Effect of Different Irrigating Solutions on Root Canal Dentin Microhardness—A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
- Population (P): extracted healthy human permanent teeth;
- Intervention (I): the application of various irrigating solutions in endodontic therapy;
- Comparison (C): various irrigating solutions;
- Outcome (O): dentin microhardness.
2.2. Literature Search
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Sample Size and Preparation
3.2. Microhardness Testing Tools
3.3. Irrigating Solution Evaluation
3.4. Effect of Contact Time of Irrigating Solutions on Dentin Microhardness
3.5. Effect of Various Irrigating Solutions on Dentin Microhardness
3.5.1. Sodium Hypochlorite (NaOCl)
3.5.2. Ethylenediaminetetraacetic Acid (EDTA)
3.5.3. Chlorhexidine (CHX)
3.5.4. Herbal Irrigants
3.5.5. Citric Acid
3.5.6. Peracetic Acid (PAA)
3.5.7. Other Irrigants
3.5.8. Activated Irrigating Solutions
3.6. Effect of Combination of Irrigants on Dentin Microhardness
3.7. Quality Assessment
3.8. Risk of Bias in Included Studies
3.9. Meta-Analysis
4. Discussion
4.1. Study Quality and Risk of Bias
4.2. Effect of Sample Preparation and Testing Method, Load, and Dwell Time on Microhardness of Dentin
4.3. Effect of Individual Irrigating Solutions on Microhardness of Dentin
4.4. Effect of Activation Methods of Irrigants
4.5. Effect of Combinations of Irrigants
4.6. Limitations of the Study
4.7. Recommendations for Future Studies
- Standardize Load Range: the load while preforming microhardness tests should gradually increase from 10–50 g;
- Control Indentation Time: Standardize the duration of indentation to 10 s to prevent variations in results due to differences in the duration of load application. Consistency in indentation time helps ensure reproducibility of results;
- Account for Dentin Properties: Take into account the inherent variability in dentin properties, such as its elastic or viscoelastic nature, which can influence microhardness measurements. Consider controlling for factors like dentin age, source (human or animal), and storage conditions to minimize variability;
- Use Consistent Measurement Techniques: employ standardized measurement techniques for assessing microhardness, such as Vickers or Knoop hardness testing, to ensure uniformity across studies;
- Address Indentation Size Effect (ISE): Recognize the potential impact of ISE on microhardness measurements and consider its implications in the interpretation of results. Investigate the presence of normal or reverse ISE and its effect on dentin microhardness under different experimental conditions;
- Report Methodological Details: Provide detailed descriptions of the experimental procedures, including the type of indenter used, the range of loads applied, indentation time, and any adjustments made to account for dentin properties or ISE. Transparent reporting facilitates reproducibility and enhances the reliability of study findings;
- Consider Microstructural Analysis: complement microhardness measurements with microstructural analysis, such as scanning electron microscopy (SEM) or atomic force microscopy (AFM), to gain insights into the structural changes accompanying variations in microhardness.
4.8. Clinical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elika, V.; Kunam, D.; Anumula, L.; Chinni, S.K.; Govula, K. Comparative Evaluation of Chloroquick with Triphala, Sodium Hypochlorite, and Ethylenediaminetetraacetic Acid on the Microhardness of Root Canal Dentin: An in Vitro Study. J. Clin. Transl. Res. 2021, 7, 72–76. [Google Scholar] [PubMed]
- Ali, A.; Bhosale, A.; Pawar, S.; Kakti, A.; Bichpuriya, A.; Agwan, M.A. Current Trends in Root Canal Irrigation. Cureus 2022, 14, e24833. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.P.F.A.; Aveiro, E.; Kishen, A. Irrigants and Irrigation Activation Systems in Endodontics. Braz. Dent. J. 2023, 34, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Teoh, Y.-Y.; Walsh, L.J. Root Canal Cleaning in Roots with Complex Canals Using Agitated Irrigation Fluids. Aust. Endod. J. 2023, 49, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Philip, P.M.; Sindhu, J.; Poornima, M.; Naveen, D.N.; Nirupama, D.N.; Nainan, M.T. Effects of Conventional and Herbal Irrigants on Microhardness and Flexural Strength of Root Canal Dentin: An in Vitro Study. J. Conserv. Dent. JCD 2021, 24, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Kandaswamy, D.; Venkateshbabu, N. Root Canal Irrigants. J. Conserv. Dent. JCD 2010, 13, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Surya raghavendra, S.; Napte, B. Endodontic Irrigants—A Review. J. Dent. Allied Sci. 2015, 4, 25–30. [Google Scholar] [CrossRef]
