık, Ö.; Türkün, L.Ş. Recent approaches in restorative glass ionomer cements. J. Ege Univ. Sch. Dent. 2016, 37, 54–65. [Google Scholar] [CrossRef]
- Shahid, S.; Duminis, T. Advanced Dental Biomaterials, 1st ed.; Elsevier: Sawston, UK, 2019; pp. 175–195. [Google Scholar]
- Covey, D.; Tahaney, S.; Davenport, J. Mechanical properties of heat-treated composite resin restorative materials. J. Prosthet. Dent. 1992, 68, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.C.P.; Terada, R.S.S.; Tsuzuki, F.M.; Giannini, M.; Hirata, R. Heating and preheating of dental restorative materials—A systematic review. Clin. Oral. Investig. 2020, 24, 4225–4235. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.S. Effect of ultrasonic vibration on structural and physical properties of resin-based dental composites. Polymers 2021, 13, 2054. [Google Scholar] [CrossRef] [PubMed]
- Batmaz, S.G.; Dündar, A.; Barutçugil, Ç.; Yıldız, B. The effect of polymerizing bulk fill composite resins at different layer thicknesses and two different light power on the compressive strength of the composite. Eur. J. Res. Dent. 2021, 5, 38–44. [Google Scholar] [CrossRef]
- Pamir, T.; Korkut, Z.O.; Tezel, H.; Köse, T.; Özata, F. Effects of whitening toothpastes with different abrasivity on surface roughness and microhardness of resin composites. GÜ Diş Hek Fak. Derg. 2007, 24, 89–95. [Google Scholar]
- Barutcigil, Ç.; Kürklü, D.; Barutcigil, K.; Harorlı, O. Effect of whitening mouthrinses on surface roughness of composite resin. J. Dent. Fac. Atatürk Univ. 2014, 24, 33–38. [Google Scholar] [CrossRef]
- Mutlu, Ş.N.; Tunçdemir, M.T. Effect of whitening mouthrinse on color recovery and surface roughness on discolored composite resin. Selcuk Dent. J. 2020, 7, 435–439. [Google Scholar] [CrossRef]
- Mendes, A.P.; Barceleiro-Mde, O.; dos-Reis, R.S.; Bonato, L.L.; Dias, K.R. Changes in surface roughness and color stability of two composites caused by different bleaching agents. Braz. Dent. J. 2012, 23, 659–666. [Google Scholar] [CrossRef]
- Telang, A.; Narayana, I.H.; Madhu, K.S.; Kalasaiah, D.; Ramesh, P.; Nagaraja, S. Effect of staining and bleaching on color stability and surface roughness of three resin composites: An in vitro study. Contemp. Clin. Dent. 2018, 9, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Farah, R.I.; Elwi, H. Spectrophotometric evaluation of discolorations of bleach-shade resin-based composites after staining and bleaching. J. Contemp. Dent. Pract. 2014, 15, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.; Lassila, L.; Hatem, M.; Shembesh, M.; Baady, L.; Salim, Z.; Vallittu, P. Influence of staining solutions and whitening procedures on discoloration of hybrid composite resins. Acta Odontol. Scand. 2013, 71, 144–150. [Google Scholar] [CrossRef]
- Ozkanoglu, S.; Akin, E.G.G. Evaluation of the effect of various beverages on the color stability and microhardness of restorative materials. Niger J. Clin. Pract. 2020, 23, 322–328. [Google Scholar] [CrossRef]
- Çarıkçıoğlu, B. The effect of coating material on the color stability of glass-ionomer-based restorative materials: An in-vitro study. Cumhuriyet Dent. J. 2021, 24, 386–394. [Google Scholar] [CrossRef]
