Biomolecule-Producing Probiotic Bacterium Lactococcus lactis in Free or Nanoencapsulated Form for Endometritis Treatment and Fertility Improvement in Buffaloes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Encapsulation of L. lactis
2.2. Enrollment of Buffaloes and Treatment
2.3. Endometrial Biopsy and Related Examinations
2.3.1. Cytological Evaluation
2.3.2. Microbiological Isolation
2.3.3. Isolation of Total RNA and Reverse Transcription
2.4. Collection and Analysis of Uterine Lavage
2.5. Blood Sampling
2.6. Ultrasonographic and Vaginal Examination and Reproductive Performance
2.7. Statistical Analysis
3. Results
3.1. Metabolites of L. lactis
3.2. Effects on Uterine Cytology and Microbiology
3.3. Effects on Endometrium mRNA Expression
3.4. Effects on Proinflammatory Cytokines in Uterine Washings
3.5. Effect on Blood Serum Proinflammatory Cytokines and Energy Status-Related Metabolites
3.6. Effects on Uterine Characteristics, Ovarian Activity, and Reproductive Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Negasee, K.A. Clinical Metritis and Endometritis in Diary Cattle: A. Vet. Med. Open J. 2020, 5, 51–56. [Google Scholar] [CrossRef]
- Kim, I.-H.; Kang, H.-G.; Jeong, J.-K.; Hur, T.-Y.; Jung, Y.-H. Inflammatory cytokine concentrations in uterine flush and serum samples from dairy cows with clinical or subclinical endometritis. Theriogenology 2014, 82, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.J.; Fischer, D.P.; Pfeiffer, D.U.; England, G.C.; Noakes, D.E.; Dobson, H.; Sheldon, I.M. Clinical evaluation of postpartum vaginal mucus reflects uterine bacterial infection and the immune response in cattle. Theriogenology 2005, 63, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Chastant, S.; Saint-Dizier, M. Inflammation: Friend or foe of bovine reproduction? Anim. Reprod. 2019, 16, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Durgesh Mittal, D.M.; Garg, U.; Supriya Shukla, S.S.; Jatav, G. Prevalence of different pathological affections of uterus in buffaloes (Bubalus bubalis) in the Malwa region of Madhya Pradesh. Buffalo Bull 2009, 28, 215–217. [Google Scholar]
- Jeon, S.J.; Lima, F.S.; Vieira-Neto, A.; Machado, V.S.; Lima, S.F.; Bicalho, R.C.; Santos, J.E.P.; Galvão, K.N. Shift of uterine microbiota associated with antibiotic treatment and cure of metritis in dairy cows. Vet. Microbiol. 2018, 214, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Ghuman, S.; Dadarwal, D.; Honparkhe, M.; Singh, N. Evaluation of a systemic antibiotic treatment of chronic endometritis in buffaloes. Intas Polivet 2009, 10, 25–28. [Google Scholar]
- Rosales, E.B.; Ametaj, B.N. Reproductive tract infections in dairy cows: Can probiotics curb down the incidence rate? Dairy 2021, 2, 40–64. [Google Scholar] [CrossRef]
- Hashem, N.M.; Gonzalez-Bulnes, A. The use of probiotics for management and improvement of reproductive eubiosis and function. Nutrients 2022, 14, 902. [Google Scholar] [CrossRef]
- Verdenelli, M.C.; Cecchini, C.; Coman, M.M.; Silvi, S.; Orpianesi, C.; Coata, G.; Cresci, A.; Di Renzo, G.C. Impact of probiotic SYNBIO® administered by vaginal suppositories in promoting vaginal health of apparently healthy women. Curr. Microbiol. 2016, 73, 483–490. [Google Scholar] [CrossRef]