- Aslantas, E.E.; Buzoglu, H.D.; Altundasar, E.; Serper, A. Effect of EDTA, Sodium Hypochlorite, and Chlorhexidine Gluconate with or without Surface Modifiers on Dentin Microhardness. J. Endod. 2014, 40, 876–879. [Google Scholar] [CrossRef] [PubMed]
- Rath, P.P.; Yiu, C.K.Y.; Matinlinna, J.P.; Kishen, A.; Neelakantan, P. The Effect of Root Canal Irrigants on Dentin: A Focused Review. Restor. Dent. Endod. 2020, 45, e39. [Google Scholar] [CrossRef]
- Sayin, T.C.; Cehreli, Z.C.; Deniz, D.; Akcay, A.; Tuncel, B.; Dagli, F.; Gozukara, H.; Kalayci, S. Time-Dependent Decalcifying Effects of Endodontic Irrigants with Antibacterial Properties. J. Endod. 2009, 35, 280–283. [Google Scholar] [CrossRef]
- Unnikrishnan, M.; Mathai, V.; Sadasiva, K.; Santakumari, R.S.M.; Girish, S.; Shailajakumari, A.K. The Evaluation of Dentin Microhardness After Use of 17% EDTA, 17% EGTA, 10% Citric Acid, MTAD Used as Chelating Agents Combined With 2.5% Sodium Hypochlorite After Rotary Instrumentation: An In Vitro SEM Study. J. Pharm. Bioallied Sci. 2019, 11, S156–S163. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.G.; Sharma, V.; Bharadwaj, A.; Shrivastava, P.; Saha, M.K.; Dubey, S.; Kala, S.; Gupta, S. Effectiveness of Various Endodontic Irrigants on the Micro-Hardness of the Root Canal Dentin: An in Vitro Study. J. Clin. Diagn. Res. JCDR 2017, 11, ZC01–ZC04. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- De-Deus, G.; Paciornik, S.; Mauricio, M.H.P. Evaluation of the Effect of EDTA, EDTAC and Citric Acid on the Microhardness of Root Dentine. Int. Endod. J. 2006, 39, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Kalluru, R.S.; Kumar, N.D.; Ahmed, S.; Sathish, E.S.; Jayaprakash, T.; Garlapati, R.; Sowmya, B.; Reddy, K.N. Comparative Evaluation of the Effect of EDTA, EDTAC, NaOCl and MTAD on Microhardness of Human Dentin—An In-Vitro Study. J. Clin. Diagn. Res. JCDR 2014, 8, ZC39–ZC41. [Google Scholar] [CrossRef] [PubMed]
- Asghari, V. Evaluation of the Effects of Triphala on Dentin Micro-Hardness as Irrigation Solutions. J. Ayurveda Holist. Med. 2018, III, 58–67. [Google Scholar]
- Qing, Y.; Akita, Y.; Kawano, S.; Kawazu, S.; Yoshida, T.; Sekine, I. Cleaning Efficacy and Dentin Micro-Hardness after Root Canal Irrigation with a Strong Acid Electrolytic Water. J. Endod. 2006, 32, 1102–1106. [Google Scholar] [CrossRef]
- Saleh, A.A.; Ettman, W.M. Effect of Endodontic Irrigation Solutions on Microhardness of Root Canal Dentine. J. Dent. 1999, 27, 43–46. [Google Scholar] [CrossRef]
- Massoud, S.F.; Moussa, S.M.; Hanafy, S.A.; El Backly, R.M. Evaluation of the Microhardness of Root Canal Dentin after Different Irrigation Protocols (in Vitro Study). Alex. Dent. J. 2017, 42, 73–79. [Google Scholar] [CrossRef]
- Ari, H.; Erdemir, A.; Belli, S. Evaluation of the Effect of Endodontic Irrigation Solutions on the Microhardness and the Roughness of Root Canal Dentin. J. Endod. 2004, 30, 792–795. [Google Scholar] [CrossRef]
- Patil, C.R.; Uppin, V. Effect of Endodontic Irrigating Solutions on the Microhardness and Roughness of Root Canal Dentin: An in Vitro Study. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2011, 22, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Tartari, T.; de Almeida Rodrigues Silva E Souza, P.; Vila Nova de Almeida, B.; Carrera Silva Júnior, J.O.; Facíola Pessoa, O.; Silva E Souza Junior, M.H. A New Weak Chelator in Endodontics: Effects of Different Irrigation Regimens with Etidronate on Root Dentin Microhardness. Int. J. Dent. 2013, 2013, 743018. [Google Scholar] [CrossRef] [PubMed]
- Arslan, H.; Yeter, K.Y.; Karatas, E.; Yilmaz, C.B.; Ayranci, L.B.; Ozsu, D. Effect of Agitation of EDTA with 808-Nm Diode Laser on Dentin Microhardness. Lasers Med. Sci. 2015, 30, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, M.B.; Terlemez, A. Does the Photon-Induced Photoacoustic Streaming Activation of Irrigation Solutions Alter the Dentin Microhardness? Photobiomodul. Photomed. Laser Surg. 2019, 37, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Khallaf, M.E. Effect of Two Contemporary Root Canal Sealers on Root Canal Dentin Microhardness. J. Clin. Exp. Dent. 2017, 9, e67. [Google Scholar] [CrossRef] [PubMed]