- Tunc, E.S.; Bayrak, S.; Guler, A.U.; Tuloglu, N. The effects of children’s drinks on the color stability of various restorative materials. J. Clin. Pediatr. Dent. 2009, 34, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.W.; Muliya, V.S.; Somayaji, K.; Pentapati, K.C. Effect of different herbal tea preparations on the color stability of glass ionomer cements. Clin. Cosmet. Investig. Dent. 2021, 13, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Morais-Sampaio, G.A.; Rangel-Peixoto, L.; Vasconcelos-Neves, G.; Nascimento-Barbosa, D.D. Effect of mouthwashes on color stability of composite resins: A systematic review. J. Prosthet. Dent. 2021, 126, 386–392. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Rodgers, B.; Suliman, A.A.; Johnston, W.M. Color and translucency stability of contemporary resin-based restorative materials. J. Esthet. Restor. Dent. 2021, 33, 899–905. [Google Scholar] [CrossRef]
- Paolone, G.; Mandurino, M.; Scotti, N.; Cantatore, G.; Blatz, M.B. Color stability of bulk-fill compared to conventional resin-based composites: A scoping review. J. Esthet. Restor. Dent. 2023, 35, 657–676. [Google Scholar] [CrossRef]
- Sajini, S.I.; Mushayt, A.B.; Almutairi, T.A.; Abuljadayel, R. Color stability of bioactive restorative materials after immersion in various media. J. Int. Soc. Prev. Community Dent. 2022, 12, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Alacote-Mauricio, B.; Gihuaña-Aguilar, C.; Castro-Ramirez, L.; Cervantes-Ganoza, L.; Ladera-Castañeda, M.; Dapello-Zevallos, G.; Cayo-Rojas, C. Color stability in a giomer, a conventional glass ionomer and a resin-modified glass ionomer exposed to different pigment beverages: An in vitro comparative study. J. Int. Oral. Health 2023, 15, 357. [Google Scholar] [CrossRef]
- Sakaguchi, R.L.; Powers, J.M. (Eds.) Craig’s Restorative Dental Materials, 13th ed.; Elsevier: Philadelphia, PA, USA, 2012; p. 56. [Google Scholar]
- Öztürk-Yeşilırmak, S.; Kazak, M.; Üçok, S.M. Evaluation of color stability of cad/cam and bulk-fill resin materials. Ege Univ. Sch. Dent. 2022, 43, 163–168. [Google Scholar] [CrossRef]
- Gajewski, V.E.; Pfeifer, C.S.; Fróes-Salgado, N.R.; Boaro, L.C.; Braga, R.R. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Braz. Dent. J. 2012, 23, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Optima Dent. Available online: https://www.optimadents.com/wp-content/uploads/2022/06/TetricN-CeramBulkFill.pdf (accessed on 15 June 2023).
- Tokuyama Türkiye. Available online: https://tokuyamaturkiye.com/upload/teknik/ESTELITE-BULK-FILL-FLOW.pdf (accessed on 17 June 2023).
- Özduman, Z.C.; Oglakci, B.; Halacoglu Bagis, D.M.; Aydogan Temel, B.; Eliguzeloglu Dalkilic, E. Comparison of a nanofiber-reinforced composite with different types of composite resins. Polymers 2023, 15, 3628. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M.; Fukushima, T.; Horibe, T. Mechanical and physical properties of 2,2’-bis(4-methacryloxy polyethoxyphenyl) propane polymers. Dent. Mater. J. 1987, 6, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, M.; Miura, H.; Nagatomi, H.; Yoshimine, M. The effects of various finishing materials on the gloss and the color change of indirect prosthetic resin composites. J. Med. Dent. Sci. 2008, 55, 1–6. [Google Scholar] [PubMed]