- Peter, S.; Gärtner, M.; Michel, G.; Ibrahim, M.; Klopfleisch, R.; Lübke-Becker, A.; Jung, M.; Einspanier, R.; Gabler, C. Influence of intrauterine administration of Lactobacillus buchneri on reproductive performance and pro-inflammatory endometrial mRNA expression of cows with subclinical endometritis. Sci. Rep. 2018, 8, 5473. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Odhiambo, J.; Farooq, U.; Lam, T.; Dunn, S.; Ametaj, B. Intravaginal probiotics modulated metabolic status and improved milk production and composition of transition dairy cows. J. Anim. Sci. 2016, 94, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Ametaj, B.; Iqbal, S.; Selami, F.; Odhiambo, J.; Wang, Y.; Gänzle, M.; Dunn, S.; Zebeli, Q. Intravaginal administration of lactic acid bacteria modulated the incidence of purulent vaginal discharges, plasma haptoglobin concentrations, and milk production in dairy cows. Res. Vet. Sci. 2014, 96, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Millette, M.; Smoragiewicz, W.; Lacroix, M. Antimicrobial potential of immobilized Lactococcus lactis subsp. lactis ATCC 11454 against selected bacteria. J. Food Prot. 2004, 67, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; Hosny, N.S.; El-Desoky, N.; Soltan, Y.A.; Elolimy, A.A.; Sallam, S.M.; Abu-Tor, E.-S.M. Alginate nanoencapsulated synbiotic composite of pomegranate peel phytogenics and multi-probiotic species as a potential feed additive: Physicochemical, antioxidant, and antimicrobial activities. Animals 2023, 13, 2432. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; Hosny, N.S.; El-Desoky, N.I.; Shehata, M.G. Effect of nanoencapsulated alginate-synbiotic on gut microflora balance, immunity, and growth performance of growing rabbits. Polymers 2021, 13, 4191. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Dairy Cattle: 2001; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Wildman, E.; Jones, G.; Wagner, P.; Boman, R.; Troutt Jr, H.; Lesch, T. A dairy cow body condition scoring system and its relationship to selected production characteristics. J. Dairy Sci. 1982, 65, 495–501. [Google Scholar] [CrossRef]
- McDougall, S.; Aberdein, D.; Bates, A.; Burke, C. Prevalence of endometritis diagnosed by vaginal discharge scoring or uterine cytology in dairy cows and herds. J. Dairy Sci. 2020, 103, 6511–6521. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.; Michel, G.; Hahn, A.; Ibrahim, M.; Lübke-Becker, A.; Jung, M.; Einspanier, R.; Gabler, C. Puerperal influence of bovine uterine health status on the mRNA expression of pro-inflammatory factors. J. Physiol. Pharmacol. 2015, 66, 449–462. [Google Scholar]
- Kasimanickam, R.; Duffield, T.; Foster, R.; Gartley, C.; Leslie, K.; Walton, J.; Johnson, W. Endometrial cytology and ultrasonography for the detection of subclinical endometritis in postpartum dairy cows. Theriogenology 2004, 62, 9–23. [Google Scholar] [CrossRef]