- Arul, B.; Suresh, N.; Sivarajan, R.; Natanasabapathy, V. Influence of Volume of Endodontic Irrigants Used in Different Irrigation Techniques on Root Canal Dentin Microhardness. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2021, 32, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Kottoor, J.; Mathew, J.; Kumar, S.; George, S. Dentine Microhardness Changes Following Conventional and Alternate Irrigation Regimens: An in Vitro Study. J. Conserv. Dent. JCD 2014, 17, 546–549. [Google Scholar] [CrossRef]
- Oliveira, L.D.; Carvalho, C.A.T.; Nunes, W.; Valera, M.C.; Camargo, C.H.R.; Jorge, A.O.C. Effects of Chlorhexidine and Sodium Hypochlorite on the Microhardness of Root Canal Dentin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 104, e125–e128. [Google Scholar] [CrossRef]
- Akcay, I.; Sen, B.H. The Effect of Surfactant Addition to EDTA on Microhardness of Root Dentin. J. Endod. 2012, 38, 704–707. [Google Scholar] [CrossRef]
- Garcia, A.J.A.; Kuga, M.C.; Palma-Dibb, R.G.; Só, M.V.R.; Matsumoto, M.A.; Faria, G.; Keine, K.C. Effect of Sodium Hypochlorite under Several Formulations on Root Canal Dentin Microhardness. J. Investig. Clin. Dent. 2013, 4, 229–232. [Google Scholar] [CrossRef]
- Kulkarni, S.; Mustafa, M.; Ghatole, K.; AlQahtani, A.R.; Asiri, F.Y.I.; Alghomlas, Z.I.; Alothman, T.A.; Alhajri, F.F. Evaluation of 2% Chlorhexidine and 2% Sodium Fluoride as Endodontic Irrigating Solutions on Root Dentine Microhardness: An In Vitro Study. Eur. J. Dent. 2021, 15, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Viapiana, R.; Sousa-Neto, M.D.; Souza-Gabriel, A.E.; Alfredo, E.; Silva-Sousa, Y.T.C. Microhardness of Radicular Dentin Treated with 980-Nm Diode Laser and Different Irrigant Solutions. Photomed. Laser Surg. 2012, 30, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.D.; Uzunoglu-Özyürek, E.; Dogan Buzoglu, H. Influence of Different Irrigation Protocols on Microhardness and Flexural Strength Values of Young and Aged Crown Dentin. Gerodontology 2020, 37, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Dineshkumar, M.K.; Vinothkumar, T.S.; Arathi, G.; Shanthisree, P.; Kandaswamy, D. Effect of Ethylene Diamine Tetra-Acetic Acid, MTADTM, and HEBP as a Final Rinse on the Microhardness of Root Dentin. J. Conserv. Dent. JCD 2012, 15, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Keine, K.C.; Kuga, M.C.; Coaguila-Llerena, H.; Palma-Dibb, R.G.; Faria, G. Peracetic Acid as a Single Endodontic Irrigant: Effects on Microhardness, Roughness and Erosion of Root Canal Dentin. Microsc. Res. Tech. 2020, 83, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, A.R.; Basavraj, P.; Basappa, N. Comparative Evaluation of Morinda Citrifolia with Chlorhexidine as Antimicrobial Endodontic Irrigants and Their Effect on Micro-Hardness of Root Canal Dentin: An: In Vitro: Study. Int. J. Oral Health Sci. 2013, 3, 5. [Google Scholar] [CrossRef]
- Farooq, A.; Rahman Qazi, F.U.; Siddiqui, J.; Faraz, S.A.; Rasheed, A. Comparison of an Experimental Root Canal Irrigant (Sapindus Mukorossi) and Ethylenediaminetetraacetic Acid on Microhardness of Human Dentin. J. Ayub Med. Coll. Abbottabad JAMC 2022, 34, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Yassen, G.H.; Al-Angari, S.S.; Platt, J.A. The Use of Traditional and Novel Techniques to Determine the Hardness and Indentation Properties of Immature Radicular Dentin Treated with Antibiotic Medicaments Followed by Ethylenediaminetetraacetic Acid. Eur. J. Dent. 2014, 8, 521–527. [Google Scholar] [CrossRef]
- Saghiri, M.A.; García-Godoy, F.; Asgar, K.; Lotfi, M. The Effect of Morinda Citrifolia Juice as an Endodontic Irrigant on Smear Layer and Microhardness of Root Canal Dentin. Oral Sci. Int. 2013, 10, 53–57. [Google Scholar] [CrossRef]
- Ibrahim, R.O.; Salama, R.A.; Amin, A.M. Can Ethanolic Leaf Extract of Olive or Black Mulberry Substitute Sodium Hypochlorite as a Root Canal Irrigant? An In Vitro Study. J. Contemp. Dent. Pract. 2021, 22, 1123–1129. [Google Scholar] [CrossRef]