- Kurinji-Amalavathy, R.; Sahoo, H.S.; Shivanna, S.; Lingaraj, J.; Aravinthan, S. Staining effect of various beverages on and surface nano-hardness of a resin coated and a non-coated fluoride releasing tooth-coloured restorative material: An in-vitro study. Heliyon 2020, 6, e04345. [Google Scholar] [CrossRef] [PubMed]
- Bindal, P.; Bindal, U.; Dabbagh, A.; Ramanathan, A.; Ginjupalli, K. Comparative effects of turmeric, coffee, and chewable tobacco on the color stability of tooth-colored restorative materials. Open J. Dent. Oral. Med. 2015, 3, 59–67. [Google Scholar] [CrossRef]
- Alizadeh-Oskoee, P.; Savadi-Oskoee, S.; Pournaghi-Azar, F.; Dibazar, S.; Esmaeili, M. Pre-heating of low-shrinkage composite resins: Effects on color stability and surface roughness. Front. Dent. 2022, 19, 26. [Google Scholar] [CrossRef]
- Celik, A.C.T.; Coban, E.; Ulker, H.E. Effects of mouthwashes on color stability and surface roughness of three different resin-based composites. Niger J. Clin. Pract. 2021, 24, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, D.; Mazumdar, P.; Desai, P.; Datta, P. Comparative evaluation of surface roughness and color stability of nanohybrid composite resin after periodic exposure to tea, coffee, and coca-cola–an in vitro profilometric and image analysis study. J. Conserv. Dent. 2020, 23, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Paolone, G.; Formiga, S.; De-Palma, F.; Abbruzzese, L.; Chirico, L.; Scolavino, S.; Goracci, C.; Cantatore, G.; Vichi, A. Color stability of resin-based composites: Staining procedures with liquids-a narrative review. J. Esthet. Restor. Dent. 2022, 34, 865–887. [Google Scholar] [CrossRef]
- Mahajan, R.P.; Shenoy, V.U.; Sumanthini, M.V.; Mahajan, H.P.; Walzade, P.S.; Mangrolia, R. Comparative evaluation of the discoloration of microhybrid and nanohybrid composite resins by different beverages: A spectrophotometric analysis. J. Contemp. Dent. Pract. 2019, 20, 226–230. [Google Scholar] [CrossRef]
- ElEmbaby, A.E.; Slais, M.; Alawami, A.; Alabbad, M.; Alsowyan, M.; Hanna, N.; Bahgat, H. Spectrophotometric analysis of different flowable restorative materials. J. Contemp. Dent. Pract. 2021, 22, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Shamszadeh, S.; Sheikh-Al-Eslamian, S.M.; Hasani, E.; Abrandabadi, A.N.; Panahandeh, N. Color stability of the bulk-fill composite resins with different thickness in response to coffee/water immersion. Int. J. Dent. 2016, 2016, 7186140. [Google Scholar] [CrossRef] [PubMed]
- Domingos, P.A.; Garcia, P.P.; Oliveira, A.L.; Palma-Dibb, R.G. Composite resin color stability: Influence of light sources and ımmersion media. J. Appl. Oral. Sci. 2011, 19, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Darabi, F.; Seyed-Monir, A.; Mihandoust, S.; Maleki, D. The effect of preheating of composite resin on its color stability after immersion in tea and coffee solutions: An in-vitro study. J. Clin. Exp. Dent. 2019, 11, e1151–e1156. [Google Scholar] [CrossRef] [PubMed]
- Khazaal, G.; Daou, M.; Mahdi, S.S.; Ahmed, Z.; Maalouf, E.; Batteni, G.; Qasim, S.-S.B.; Kassis, C.; Agha, D.; Haddad, H.; et al. In vitro evaluation of the color stability and surface roughness of a new composite flow. J. Clin. Exp. Dent. 2023, 15, e43–e50. [Google Scholar] [CrossRef]