- Cowan, S.T. Cowan and Steel’s Manual for the Identification of Medical Bacteria; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- El-Demerdash, A.S.; Bakry, N.R.; Aggour, M.G.; Elmasry, S.S.; Mowafy, R.E.; Erfan, A.; Taha, M.F.; El-Gmaal, A.A.; Mohamed, A.A.; Hagag, N. Bovine mastitis in Egypt: Bacterial etiology and evaluation of diagnostic biomarkers. Int. J. Vet. Sci. 2023, 12, 60–69. [Google Scholar]
- Hashem, N.M.; El-Hawy, A.S.; El-Bassiony, M.F.; Saber, A.; Radwan, M.A.; Ghanem, N. Melatonin administration during the first half of pregnancy improves the reproductive performance of rabbits: Emphasis on ovarian and placental functions. Theriogenology 2023, 205, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.S.; Reed, A.; Chen, F.; Stewart, C.N. Statistical analysis of real-time PCR data. BMC Bioinform. 2006, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, R.; Casey, O.M.; Morris, D.; Smith, T.; Powell, R.; Sreenan, J.M. Postmortem stability of RNA isolated from bovine reproductive tissues. Biochim. Biophys. Acta (BBA)-Gene Struct. Expr. 2002, 1574, 10–14. [Google Scholar] [CrossRef]
- Mallikarjunappa, S.; Shandilya, U.K.; Sharma, A.; Lamers, K.; Bissonnette, N.; Karrow, N.A.; Meade, K.G. Functional analysis of bovine interleukin-10 receptor alpha in response to Mycobacterium avium subsp. paratuberculosis lysate using CRISPR/Cas9. BMC Genet. 2020, 21, 121. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Lv, H.; Deng, L.; Hu, W.; Peng, Z.; Yan, C.; Yang, D.; Tong, C.; Wang, X. Analysis of transcriptomic changes in bovine endometrial stromal cells treated with lipopolysaccharide. Front. Vet. Sci. 2020, 7, 575865. [Google Scholar] [CrossRef]
- Hoelker, M.; Salilew-Wondim, D.; Drillich, M.; Christine, G.-B.; Ghanem, N.; Goetze, L.; Tesfaye, D.; Schellander, K.; Heuwieser, W. Transcriptional response of the bovine endometrium and embryo to endometrial polymorphonuclear neutrophil infiltration as an indicator of subclinical inflammation of the uterine environment. Reprod. Fertil. Dev. 2012, 24, 778–793. [Google Scholar] [CrossRef] [PubMed]
- Couto, G.; Vaillancourt, D.; Lefebvre, R. Comparison of a leukocyte esterase test with endometrial cytology for diagnosis of subclinical endometritis in postpartum dairy cows. Theriogenology 2013, 79, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; Essawi, W.M.; El-Raghi, A.A. Ovarian activity, hormone profile, pro-inflammatory cytokines and reproductive performance of buffalo cows fed diets with different estrogenicity. J. Anim. Physiol. Anim. Nutr. 2023, 108, 1–12. [Google Scholar] [CrossRef]
- Bicalho, M.; Santin, T.; Rodrigues, M.; Marques, C.; Lima, S.; Bicalho, R. Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: Associations with uterine diseases and reproductive outcome. J. Dairy Sci. 2017, 100, 3043–3058. [Google Scholar] [CrossRef]
- Adnane, M.; Chapwanya, A. Role of Genital Tract Bacteria in Promoting Endometrial Health in Cattle. Microorganisms 2022, 10, 2238. [Google Scholar] [CrossRef] [PubMed]
- Miranda-CasoLuengo, R.; Lu, J.; Williams, E.J.; Miranda-CasoLuengo, A.A.; Carrington, S.D.; Evans, A.C.; Meijer, W.G. Delayed differentiation of vaginal and uterine microbiomes in dairy cows developing postpartum endometritis. PLoS ONE 2019, 14, e0200974. [Google Scholar] [CrossRef] [PubMed]