- Duvvi, S.A.B.; Adarsha, M.S.; Usha, H.L.; Ashwini, P.; Murthy, C.S.; Shivekshith, A.K. Acomparative Assessment of Different Concentrations of Sodium Hypochlorite and Calcium Hypochlorite on Microhardness Of Root Canal Dentin—An In Vitro Study. Int. J. Oral Care 2018, 6, 54–58. [Google Scholar]
- Dhawan, R.; Gupta, A.; Dhillon, J.S.; Dhawan, S.; Sharma, T.; Batra, D. Effect of Different Irrigating Solutions with Surfactants on the Microhardness and Smear Layer Removal of Root Canal Dentin: An in Vitro Study. J. Conserv. Dent. JCD 2019, 22, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Sayin, T.C.; Serper, A.; Cehreli, Z.C.; Otlu, H.G. The Effect of EDTA, EGTA, EDTAC, and Tetracycline-HCl with and without Subsequent NaOCl Treatment on the Microhardness of Root Canal Dentin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 104, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Abdelrhman, M.; Mahraan, A.; Bayoumy, A. Impact of Two Nano Irrigating Solutions on Microhardness of Root Canal Dentin. Egypt. Dent. J. 2023, 69, 847–854. [Google Scholar] [CrossRef]
- Abdelgawad, R.; Fayyad, D. Comparative Evaluation of Smear Layer Removal, Calcium Ions Loss and Dentin Microhardness after Different Final Irrigation Solutions. Egypt. Dent. J. 2017, 63, 3551–3562. [Google Scholar] [CrossRef]
- Alyahya, A.A.; Rekab, M.S.; AL-Ostwani, A.E.O.; Abdo, A.; Kayed, K. The Effect of a Novel Silver-Citrate Root Canal Irrigation Solution (BioAkt), Ethylenediamine Tetraacetic Acid (EDTA), and Citric Acid on the Microhardness of Root Canal Dentin: A Comparative In Vitro Study. Cureus 2022, 14, e31255. [Google Scholar] [CrossRef] [PubMed]
- Taneja, S.; Kumari, M.; Anand, S. Effect of QMix, Peracetic Acid and Ethylenediaminetetraacetic Acid on Calcium Loss and Microhardness of Root Dentine. J. Conserv. Dent. JCD 2014, 17, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.A.; Trentini, B.M.; Parizotto, T.F.; Vanin, G.N.; da Silva Piuco, L.; Ricci, R.; Bischoff, K.F.; Dias, C.T.; Pecho, O.E.; Bervian, J.; et al. Influence of a Glycolic Acid-Based Final Irrigant for Photosensitizer Removal of Photodynamic Therapy on the Microhardness and Colour Change of the Dentin Structure. Photodiagn. Photodyn. Ther. 2021, 33, 102151. [Google Scholar] [CrossRef]
- Aranda-Garcia, A.J.; Kuga, M.C.; Chavéz-Andrade, G.M.; Kalatzis-Sousa, N.G.; Hungaro Duarte, M.A.; Faria, G.; Reis Só, M.V.; Faria, N.B. Effect of Final Irrigation Protocols on Microhardness and Erosion of Root Canal Dentin. Microsc. Res. Tech. 2013, 76, 1079–1083. [Google Scholar] [CrossRef]
- Nikhil, V.; Jaiswal, S.; Bansal, P.; Arora, R.; Raj, S.; Malhotra, P. Effect of Phytic Acid, Ethylenediaminetetraacetic Acid, and Chitosan Solutions on Microhardness of the Human Radicular Dentin. J. Conserv. Dent. JCD 2016, 19, 179–183. [Google Scholar] [CrossRef]
- Ballal, N.V.; Mala, K.; Bhat, K.S. Evaluation of the Effect of Maleic Acid and Ethylenediaminetetraacetic Acid on the Microhardness and Surface Roughness of Human Root Canal Dentin. J. Endod. 2010, 36, 1385–1388. [Google Scholar] [CrossRef]
- Eldeniz, A.U.; Erdemir, A.; Belli, S. Effect of EDTA and Citric Acid Solutions on the Microhardness and the Roughness of Human Root Canal Dentin. J. Endod. 2005, 31, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Saghiri, M.A.; Delvarani, A.; Mehrvarzfar, P.; Malganji, G.; Lotfi, M.; Dadresanfar, B.; Saghiri, A.M.; Dadvand, S. A Study of the Relation between Erosion and Microhardness of Root Canal Dentin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, e29–e34. [Google Scholar] [CrossRef]
- Chu, C.-Y.; Kuo, T.-C.; Chang, S.-F.; Shyu, Y.-C.; Lin, C.-P. Comparison of the Microstructure of Crown and Root Dentin by a Scanning Electron Microscopic Study. J. Dent. Sci. 2010, 5, 14–20. [Google Scholar] [CrossRef]
- Inoue, T.; Saito, M.; Yamamoto, M.; Nishimura, F.; Miyazaki, T. Mineral Density of Coronal and Radicular Dentin. Dent. Med. Res. 2013, 33, 248–251. [Google Scholar] [CrossRef]
- Sim, T.P.; Knowles, J.C.; Ng, Y.L.; Shelton, J.; Gulabivala, K. Effect of Sodium Hypochlorite on Mechanical Properties of Dentine and Tooth Surface Strain. Int. Endod. J. 2001, 34, 120–132. [Google Scholar] [CrossRef]
- Chuenarrom, C.; Benjakul, P.; Daosodsai, P. Effect of Indentation Load and Time on Knoop and Vickers Microhardness Tests for Enamel and Dentin. Mater. Res. 2009, 12, 473–476. [Google Scholar] [CrossRef]