- Kaptan, A.; Oznurhan, F.; Candan, M. In vitro comparison of surface roughness, flexural, and microtensile strength of various glass-ionomer-based materials and a new alkasite restorative material. Polymers 2023, 15, 650. [Google Scholar] [CrossRef]
- Bollen, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Bani, M.; Öztaş, N. Evaluation of surface roughness of different restorative materials containing glass ionomer. Acta Odontol. Turc. 2013, 30, 13–17. [Google Scholar]
- Barata, T.J.E.; Bresciani, E.; Adachi, A.; Fagundes, T.C.; Carvalho, C.A.R.; Navarro, M.F.L. Influence of ultrasonic setting on compressive and diametral tensile strengths of glass ionomer cements. Mater. Res. 2008, 11, 57–61. [Google Scholar] [CrossRef]
- Aydın, N.; Topçu, F.T.; Karaoğlanoğlu, S.; Oktay, E.A.; Erdemir, U. Effect of finishing and polishing systems on the surface roughness and discoloration of composite resins. J. Clin. Exp. Dent. 2021, 13, e446–e454. [Google Scholar] [CrossRef] [PubMed]
- Falacho, R.I.; Marques, J.A.; Palma, P.J.; Roseiro, L.; Caramelo, F.; Ramos, J.C.; Guerra, F.; Blatz, M.B. Luting indirect restorations with resin cements versus composite resins: Effects of preheating and ultrasound energy on film thickness. J. Esthet. Restor. Dent. 2022, 34, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Tolidis, K.; Dionysopoulos, D.; Gerasimou, P.; Sfeikos, T. Effect of radiant heat and ultrasound on fluoride release and surface hardness of glass ionomer cements. J. Appl. Biomater. Funct. Mater. 2016, 14, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Schmidlin, P.R.; Wolleb, K.; Imfeld, T.; Gygax, M.; Lussi, A. Influence of beveling and ultrasound application on marginal adaptation of box-only Class II (slot) resin composite restorations. Oper. Dent. 2007, 32, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Uctasli, M.B.; Garoushi, S.; Uctasli, M.; Vallittu, P.K.; Lassila, L. A comparative assessment of color stability among various commercial resin composites. BMC Oral. Health 2023, 23, 789. [Google Scholar] [CrossRef]
- Aksoy Vaizoğlu, G.; Ulusoy, N.; Güleç Alagöz, L. Effect of coffee and polishing systems on the color change of a conventional resin composite repaired by universal resin composites: An in vitro study. Materials 2023, 16, 6066. [Google Scholar] [CrossRef]
- Aidaros, N.H.; Abdou, A. Effect of contamination of bulk-fill flowable resin composite with different contaminants during packing on its surface microhardness and compressive strength: In vitro study. BMC Oral. Health 2022, 22, 446. [Google Scholar] [CrossRef]
- Silva, C.M.; Dias, K.R. Compressive strength of esthetic restorative materials polymerized with quartz-tungsten-halogen light and blue led. Braz. Dent. J. 2009, 20, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; D’Alpino, P.H.; Lopes, L.G.; Pereira, J.C. Mechanical properties of dental restorative materials: Relative contribution of laboratory tests. J. Appl. Oral. Sci. 2003, 11, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Ergün-Kunt, G.; Çetiner, R.B. Mechanical tests: Flexural strength and measurement, compressive, tensile, bending, bonding, push-out, shear. Turk. Klin. J. Prosthodont.-Spec. Top. 2017, 3, 210–215. [Google Scholar]