- Bhadaniya, A.; Prasad, M.; Savsani, H.; Kalaria, V.; Fefar, D.; Mathpati, B.; Javia, B. Pro-inflammatory cytokine expression studies of subclinical and clinical endometritis in endometrial tissues of buffaloes. Trop. Anim. Health Prod. 2019, 51, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Nehru, D.A.; Dhaliwal, G.S.; Jan, M.H.; Cheema, R.S.; Kumar, S. Clinical efficacy of intrauterine cephapirin benzathine administration on clearance of uterine bacteria and subclinical endometritis in postpartum buffaloes. Reprod. Domest. Anim. 2019, 54, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Suthar, V.; Dhami, A.; Gohil, P.; Joshi, M.; Patil, D.; Joshi, C. Probiotics intervention for mitigation of uterine infection in dairy animals-An update. Anim. Reprod. Update 2022, 2, 51–55. [Google Scholar]
- Hashem, N.M.; Gonzalez-Bulnes, A. Perspective on the relationship between reproductive tract microbiota eubiosis and dysbiosis and reproductive function. Reprod. Fertil. Dev. 2022, 34, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Otero, M.C.; Nader-Macías, M.E. Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim. Reprod. Sci. 2006, 96, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Sanca, F.M.; Blanco, I.R.; Dias, M.; Moreno, A.M.; Martins, S.M.; Stephano, M.A.; Mendes, M.A.; Mendonça, C.M.; Pereira, W.A.; Azevedo, P.O. Antimicrobial Activity of Peptides Produced by Lactococcus lactis subsp. lactis on Swine Pathogens. Animals 2023, 13, 2442. [Google Scholar] [CrossRef]
- Mathur, H.; Linehan, K.; Flynn, J.; Byrne, N.; Dillon, P.; Conneely, M.; Grimaud, G.; Hill, C.; Stanton, C.; Ross, R.P. Emulsion-based postbiotic formulation is comparable to viable cells in eliciting a localized immune response in dairy cows with chronic mastitis. Front. Microbiol. 2022, 13, 759649. [Google Scholar] [CrossRef]
- Samirana, P.O.; Murti, Y.B.; Jenie, R.I.; Setyowati, E.P. GC-MS metabolomic approach to study antimicrobial activity of the marine sponge-derived fungi Trichoderma reesei TV221. J. Appl. Pharm. Sci. 2023, 13, 159–173. [Google Scholar] [CrossRef]
- Rajivgandhi, G.N.; Ramachandran, G.; Kanisha, C.C.; Li, J.-L.; Yin, L.; Manoharan, N.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Li, W.-J. Anti-biofilm compound of 1, 4-diaza-2, 5-dioxo-3-isobutyl bicyclo [4.3. 0] nonane from marine Nocardiopsis sp. DMS 2 (MH900226) against biofilm forming K. pneumoniae. J. King Saud Univ.-Sci. 2020, 32, 3495–3502. [Google Scholar] [CrossRef]
- Tan, L.T.-H.; Chan, K.-G.; Chan, C.K.; Khan, T.M.; Lee, L.-H.; Goh, B.-H. Antioxidative potential of a Streptomyces sp. MUM292 isolated from mangrove soil. BioMed Res. Int. 2018, 2018, 4823126. [Google Scholar] [CrossRef]
- Guo, C.-C.; Li, H.-P.; Zhang, X.-B. Study on synthesis, characterization and biological activity of some new nitrogen heterocycle porphyrins. Bioorganic Med. Chem. 2003, 11, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Tovmasyan, A.; Batinic-Haberle, I.; Benov, L. Antibacterial activity of synthetic cationic iron porphyrins. Antioxidants 2020, 9, 972. [Google Scholar] [CrossRef]