- Thompson, J.M.; Agee, K.; Sidow, S.; McNally, K.; Lindsey, K.; Borke, J.; Elsalanty, M.; Tay, F.R.; Pashley, D.H. Inhibition of Endogenous Dentin Matrix Metalloproteinases by Ethylenediaminetetraacetic Acid. J. Endod. 2012, 38, 62–65. [Google Scholar] [CrossRef]
- Al-Omari, W.M.; Palamara, J.E. The Effect of Nd:YAG and Er,Cr:YSGG Lasers on the Microhardness of Human Dentin. Lasers Med. Sci. 2013, 28, 151–156. [Google Scholar] [CrossRef]
- Zaparolli, D.; Saquy, P.C.; Cruz-Filho, A.M. Effect of Sodium Hypochlorite and EDTA Irrigation, Individually and in Alternation, on Dentin Microhardness at the Furcation Area of Mandibular Molars. Braz. Dent. J. 2012, 23, 654–658. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
|
|
|
|
Database | Search Strategy |
---|---|
PubMed | (((((((((root canal dentin) OR (radicular dentin)) OR (radicular dentinal surface)) AND (irrigating solution)) OR (irrigation)) OR (root canal irrigation)) OR (EDTA)) OR (CHX)) OR (sodium hypochlorite)) AND (microhardness) |
Google Scholar | root canal dentin OR radicular dentin OR radicular dentinal surface AND irrigating solution OR irrigation OR root canal irrigants AND EDTA AND CHX AND NaOCl AND microhardness |
Science Direct | root canal dentin AND irrigating solution AND EDTA AND CHX AND NaOCl AND microhardness |
Scopus | root canal dentin AND irrigating solution AND microhardness |
No | Author | Sample Size, Type of Teeth, and Section Used in Each Group | Irrigants | Contact Time (Minutes) | Load (g) Given during Testing and Dwell Time | Microhardness Value (Mean ± SD) | MHN Test | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cervical | Middle | Apical | ||||||||||
Pre Rx | After Rx | Pre Rx | After Rx | Pre Rx | After Rx | |||||||
1. | Tartari et al. 2013 [22] | 45 SRT LS | Saline | 30 | 25 and 15 s | 46.6 ± 6.3 | 46.0 ± 5.2 | 46.9 ± 5.1 | 45.1 ± 3.7 | 47.9 ± 6.8 | 43.7 ± 7.3 | KHN |
5% NaOCl + 18% HEBP | 30 | 43.7 ± 5.0 | 36.2 ± 5.4 | 45.5 ± 5.5 | 35.7 ± 4.1 | 46.1 ± 3.7 | 40.0 ± 5.7 | |||||
2.5% NaOCl | 30 | 44.7 ± 3.5 | 38.7 ± 3.8 | 44.9 ± 5.0 | 39.8 ± 2.9 | 45.2 ± 2.8 | 40.7 ± 5.0 | |||||
2.5% NaOCl + 17% EDTA | 30 + 3 | 47.5 ± 6.4 | 30.7 ± 3.5 | 47.3 ± 3.7 | 34.5 ± 5.4 | 47.2 ± 3.6 | 35.3 ± 4.0 | |||||
2.5% NaOCl + 10% CA | 30 + 3 | 43.7 ± 3.4 | 31.5 ± 4.9 | 45.2 ± 3.5 | 31.4 ± 7.4 | 45.4 ± 7.0 | 30.2 ± 5.4 | |||||
2.5% NaOCl + 9% HEBP | 30 + 5 | 45.9 ± 4.8 | 41.4 ± 4.9 | 47.7 ± 4.6 | 42.6 ± 3.0 | 46.4 ± 6.1 | 39.6 ± 5.8 | |||||
2.5% NaOCL + 17% EDTA + 2.5% NaOCl | 30 + 3 + 3 | 47.5 ± 6.4 | 30.2 ± 3.91 | 47.3 ± 3.7 | 34.4 ± 5.4 | 47.2 ± 3.6 | 35.7 ± 5.2 | |||||
2.5% NaOCl + 10% CA + 2.5% NaOCl | 30 + 3 + 3 | 43.7 ± 1.8 | 31.9 ± 6.8 | 45.6 ± 2.9 | 29.8 ± 6.4 | 45.1 ± 7.5 | 28.0 ± 3.6 | |||||
2.5% NaOCl + 9% HEBP + 2.5% NaOCl | 30 + 5 + 3 | 45.9 ± 4.8 | 39.1 ± 4.76 | 47.7 ± 4.6 | 41.8 ± 4.2 | 46.4 ± 6.1 | 39.4 ± 4.9 | |||||
Pre Rx | After Rx | |||||||||||
2. | Pedersen et al. 2020 [33] | 24 Molars LS | 2.5% NaOCl + 5% EDTA | 20 + 1 | 300 and 20 s | 66.01 ± 5.66 | 56.69 ± 1.21 | VHN | ||||
2.5% NaOCl + 15% EDTA | 20 + 1 | 66.15 ± 5.58 | 59.76 ± 3.42 | |||||||||
2.5% NaOCl | 2 | 66.01 ± 5.75 | 53.80 ± 3.54 | |||||||||
5% EDTA | 1 | 65.33 ± 6.88 | 65.18 ± 5.52 | |||||||||
15% EDTA | 1 | 65.59 ± 6.65 | 67.38 ± 3.35 | |||||||||
Saline | 20 | 65.72 ± 8.17 | 65.33 ± 8.46 | |||||||||
3. | Dineshkumar et al. 2012 [34] | 40 Mand PM LS | 1.3% NaOCl + 17% EDTA | 20 + 1 | 300 and 20 s | 51.63 ±0.86 | ||||||
1.3% NaOCl + MTAD | 20 + 5 | 42.85 ±0.99 | VHN | |||||||||
1.3% NaOCl + HEBP | 20 + 5 | 53.74 ±1.18 | ||||||||||
Distilled water | 20 | 66.65 ±1.04 | ||||||||||
4. | Keine et al. 2019 [35] | 40 SRT LS | 1% PAA | 15 | 25 and 10 s | 17.29 ± 3.71 | KHN | |||||
2.5% NaOCl | 15 | 7.90 ± 1.94 | ||||||||||
2.5% NaOCl + 17% EDTA + 2.5% NaOCl | 15 + 3 + 1 | 17.95 ± 3.40 | ||||||||||
0.9% saline (control group) | 15 | 0.37 ± 0.24 | ||||||||||
5. | Saha et al. 2017 [12] | 80 PM LS | 3% NaOCl | 15 | 300 and 20 s | 57.15 ± 1.75 | 55.15 ± 1.86 | VHN | ||||
17% EDTA | 56.88 ± 1.38 | 43.12 ± 2.51 | ||||||||||
6% MCJ | 57.92 ± 1.78 | 56.91 ± 2.11 | ||||||||||
0.2% chitosan | 57.87 ± 1.60 | 44.65 ± 3.19 | ||||||||||
6. | Ari et al. 2004 [20] | 90 Mand Ant LS | 5.25% NaOCl | 15 | 300 and 20 s | 51.74 ± 6.03 | VHN | |||||
2.5% NaOCl | 50.86 ± 5.08 | |||||||||||
3% H2O2 | 53.57 ± 5.52 | |||||||||||
17% EDTA | 53.66 ± 3.87 | |||||||||||