- Kleverlaan, C.J.; van Duinen, R.N.; Feilzer, A.J. Mechanical properties of glass ionomer cements affected by curing methods. Dent. Mater. 2004, 20, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Mishra, P.; Mishra, S.K. Time-dependent variation in compressive strengths of three posterior esthetic restorative materials: An in vitro study. Int. J. Prosthodont. Restor. Dent. 2016, 6, 63–65. [Google Scholar] [CrossRef]
- Ivanišević, A.; Rajić, V.B.; Pilipović, A.; Par, M.; Ivanković, H.; Baraba, A. Compressive strength of conventional glass ionomer cement modified with TiO2 nano-powder and marine-derived hap micro-powder. Materials 2021, 14, 4964. [Google Scholar] [CrossRef]
- Çilingir, A.; Mert-Eren, M.; Dikmen, B.; Gürbüz, Ö.; Özsoy, A. Comparison of the mechanical properties of two giomer based bulk-fill, a hybrid bulk-fill and a nanohybrid composites with different application protocols: In vitro study. Turk. Clin. J. Dental. Sci. 2021, 27, 674–681. [Google Scholar] [CrossRef]
- Akl, M.A.; Sim, C.P.; Nunn, M.E.; Zeng, L.L.; Hamza, T.A.; Wee, A.G. Validation of two clinical color measuring instruments for use in dental research. J. Dent. 2022, 125, 104223. [Google Scholar] [CrossRef]
Material Name | Material Type | Manufacturer | Contents | Lot No. | Mean Particle Size | Method of Application |
---|---|---|---|---|---|---|
Tetric N-Ceram Bulk-Fill | High-Viscosity Bulk-Fill Composite Resin | Ivoclar Vivadent, Schaan, Liechtenstein | Filler content: 57% by volume, 81.2% by weight Barium glass, ytterbium trifluoride, mixed oxide, silicon dioxide, prepolymers Bis-GMA BisEMA, UDMA (camphorquinone) | W85057 | 1 µm |
|
Estelite Bulk-Fill Flow | Flowable Bulk-Fill Composite Resin | Tokuyama Dental Corp., Tokyo, Japan | Filler content: 56% by volume, 70% by weight New organic inorganic hybrid filler, supra nano spherical filler (SiO2-ZrOs), Bis-GMA, TEGDMA, BisMPEPP, Camphorquinone, Radical-Amplified Photopolymerization initiator | 104E21 | 0.2 µm |
|
Fuji IX GP | High-Viscosity Glass Ionomer Restorative Material | GC Corp., Tokyo, Japan | Powder: Aluminosilicate glass, polyacrylic acid Liquid: Polyacrylic acid, water | 210202A | 13.43 µm |
|
Equia Forte Coat | Coating Agent | GC Corp., Tokyo, Japan | Methylmethacrylate, multifunctional methacrylate, camphorquinone | 1906261 | - |
|
∆E (7th Day) | ∆E (14th Day) | ∆E (7th Day–14th Day) | |||
---|---|---|---|---|---|
Mean ± (Sd) | Mean ± (Sd) | Mean ± (Sd) | |||
Group 1a (TNC-C) | 2.64 ± (1.4) | 3.8 ± (1.45) | 2.27 ± (1.74) | ||
Group 1b (TNC-H) | 4.36 ± (1.79) | 4.77 ± (2.1) | 1.39 ± (1.22) | ||
Group 1c (TNC-U) | 4.47 ± (2.86) | 5.09 ± (3.29) | 2.57 ± (1.66) | ||
Group 2a (EBF-C) | 0.68 ± (0.38) | 1.42 ± (0.68) | 1.22 ± (0.74) | ||
Distilled Water | Group 2b (EBF-H) | 1.74 ± (2.59) | 2.02 ± (2.31) | 1.02 ± (0.38) | |
Group 2c (EBF-U) | 1.34 ± (0.57) | 1.42 ± (0.48) | 0.56 ± (0.26) | ||
Group 3a (FIX-C) | 2.72 ± (1.77) | 3.74 ± (1.77) | 1.34 ± (0.66) | ||
Group 3b (FIX-H) | 3.51 ± (2.24) | 4.46 ± (2.41) | 1.27 ± (0.74) | ||
Group 3c (FIX-U) | 3.3 ± (1.84) | 3.5 ± (1.58) | 0.75 ± (0.31) | ||
Group 1a (TNC-C) | 8.37 ± (1.29) | 11.29 ± (1.83) | 3.27 ± (0.97) | ||
Group 1b (TNC-H) | 9.66 ± (1.95) | 12.6 ± (1.95) | 3.5 ± (0.91) | ||
Group 1c (TNC-U) | 6.78 ± (1.33) | 10.02 ± (1.64) | 5.37 ± (1.63) | ||
Group 2a (EBF-C) | 5.26 ± (1.29) | 6.2 ± (2.34) | 2.66 ± (1.71) | ||