- Abada, Z.; Cojean, S.; Pomel, S.; Ferrié, L.; Akagah, B.; Lormier, A.T.; Loiseau, P.M.; Figadère, B. Synthesis and antiprotozoal activity of original porphyrin precursors and derivatives. Eur. J. Med. Chem. 2013, 67, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Gupta, O.; Pradhan, T.; Chawla, G. An updated review on diverse range of biological activities of 1, 2, 4-triazole derivatives: Insight into structure activity relationship. J. Mol. Struct. 2023, 1274, 134487. [Google Scholar] [CrossRef]
- O’Hanlon, D.E.; Moench, T.R.; Cone, R.A. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE 2013, 8, e80074. [Google Scholar] [CrossRef]
- Nagy, Z.K.; Wagner, I.; Suhajda, Á.; Tobak, T.; Harasztos, A.H.; Vigh, T.; Sóti, P.L.; Pataki, H.; Molnár, K.; Marosi, G. Nanofibrous solid dosage form of living bacteria prepared by electrospinning. Express Polym. Lett. 2014, 8, 352–361. [Google Scholar] [CrossRef]
- Kushibiki, S.; Hodate, K.; Ueda, Y.; Shingu, H.; Mori, Y.; Itoh, T.; Yokomizo, Y. Administration of recombinant bovine tumor necrosis factor-α affects intermediary metabolism and insulin and growth hormone secretion in dairy heifers. J. Anim. Sci. 2000, 78, 2164–2171. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; Morsy, A.S.; Soltan, Y.A.; Sallam, S.M. Potential Benefits of Boswellia sacra resin on immunity, metabolic status, udder and uterus health, and milk production in transitioning goats. Agriculture 2021, 11, 900. [Google Scholar] [CrossRef]
- Guadagnin, A.; Cardoso, F. Association of dry matter intake, milk yield, and days to first ovulation with cytological endometritis in Holstein cows. J. Dairy Sci. 2023, 106, 7240–7265. [Google Scholar] [CrossRef] [PubMed]
- Chapinal, N.; Carson, M.; Duffield, T.; Capel, M.; Godden, S.; Overton, M.; Santos, J.; LeBlanc, S. The association of serum metabolites with clinical disease during the transition period. J. Dairy Sci. 2011, 94, 4897–4903. [Google Scholar] [CrossRef] [PubMed]
- Ospina, P.; Nydam, D.; Stokol, T.; Overton, T. Evaluation of nonesterified fatty acids and β-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. J. Dairy Sci. 2010, 93, 546–554. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, S.; Duffield, T.; Leslie, K.; Bateman, K.; Keefe, G.P.; Walton, J.; Johnson, W. Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J. Dairy Sci. 2002, 85, 2223–2236. [Google Scholar] [CrossRef]
- LeBlanc, S. Interactions of metabolism, inflammation, and reproductive tract health in the postpartum period in dairy cattle. Reprod. Domest. Anim. 2012, 47, 18–30. [Google Scholar] [CrossRef]
Target Gene Name | Primer Sequences (5′–3′) | References |
---|---|---|
Beta-actin (ACTB) | F: CGTGGGCCGCCCTAGGCACCA | [26] |
R: GGGGGCCTCGGTCAGCAGCAC | ||
Interleukin-1β (IL1B) | F: GCCTTCAATAACTGTGGAACCAAT | [27] |
R:GTATATTTCAGGCTTGGTGAAAGGA | ||
Interleukin-6 (IL6) | F: GGCTCCCATGATTGTGGTAGTT | |
R: GCCCAGTGGACAGGTTTCTG | ||
Tumor Necrosis Factor alpha-induced protein 7 (TNFAIP7) | F: CGGTGGTGGGACTCGTATG | |
R: CTGGTTGTCTTCCAGCTTCACA | ||
Chemokine (C-C motif) ligand 2 (CCL2) | F: CCTCCTGTGCCTGCTAC | [28] |
R: TTGCTGCTGGTGACTCTT | ||
PDZ Domain-containing 1 (PDZK1) | F: AGCCCACAGTACAGCCTCTC | [29] |
R: CTCTGCAGTAGCCACACCTG | ||
Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2) | F: ATAAGGTGCTGCTGGAAGA | |
R: CTGAAATCCCTGAGGACCTG | ||
Bovine leukocyte antigen-DQ alpha 5 (BOLA-DQA5) | F: CAGATGCACTGCCCATCTAT | |
R: CAGGGAGAGAATTCTGAGGG |
Compound Name | Area, % |
---|---|
1,4-Diaza-2,5-dioxobicyclo[4.3.0]nonane | 29.26 |
3-Isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione | 13.61 |
5,10-Diethoxy-2,3,7,8-tetrahydro-1h,6h-dipyrrolo[1,2-a:1,2-d]pyrazine | 6.58 |
Hexadecanoic acid,2,3-dihydroxypropyl ester | 5.78 |
5,10,15,20-Tetrakis-(4-vinyl-phenyl)-porphyrin | 5.1 |
1, 4, 7-Triazaheptane, 1,7-bis(1-methyl-1-phosphonato)ethyl- | 4.56 |
1-Dodecanol,3,7,11-trimethyl- | 3.46 |
4-Octadecenal (spectrumdisagrees) | 3.42 |
2H-Pyran,tetrahydro-2-(12-pentadecynyloxy)- | 3.17 |
Dimethyldiphenyltethylidylpyrrolidine | 2.96 |
Pregn-4-ene-3,20-dione,17,21-dihydroxy-,bis(o-methyloxime) | 2.17 |
3-(6-Amino-4-oxo-1,4-dihydro-pyrimidin-2-ylsulfanyl)-propionic acid | 2.05 |
2-Phenylmalonic acid | 1.75 |
S-(1,3-Diphenylbutyl)dimethylthiocarbamate | 1.74 |
Methyl9,10-dideutero-9-octadecenoate | 1.61 |
Octadec-9-enoic acid | 1.56 |
Octadecanoic acid,2,3-dihydroxypropyl ester | 1.53 |
12,15-Octadecadiynoicacid, methyl ester | 1.44 |
Phenol,2,4-bis(1,1-dimethylethyl)- | 1.12 |
12,15-Octadecadiynoicacid, methyl ester | 0.98 |
2-(5-[1,3]Dioxolan-2-yl-pentyl)-3-methyl-aziridine | 0.88 |
À-d-Galactopyranoside,methyl2,3-bis-o-(trimethylsilyl)-,cyclic phenylboronate | 0.8 |
Ethanimidothioic acid,2-(dimethylamino)-n-[[(methylamino)carbonyl]oxy]-2-oxo-, methyl ester | 0.73 |
7-Oxooctanoic acid | 0.73 |
1,1,3,3,5,5,7,7,9,9,11,11-Dodecamethyl-hexasiloxane | 0.59 |
Benzeneethanamine,n,à,à-trimethyl- | 0.58 |
Methylperdeuterio-hexadeca-7,10,13-trienoate | 0.52 |
1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-Hexadecamethyloctasiloxane | 0.48 |
Items 1 | Experimental Groups (n = 16/group) | SEM | p-Value | |||
---|---|---|---|---|---|---|
C | AB | FLC | NLC | |||
PMNS, % | 7.40 a | 3.40 c | 5.00 b | 4.00 c | 0.342 | <0.001 |
Microbiological test, Log CFU/g | ||||||
Clostridia | 6.47 a | 4.01 b | 3.06 b | 3.13 b | 0.547 | 0.007 |
Trueperella pyogenes | 5.74 a | 1.56 b | 1.40 b | 1.04 b | 0.228 | 0.002 |
Streptococci | 6.14 a | 2.68 b | 3.45 b | 1.81 b | 0.352 | 0.006 |
Bacteroides fragilis | 3.50 a | 2.08 b | 1.76 b | 1.70 b | 0.181 | <0.001 |
Staphylococci | 3.88 | 2.83 | 3.08 | 2.26 | 0.706 | 0.479 |
Pseudomonas aeruginosa | 2.76 a | 1.84 b | 1.11 c | 1.44 bc | 0.061 | 0.012 |
Coliforms | 5.29 a | 2.72 b | 1.47 b | 1.23 b | 0.389 | 0.005 |
Items 1 | Experimental Groups (n = 16/group) | SEM | p-Value | |||
---|---|---|---|---|---|---|
C | AB | FLC | NLC | |||
IL-1β, pg/mL | 27.11 a | 13.28 b | 22.29 a | 14.00 b | 2.465 | 0.003 |
IL-6, pg/mL | 215.31 a | 105.84 d | 191.34 b | 128.99 c | 7.598 | <0.001 |
TNF-α, pg/mL | 126.78 a | 69.96 b | 111.91 a | 81.29 b | 5.570 | <0.001 |
Leukocyte esterase | 3.80 a | 1.20 c | 2.20 b | 1.40 c | 0.308 | <0.001 |
Items 1 | Experimental Groups (n = 16/group) | SEM | p-Value | |||
---|---|---|---|---|---|---|
C | AB | FLC | NLC | |||
Proinflammatory cytokines | ||||||