0.2% bCHX | 61.58 ± 4.18 | |||||||||||
distilled water (control group) | 61.86 ± 11.70 | |||||||||||
7. | Elika et al. 2021 [1] | 40 SRT LS | Saline | 15 | 200 and 20 s | 55.98 ± 3.94 | 55.07 ± 4.15 | VHN | ||||
5% NaOCl + 17% EDTA | 54.03 ± 5.88 | 48.00 ± 5.32 | ||||||||||
Triphala | 47.40 ± 5.53 | 43.60 ± 5.95 | ||||||||||
Chloroquick | 43.46 ± 4.43 | 38.80 ± 4.90 | ||||||||||
8. | Asghari et al. 2018 [16] | 88 Mand PM Transverse | distilled water | 15 | 200 and 15 s | 45.27 ± 7.25 | VHN | |||||
Triphala | 44.96 ± 7.15 | |||||||||||
2% CHX | 41.62 ± 5.23 | |||||||||||
5.25% NaOCl | 38.12 ± 6.71 | |||||||||||
9. | Prabhakar et al. 2013 [36] | 16 Mand PM LS | 0.2% CHX | 15 | 300 and 10 s | 51.59 ± 8.98 | 53.15 ± 8.20 | VHN | ||||
6% MCJ | 54.40 ± 8.42 | 57.38 ± 6.10 | ||||||||||
6% MCJ + 0.2% CHX | 58.94 ± 8.80 | 59.14 ± 7.34 | ||||||||||
Saline | 52.70 ± 8.15 | 55.68 ± 6.86 | ||||||||||
10. | Farooq et al. 2022 [37] | 90 SRT LS | Sapindus mukorossi | 15 | 300 and 10 s | 60.07 ± 0.49 | VHN | |||||
17% EDTA | 56.62 ± 0.72 | |||||||||||
distilled water | 60.45 ± 0.35 | |||||||||||
11. | Patil and Uppin 2012 [21] | 120 Incisors LS | 2.5% NaOCl | 15 | 300 and 20 s | 36.90 ± 2.46 | VHN | |||||
3% H2O2 | 57.20 ± 4.65 | |||||||||||
17% EDTA | 57.80 ± 4.83 | |||||||||||
0.2% CHX | 65.05 ± 4.29 | |||||||||||
Distilled water | 69.55 ± 4.65 | |||||||||||
12. | Oliveira et al. 2007 [28] | 30 PM LS | Saline | 15 | 50 and 10 s | 30.73 ± 10.60 | VHN | |||||
2% CHX | 20.89 ± 10.24 | |||||||||||
1% NaOCl | 19.84 ± 12.11 | |||||||||||
13. | Garcia et al. 2013 [30] | 24 Max Canines LS | 2.5% NaOCl solution | 15 | 25 and 10 s | Cervical | Middle | Apical | KHN | |||
0.58 ± 11.32 | 0.58 ± 11.32 | |||||||||||
ChlorXTRA | 0.67 ± 22.57 | 0.67 ± 22.57 | ||||||||||
5.5% NaOCl gel | 1.03 ± 12.10 | 1.03 ± 12.10 | ||||||||||
14. | Yaseen et al. 2020 [38] | 16 SRT LS | 5.25% NaOCl + 13% GSE | 15 + 15 | 300 and 20 s | 17.48 ± 2.53 | VHN | |||||
5.25% NaOCl + 17% EDTA | 15 + 15 | 34.75 ± 1.61 | ||||||||||
15. | Philip et al. 2021 [5] | 16 Max Canines LS | 2.5% NaOCl | 10 | 200 and 20 s | 0.11 ± 0.02 | 0.10 ± 0.01 | 0.13 ± 0.02 | VHN | |||
Miswak stick extract | 0.28 ± 0.01 | 0.27 ± 0.01 | 0.14 ± 0.02 | |||||||||
Cashew leaves extract | 0.28 ± 0.02 | 0.28 ± 0.03 | 0.29 ± 0.01 | |||||||||
Mango leaves extract | 0.27 ± 0.01 | 0.28 ± 0.01 | 0.28 ± 0.02 | |||||||||
Saline (control) | 0.31 ± 0.02 | 0.30 ± 0.02 | 0.30 ± 0.01 | |||||||||
16. | Massoud et al. 2017 [19] | 40 Mand PM LS | 2.5% NaOCl | 5 | 25 and 10 s | 10.0 ± 21.15 | 8.92 ± 1.08 | 8.36 ± 1.16 | VHN | |||
17% EDTA + 2.5% NaOCl | 10 | 32.98 ± 6.06 | 30.37 ± 8.02 | 29.56 ± 8.01 | ||||||||
2.5% NaOCl + 2% CHX | 10 | 19.15 ± 3.09 | 17.68 ± 2.52 | 17.18 ± 2.35 | ||||||||
2.5% NaOCl + distilled water + 2% CHX | 15 | 15.16 ± 1.25 | 13.82 ± 1.10 | 13.23 ± 1.01 | ||||||||
17. | Saghiri et al. 2013 [39] | 100 SRT LS | 2.5% NaOCl | 10 | 100 and 20 s | 52 ± 2.0 | VHN | |||||
6% MCJ + 17% EDTA | 10 + 1 | 54 ± 2.1 | ||||||||||
6% MCJ | 10 | 53 ± 2.2 | ||||||||||
2.5% NaOCl + 17% EDTA | 10 + 1 | 52 ± 2.2 | ||||||||||
1.3% NaOCl + MTAD | 20 + 5 | 45 ± 2.2 | ||||||||||
2% CHX | 5 | 4.1 ± 1.1 | ||||||||||
Saline (control group) | 5 | 55.0 ± 1.1 | ||||||||||
Pre Rx | After Rx | |||||||||||
18. | Ibrahim et al. 2021 [40] | 54 SRT LS | 2.5% NaOCl10 | 10 | 300 and 20 s | 83.56 ± 2.97 | 59.15 ± 1.76 | VHN | ||||
8% ethanolic extract of Olea europaea | 85.52 ± 1.06 | 58.90 ± 1.25 | ||||||||||
2% ethanolic extract of Morus nigra | 82.66 ± 1.23 | 60.82 ± 1.135 | ||||||||||
19. | Kulkarni et al. 2021 [31] | 24 Ant LS | 17% EDTA + 2.5% NaOCl | 2 + 10 | 200 and 20 s | 50.32 ± 2.3 | 47.76 ± 4.05 | VHN | ||||
Saline | 2 | 54.39 ± 3.59 | ||||||||||
2% NaF | 2 | 47.05 ± 2.21 | ||||||||||
2% CHG | 2 | 69.05 ± 2.46 | ||||||||||
20. | Aslantas et al. 2014 [8] | 25 Mand 3rd Molars LS | 17% EDTA | 5 | 300 and 20 s | 66.01 ± 5.51 | 56.76 ± 8.05 | VHN | ||||
REDTA | 59.76 ± 3.28 | 50.44 ± 4.23 | ||||||||||
6% NaOCl | 68.47 ± 1.96 | 64.3 ± 1.66 | ||||||||||
6% NaOCl with surface modifiers | 58.71 ± 3.71 | 56.66 ± 4.27 | ||||||||||
2% CHX | 65.09 ± 3.9 | 62.86 ± 1.57 | ||||||||||
CHX-Plus | 60.26 ± 1.91 | 60.04 ± 4.80 | ||||||||||
21. | De-Dues et al. 2006 [14] | 16 Max Canines Transverse | 17% EDTA | 5 | 50 and 15 s | 47.6 ± 7.3 | 34.7 ± 6.3 | VHN | ||||
17% EDTAC | 49.9 ± 9.0 | 36.6 ± 3.8 | ||||||||||