Coffee | Group 2b (EBF-H) | 4.78 ± (0.99) | 5.42 ± (1.37) | 2.55 ± (0.71) | |
Group 2c (EBF-U) | 5.64 ± (2.95) | 6.04 ± (2.79) | 2.37 ± (0.94) | ||
Group 3a (FIX-C) | 3.66 ± (2.18) | 5.96 ± (1.59) | 2.74 ± (1.09) | ||
Group 3b (FIX-H) | 3.71 ± (2.31) | 5.09 ± (1.2) | 2.21 ± (1.04) | ||
Group 3c (FIX-U) | 5.32 ± (4.76) | 6.7 ± (5.11) | 2.33 ± (1) | ||
p value for materials | C-d | 0.002 * | 0.001 * | 0.102 | |
C-c | 0.001 * | 0.001 * | 0.526 | ||
H-d | 0.041 * | 0.023 * | 0.623 | ||
H-c | 0.001 * | 0.001 * | 0.009 * | ||
U-d | 0.006 * | 0.003 * | 0.001 * | ||
U-c | 0.596 | 0.037 * | 0.001 * | ||
p value for techniques | TNC-d | 0.113 | 0.467 | 0.227 | |
TNC-c | 0.001 * | 0.013 * | 0.001 * | ||
EBF-d | 0.319 | 0.558 | 0.020 * | ||
EBF-c | 0.618 | 0.720 | 0.860 | ||
FIX-d | 0.649 | 0.524 | 0.073 | ||
FIX-c | 0.450 | 0.532 | 0.513 | ||
p value for solutions | TNC-C | 0.001 * | 0.001 * | 0.131 | |
TNC-H | 0.001 * | 0.001 * | 0.001 * | ||
TNC-U | 0.033 * | 0.001 * | 0.001 * | ||
EBF-C | 0.001 * | 0.001 * | 0.025 * | ||
EBF-H | 0.003 * | 0.001 * | 0.001 * | ||
EBF-U | 0.001 * | 0.001 * | 0.001 * | ||
FIX-C | 0.304 | 0.008 * | 0.003 * | ||
FIX-H | 0.846 | 0.469 | 0.031 * | ||
FIX-U | 0.226 | 0.075 | 0.001 * |
Initial | 7th Day | 14th Day | |||||||
---|---|---|---|---|---|---|---|---|---|
L | a | b | L | a | b | L | a | b | |
Group 1a (TNC-C) | 80.93 | −1.925 | 14.19 | 73.11 | −0.53 | 16.29 | 70.14 | −0.13 | 16.23 |
Group 1b (TNC-H) | 79.82 | −2.22 | 13.47 | 71.1 | −0.4 | 16.07 | 67.81 | −0.32 | 15.6 |
Group 1c (TNC-U) | 77.34 | −2.29 | 12.59 | 73.07 | −0.32 | 16.96 | 68.08 | −0.33 | 15.47 |
Group 2a (EBF-C) | 74.87 | −1.57 | 16.92 | 73.24 | −0.19 | 21.42 | 72.43 | 0.04 | 21.44 |
Group 2b (EBF-H) | 74.81 | −1.82 | 17.22 | 72.97 | −0.54 | 21.27 | 70.89 | −0.36 | 20.36 |
Group 2c (EBF-U) | 73.94 | −2.11 | 15.72 | 71.57 | −0.41 | 20.35 | 69.69 | −0.43 | 19.59 |
Group 3a (FIX-C) | 86.72 | 3.07 | 35.09 | 83.66 | 3.08 | 36.5 | 81.51 | 2.89 | 35.44 |
Group 3b (FIX-H) | 86.98 | 3.04 | 35.45 | 84.03 | 2.96 | 36.67 | 82.42 | 2.79 | 35.7 |
Group 3c (FIX-U) | 86.88 | 2.92 | 33.36 | 83.28 | 3.54 | 36.9 | 81.39 | 3.47 | 36.5 |
Initial | 7th Day | 14th Day | T0-T1 p | T0-T2 p | T1-T2 p | ||||
---|---|---|---|---|---|---|---|---|---|
Roughness Values | Mean ± (Sd) | Mean ± (Sd) | Mean ± (Sd) | p | |||||
Group 1a (TNC-C) | 0.086 ± (0.02) | 0.099 ± (0.02) | 0.116 ± (0.02) | 0.067 | 0.053 | 0.063 | 0.645 | ||
Group 1b (TNC-H) | 0.111 ± (0.04) | 0.106 ± (0.04) | 0.142 ± (0.04) | 0.184 | 0.896 | 0.306 | 0.205 | ||
Group 1c (TNC-U) | 0.087 ± (0.03) | 0.091 ± (0.03) | 0.095 ± (0.03) | 0.739 | 1.000 | 1.000 | 1.000 | ||
Group 2a (EBF-C) | 0.104 ± (0.04) | 0.095 ± (0.05) | 0.104 ± (0.04) | 0.452 | 0.613 | 1.000 | 1.000 | ||
Distilled Water | Group 2b (EBF-H) | 0.101 ± (0.05) | 0.07 ± (0.03) | 0.089 ± (0.04) | 0.001 * | 0.001 * | 1.000 | 0.482 | |
Group 2c (EBF-U) | 0.106 ± (0.02) | 0.112 ± (0.03) | 0.112 ± (0.03) | 0.585 | 0.890 | 1.000 | 1.000 | ||
Group 3a (FIX-C) | 0.15 ± (0.06) | 0.157 ± (0.06) | 0.162 ± (0.06) | 0.753 | 1.000 | 1.000 | 1.000 | ||
Group 3b (FIX-H) | 0.122 ± (0.04) | 0.122 ± (0.04) | 0.126 ± (0.04) | 0.982 | 1.000 | 1.000 | 1.000 | ||
Group 3c (FIX-U) | 0.139 ± (0.04) | 0.1 ± (0.05) | 0.113 ± (0.03) | 0.001 * | 0.001 * | 0.049 * | 0.934 | ||