IL-1β, pg/mL | 31.78 a | 14.38 c | 28.58 ab | 19.09 bc | 3.869 | 0.020 |
IL-6, pg/mL | 228.49 a | 151.86 b | 227.99 a | 174.01 b | 9.864 | <0.001 |
TNF-α, pg/mL | 218.76 a | 90.32 c | 165.06 b | 102.70 c | 9.086 | <0.001 |
Energy-related metabolites | ||||||
Glucose, mg/dL | 84.03 | 86.13 | 80.39 | 79.89 | 3.737 | 0.345 |
Insulin, µU/mL | 8.634 | 11.13 | 8.81 | 9.23 | 1.058 | 0.351 |
NEFA, mg/dL | 5.04 a | 2.99 b | 5.60 a | 3.24 b | 0.388 | <0.001 |
Items 1 | Experimental Groups | p-Value | |||
---|---|---|---|---|---|
C | AB | FLC | NLC | ||
Intrauterine fluid, % | |||||
Absent | 56.25 (9/16) | 81.25 (13/16) | 87.50 (14/16) | 93.75 (15/16) | 0.070 |
An echogenic | 43.75 (7/16) | 18.75 (3/16) | 12.50 (2/16) | 6.25 (1/16) | |
Uterine horn diameter, cm | |||||
<3.5 | 12.50 b (2/16) | 62.50 a (10/16) | 50.00 ab (8/16) | 37.50 ab (6/16) | 0.045 |
3.5–5 | 37.50 (6/16) | 25.00 (4/16) | 31.25 (5/16) | 37.50 (6/16) | |
>5 | 50.00 (8/16) | 12.50 (2/16) | 18.75 (3/16) | 25.00 (4/16) | |
Cervical diameter, cm | |||||
<5 | 12.50 (2/16) | 25.00 (4/16) | 31.25 (5/16) | 18.75 (3/16) | 0.027 |
5–7 | 12.50 b (2/16) | 56.25 a (9/16) | 43.75 ab (7/16) | 50.00 ab (8/16) | |
>7 | 75.00 a (12/16) | 18.75 b (3/16) | 25.00 b (4/16) | 31.25 b (5/16) | |
Ovarian function | |||||
No. of ovulatory follicles, >8 mm | 0.81 a | 0.50 b | 0.44 b | 0.56 b | |
No. of corpora lutea | 0.25 b | 0.44 a | 0.50 a | 0.56 a | |
PVD score (%) | <0.001 | ||||
<2 | 31.25 b (5/16) | 100.00 a (16/16) | 100.00 a (16/16) | 100.00 a (16/16) | |
>2 | 68.75 a (11/16) | 00.00 b (0/16) | 00.00 b (0/16) | 00.00 b (0/16) | |
Reproductive performance | |||||
Estrous rate,% | 75.00 (12/16) | 81.25 (13/16) | 62.50 (10/16) | 68.75 (11/16) | 0.672 |
Conception rate, % | 16.66 b (2/12) | 69.23 a (9/13) | 70.00 a (7/10) | 72.72 a (8/11) | 0.015 |
Days open | 150 a | 80 c | 95 c | 105 bc | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashem, N.M.; Essawi, W.M.; El-Demerdash, A.S.; El-Raghi, A.A. Biomolecule-Producing Probiotic Bacterium Lactococcus lactis in Free or Nanoencapsulated Form for Endometritis Treatment and Fertility Improvement in Buffaloes. J. Funct. Biomater. 2024, 15, 138. https://doi.org/10.3390/jfb15060138
Hashem NM, Essawi WM, El-Demerdash AS, El-Raghi AA. Biomolecule-Producing Probiotic Bacterium Lactococcus lactis in Free or Nanoencapsulated Form for Endometritis Treatment and Fertility Improvement in Buffaloes. Journal of Functional Biomaterials. 2024; 15(6):138. https://doi.org/10.3390/jfb15060138
Chicago/Turabian StyleHashem, Nesrein M., Walaa M. Essawi, Azza S. El-Demerdash, and Ali Ali El-Raghi. 2024. "Biomolecule-Producing Probiotic Bacterium Lactococcus lactis in Free or Nanoencapsulated Form for Endometritis Treatment and Fertility Improvement in Buffaloes" Journal of Functional Biomaterials 15, no. 6: 138. https://doi.org/10.3390/jfb15060138
APA StyleHashem, N. M., Essawi, W. M., El-Demerdash, A. S., & El-Raghi, A. A. (2024). Biomolecule-Producing Probiotic Bacterium Lactococcus lactis in Free or Nanoencapsulated Form for Endometritis Treatment and Fertility Improvement in Buffaloes. Journal of Functional Biomaterials, 15(6), 138. https://doi.org/10.3390/jfb15060138