10% Citric acid | 47.3 ± 7.0 | 41.8 ± 6.2 | ||||||||||
22. | Kalluru et al. 2014 [15] | 40 Mand PM Transverse | 17% EDTA | 5 | 50 and 15 s | 55.5 ± 8.4 | 23.88 ± 4.59 | VHN | ||||
17% EDTAC | 48.9 ± 7.5 | 24.11 ± 6.79 | ||||||||||
3% NaOCl | 54.1 ± 7.2 | 43.59 ± 7.49 | ||||||||||
MTAD | 51.3 ± 7.0 | 45.78 ± 6.39 | ||||||||||
23. | Duvvi et al. 2018 [41] | 75 Mand PM LS | Saline (control group) | 5 | 300 and 20 s | 56.95 ± 3.40 | 53.91 ± 2.56 | VHN | ||||
2.5% NaOCl | 50.50 ± 2.54 | 39.63 ± 1.24 | ||||||||||
5% NaOCl | 59.71 ± 2.31 | 45.69 ± 0.68 | ||||||||||
5% CaOCl2 | 57.06 ± 2.66 | 42.65 ± 1.45 | ||||||||||
10% CaOCl2 | 56.96 ± 1.84 | 39.03 ± 2.17 | ||||||||||
24. | Das et al. 2014 [27] | 40 Incisors LS | 5% NaOCl + 17% EDTA + 2% CHX | 5 + 5 + 5 | 200 and 20 s | 64 | VHN | |||||
6% MCJ + 17% EDTA | 5 + 5 | 68.3 | ||||||||||
5% NaOCl + QMix | 5 + 5 | 69.9 | ||||||||||
Distilled water | 5 | 74.9 | ||||||||||
25. | Dhawan et al. 2019 [42] | 120 PM LS | NaOCL-Extra | 5 | 200 and 20 s | 60 ± 0.02 | VHN | |||||
Pro-EDTA | 55 ± 4.21 | |||||||||||
MTAD | 59 ± 0.01 | |||||||||||
QMIx | 63 ± 0.01 | |||||||||||
CHX-Ultra | 66 ± 5.21 | |||||||||||
26. | Sayin et al. 2007 [43] | 30 SRT LS | 2.5% NaOCl | 5 | 200 and 20 s | 8.43 ± 2.58 | VHN | |||||
17% EDTA | 21.59 ± 4.47 | |||||||||||
17% EGTA | 10.56 ± 3.34 | |||||||||||
1% tetracycline hydrochloride | 8.53 ± 3.39 | |||||||||||
15% EDTAC | 7.91 ± 1.34 | |||||||||||
distilled water | 3.42 ± 1.91 | |||||||||||
17% EDTA + 2.5% NaOCl | 27.54 ± 5.05 | |||||||||||
17% EGTA + 2.5% NaOCl | 13.19 ± 5.08 | |||||||||||
15% EDTAC + 2.5% NaOCl | 11.81 ± 4.45 | |||||||||||
1% tetracycline HCl + 2.5% NaOCl | 11.06 ± 3.76 | |||||||||||
Cervical | Middle | Apical | ||||||||||
27. | Abdelrhman et al. 2023 [44] | 16 Max Incisors LS | Nano MgO | 5 | 200 and 20 s | 7.89 + 0.74 | 8.88 + 2.24 | 7.69 + 2.28 | VHN | |||
CHX loaded chitosan | 5 | 13.74 + 5.29 | 13.38 + 2.39 | 13.28 + 2.31 | ||||||||
5.2% NaOCl + 17% EDTA | 3 + 2 | 19.47 + 2.67 | 21.93 + 0.49 | 19.47 + 2.67 | ||||||||
Saline | 5 | 0.56 + 0.40 | 0.69 + 0.40 | 0.43 + 0.26 | ||||||||
28. | Abdelgawad and Fayyad 2017 [45] | 40 Max Incisors LS | 2.25% NaOCl | Not mentioned clearly | 50 and 10 s | 70.92 ± 0.83 | 66.84 ± 1.22 | 76.86 ± 1.85 | VHN | |||
17% EDTA | 55.24 ± 0.45 | 59.68 ± 0.30 | 65.24 ± 0.577 | |||||||||
Qmix | 60.86 ± 0.15 | 63.02 ± 0.49 | 69.72 ± 1.188 | |||||||||
0.2% Chitosan | 63.80 ± 0.62 | 65.00 ± 0.49 | 73.88 ± 0.79 | |||||||||
29. | Khallaf et al. 2017 [25] | 100 PM LS | Saline | Not mentioned clearly | 200 and 15 s | 63.73 ± 2.85 | 73.10 ± 12.74 | 60.57 ± 3.16 | VHN | |||
M. oleifera | 79.03 ± 9.92 | 71.30 ± 3.02 | 83.90 ± 5.01 | |||||||||
M. oleifera and CHX | 65.33 ± 5.10 | 87.33 ± 7.15 | 95.60 ± 7.61 | |||||||||
CHX | 89.23 ± 6.22 | 82.87 ± 12.97 | 99.17 ± 2.36 | |||||||||
NaOCl | 72.30 ± 2.15 | 76.77 ± 3.24 | 61.37 ± 2.95 | |||||||||
30. | Alyahya et al. 2022 [46] | 45 SRT LS | distilled water | 5 | 300 and 15 s | 62.6 ± 6.65 | VHN | |||||
EDTA | 54.92 ± 6.96 | |||||||||||
BioAKt | 54.5 ± 5.95 | |||||||||||
40% citric acid | 51.31 ± 6.097 | |||||||||||
10% citric acid | 49.37 ± 3.89 | |||||||||||
31. | Qing et al. 2006 [17] | 43 SRT Transverse | 5.25% NaOCl + 3% H2O2 | 5 | 50 and 15 s | 50 | VHN | |||||
5.25% NaOCl + SAEW | 5 + 1 | 47 | ||||||||||
5.25% NaOCl + distilled water | 5 + 1 | 49 | ||||||||||
5.25% NaOCl + SAEW | 5 + 3 | 44 | ||||||||||
5.25% NaOCl + 14.3% EDTA | 5 + 1 | 44.5 | ||||||||||
32. | Viapiana et al. 2012 [32] | 72 Canines Transverse | distilled water | 5 | 25 and 10 s | 51.7 ± 10.9 | KHN | |||||
1% NaOCl | 51.1 ± 11.6 | |||||||||||
1% NaOCL + 17% EDTA | 54.4 ± 11.7 | |||||||||||
without irradiation | 45.0 ± 9.7 | |||||||||||
Laser at 1.5 W/100 Hz | 49.7 ± 11.2 | |||||||||||
Laser at 3 W/100 Hz | 50.6 ± 11.9 | |||||||||||
33. | Taneja et al. 2014 [47] | 10 PM LS | 5% NaOCl+ DW | 5 + 5 | 300 and 15 s | 77.39 ± 2.16 | VHN | |||||
5% NaOCl + 17% EDTA | 69.70 ± 4.14 | |||||||||||
5% NaOCl + 2.25% PAA | 62.98 ± 8.17 | |||||||||||
5% NaOCl + Qmix | 70.68 ± 4.97 | |||||||||||
34. | Souza et al. 2021 [48] | 160 Incisors LS | distilled water | 3 | 300 and 20 s | 39.33 ± 3.18 | VHN | |||||
17% EDTA | 39.28 ± 4.56 | |||||||||||
Qmix | 38.07 ± 4.01 | |||||||||||
10% GA | 35.62 ± 3.47 | |||||||||||
17% GA | 35.91 ± 3.24 | |||||||||||