Group 1a (TNC-C) | 0.102 ± (0.02) | 0.106 ± (0.02) | 0.125 ± (0.02) | 0.131 | 0.928 | 0.135 | 0.274 | ||
Group 1b (TNC-H) | 0.097 ± (0.02) | 0.116 ± (0.03) | 0.124 ± (0.02) | 0.001 * | 0.004 * | 0.043 * | 1.000 | ||
Group 1c (TNC-U) | 0.104 ± (0.03) | 0.112 ± (0.04) | 0.103 ± (0.03) | 0.347 | 0.411 | 1.000 | 1.000 | ||
Group 2a (EBF-C) | 0.103 ± (0.03) | 0.134 ± (0.03) | 0.147 ± (0.02) | 0.001 * | 0.001 * | 0.005 * | 0.810 | ||
Coffee | Group 2b (EBF-H) | 0.103 ± (0.03) | 0.12 ± (0.03) | 0.122 ± (0.02) | 0.001 * | 0.001 * | 0.042 * | 1.000 | |
Group 2c (EBF-U) | 0.119 ± (0.05) | 0.138 ± (0.05) | 0.136 ± (0.05) | 0.005 * | 0.002 * | 0.056 | 1.000 | ||
Group 3a (FIX-C) | 0.156 ± (0.03) | 0.152 ± (0.04) | 0.173 ± (0.03) | 0.289 | 1.000 | 0.338 | 0.486 | ||
Group 3b (FIX-H) | 0.122 ± (0.04) | 0.151 ± (0.03) | 0.167 ± (0.04) | 0.004 * | 0.002 * | 0.029 * | 0.630 | ||
Group 3c (FIX-U) | 0.151 ± (0.04) | 0.166 ± (0.05) | 0.186 ± (0.05) | 0.004 * | 0.009 * | 0.006 * | 0.704 | ||
p value for materials | C-d | 0.007 * | 0.007 * | 0.012 * | |||||
C-c | 0.001 * | 0.011 * | 0.001 * | ||||||
H-d | 0.538 | 0.014 * | 0.016 * | ||||||
H-c | 0.150 | 0.039 * | 0.002 * | ||||||
U-d | 0.003 * | 0.411 | 0.340 | ||||||
U-c | 0.037 * | 0.038 * | 0.002 * | ||||||
p value for techniques | TNC-d | 0.132 | 0.557 | 0.007 * | |||||
TNC-c | 0.783 | 0.766 | 0.119 | ||||||
EBF-d | 0.957 | 0.042 * | 0.370 | ||||||
EBF-c | 0.513 | 0.558 | 0.295 | ||||||
FIX-d | 0.402 | 0.048 * | 0.045 * | ||||||
FIX-c | 0.098 | 0.635 | 0.566 | ||||||
p value for solutions | TNC-C | 0.078 | 0.496 | 0.366 | |||||
TNC-H | 0.316 | 0.531 | 0.217 | ||||||
TNC-U | 0.219 | 0.172 | 0.568 | ||||||
EBF-C | 0.951 | 0.037 * | 0.007 * | ||||||
EBF-H | 0.909 | 0.003 * | 0.040 * | ||||||
EBF-U | 0.420 | 0.164 | 0.219 | ||||||
FIX-C | 0.774 | 0.826 | 0.603 | ||||||
FIX-H | 1.000 | 0.094 | 0.023 * | ||||||
FIX-U | 0.509 | 0.004 * | 0.001 * |
C | H | U | |
---|---|---|---|
Mean ± (Sd) | Mean ± (Sd) | Mean ± (Sd) | |
Group 1 (TNC) | 264.01 ± (57.38) a | 254.25 ± (43.54) a | 231.31 ± (40.46) a |
Group 2 (EBF) | 328.91 ± (26.06) b | 288.69 ± (57.87) b | 98.67 ± (25.02) d |
Group 3 (FIX) | 74.33 ± (19.48) c | 80.74 ± (21.69) c | 55.72 ± (18.99) e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nezir, M.; Özcan, S. In Vitro Evaluation of Mechanical, Surface, and Optical Properties of Restorative Materials Applied with Different Techniques. J. Funct. Biomater. 2024, 15, 128. https://doi.org/10.3390/jfb15050128
Nezir M, Özcan S. In Vitro Evaluation of Mechanical, Surface, and Optical Properties of Restorative Materials Applied with Different Techniques. Journal of Functional Biomaterials. 2024; 15(5):128. https://doi.org/10.3390/jfb15050128
Chicago/Turabian StyleNezir, Merve, and Suat Özcan. 2024. "In Vitro Evaluation of Mechanical, Surface, and Optical Properties of Restorative Materials Applied with Different Techniques" Journal of Functional Biomaterials 15, no. 5: 128. https://doi.org/10.3390/jfb15050128
APA StyleNezir, M., & Özcan, S. (2024). In Vitro Evaluation of Mechanical, Surface, and Optical Properties of Restorative Materials Applied with Different Techniques. Journal of Functional Biomaterials, 15(5), 128. https://doi.org/10.3390/jfb15050128