25% GA | 35.98 ± 3.38 | |||||||||||
35. | Aranda-Garcia et al. 2013 [49] | 24 Max Canines LS | distilled water | 3 | 25 and 10 s | 0.00 ± 2.77 | KHN | |||||
17% EDTA | 3 | 0.40 ± 28.37 | ||||||||||
BioPure MTAD | 5 | 1.94 ± 25.72 | ||||||||||
SmearClear | 1 | 2.53 ± 15.14 | ||||||||||
Qmix | 2 | 1.10 ± 41.13 | ||||||||||
Cervical | Middle | Apical | VHN | |||||||||
36. | Nikhil et al. 2016 [50] | 15 SRT LS | 1% phytic acid | 3 | 200 and 10 s | 43.09 ± 7.40 | 43.59 ± 7.58 | 42.75 ± 6.87 | ||||
17% EDTA | 46.01 ± 5.93 | 44.32 ± 4.12 | 44.2 ± 3.69 | |||||||||
0.2% Chitosan | 49.41 ± 5.56 | 48.38 ± 5.16 | 48.14 ± 4.63 | |||||||||
37. | Ballal el al. 2010 [51] | 45 Max CI LS | 17% EDTA | 1 | 200 and 20 s | 55.64 | 50.17 | 41.15 | VHN | |||
7% maleic acid | 52.85 | 48.75 | 52.85 | |||||||||
0.9% Saline | 67.73 | 67.53 | 66.45 | |||||||||
38. | Akcay and Sen 2012 [29] | 25 Canines LS | 5% EDTA | 1 | 50 and 10 s | 7.30 ± 8.35 | VHN | |||||
5% EDTA + 0.25% cetrimide | 8.78 ± 4.05 | |||||||||||
5% EDTA + 0.50% cetrimide | 9.01 ± 4.14 | |||||||||||
0.25% cetrimide | 4.59 ± 2.84 | |||||||||||
0.50% cetrimide | 7.77 ± 3.83 | |||||||||||
39. | Saleh and Ettman 1999 [18] | 18 Max Incisors LS | 3% H2O2/5% NaOCl | 1 | 100 and 15 s | 51.30 ± 0.02 | KHN | |||||
17% EDTA | 47.30 ± 0.02 | |||||||||||
40. | Unnikrishnan et al. 2019 [11] | 60 SRT Transverse | 17% EDTA + 2.5% NaOCl | 1 | 300 and 15 s | 55.80 ± 3.65 | VHN | |||||
17% EGTA | 72.67 ± 5.65 | |||||||||||
MTAD | 53.5 ± 2.78 | |||||||||||
10% citric acid | 48.30 ± 4.28 | |||||||||||
17% EDTA | 72.00 ± 1.30 | |||||||||||
41. | Akbulut and Terlemez 2019 [24] | 72 SRT LS | 2.5% NaOCl | 1 | 300 and 20 s | 662.76 ± 115.8 | VHN | |||||
17% EDTA | 541.41 ± 150.96 | |||||||||||
2% CHX | 683.55 ± 152.13 | |||||||||||
42. | Arul et al. 2021 [26] | 60 Max Incisors LS | NI: 5% NaOCL + 17% EDTA + 5% NaOCl | 1 | 100 and 10 s | 1.68 ± 0.34 | 1.8 ± 0.324 | 2.4 ± 0.37 | VHN | |||
PUI: 5% NaOCL + 17% EDTA + 5% NaOCl | 2.90 ± 0.424 | 2.74 ± 0.64 | 2.4 ± 0.50 | |||||||||
EndoVac: 5% NaOCL + 17% EDTA + 5% NaOCl | 4.48 ± 0.841 | 5.14 ± 0.57 | 4.85 ± 0.43 | |||||||||
Endovac + PUI: 5% NaOCL + 17% EDTA + 5% NaOCl | 5.06 ± 0.680 | 5.15 ± 0.54 | 4.82 ± 0.60 | |||||||||
43. | Arslan et al. 2015 [23] | 40 Max Ant LS | distilled water | 2 | 50 and 15 s | 4.30 ± 4.10 | VHN | |||||
17% EDTA + 5% NaOCl + DW | 20.20 ± 3.36 | |||||||||||
17% EDTA + 60 s ultrasonic agitation + 5% NaOCl + DW | 23.60 ± 4.91 | |||||||||||
17% EDTA + 10 s agitation with laser + 5% NaOCl + DW | 18.62 ± 7.66 | |||||||||||
17% EDTA + 20 s agitation with laser + 5% NaOCl + DW | 21.13 ± 5.24 | |||||||||||
17% EDTA + 30 s agitation with laser + 5% NaOCl + DW | 23.19 ± 5.08 | |||||||||||
17% EDTA + 40 s agitation with laser + 5% NaOCl + DW | 27.84 ± 25 | |||||||||||
44. | Eldeniz et al. 2005 [52] | 45 Mand Ant LS | 17% EDTA+ 5.25% NaOCl | 2.5 + 2.5 | 300 and 20 s | 53.11 ± 7.40 | VHN | |||||
19% citric acid + 5.25% NaOCl | 46.35 ± 5.77 | |||||||||||
distilled water | 69.73 ± 7.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, S.; Mishra, L.; Singh, N.R.; Behera, R.; Kumar, M.; Nagaraja, R.; Sokolowski, K.; Lapinska, B. Effect of Different Irrigating Solutions on Root Canal Dentin Microhardness—A Systematic Review with Meta-Analysis. J. Funct. Biomater. 2024, 15, 132. https://doi.org/10.3390/jfb15050132
Agarwal S, Mishra L, Singh NR, Behera R, Kumar M, Nagaraja R, Sokolowski K, Lapinska B. Effect of Different Irrigating Solutions on Root Canal Dentin Microhardness—A Systematic Review with Meta-Analysis. Journal of Functional Biomaterials. 2024; 15(5):132. https://doi.org/10.3390/jfb15050132
Chicago/Turabian StyleAgarwal, Sunidhi, Lora Mishra, Naomi Ranjan Singh, Rini Behera, Manoj Kumar, Ravishankar Nagaraja, Krzysztof Sokolowski, and Barbara Lapinska. 2024. "Effect of Different Irrigating Solutions on Root Canal Dentin Microhardness—A Systematic Review with Meta-Analysis" Journal of Functional Biomaterials 15, no. 5: 132. https://doi.org/10.3390/jfb15050132
APA StyleAgarwal, S., Mishra, L., Singh, N. R., Behera, R., Kumar, M., Nagaraja, R., Sokolowski, K., & Lapinska, B. (2024). Effect of Different Irrigating Solutions on Root Canal Dentin Microhardness—A Systematic Review with Meta-Analysis. Journal of Functional Biomaterials, 15(5), 132. https://doi.org/10.3390/jfb15050132