Replacing the Transfusion of 1–2 Units of Blood with Plasma Expanders that Increase Oxygen Delivery Capacity: Evidence from Experimental Studies
Abstract
:1. Introduction
2. The Need for a Blood Substitute
3. Blood Substitutes Targeting 1–2 Blood Transfusion
4. Treating Anemia by Increasing OCC with Limited RBC Unit Transfusion
5. Treating Anemia by Increasing ODC
6. Maintenance of the Oxygen Metabolic Requirements
7. Experimental Basis
8. Etiology of Anemia: Is There a Uniform, Universal Palliative Treatment?
9. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Stramer, S.L. Current risks of transfusion-transmitted agents: A review. Arch. Pathol. Lab. Med. 2007, 131, 702–707. [Google Scholar] [PubMed]
- Vicente, J.R.; Croci, A.T.; Camargo, O.P. Blood loss in the minimally invasive posterior approach to total hip arthroplasty: A comparative study. Clinics (Sao Paulo) 2008, 63, 351–356. [Google Scholar]
- Isbister, J.P.; Shander, A.; Spahn, D.R.; Erhard, J.; Farmer, S.L.; Hofmann, A. Adverse blood transfusion outcomes: Establishing causation. Transfus. Med. Rev. 2011, 25, 89–101. [Google Scholar] [PubMed]
- Nama, V.; Karoshi, M.; Wac, M.; Keith, L.G.; Mujeeb, S.A. The single-unit transfusion in the bled-out obstetric patient. In A Comprehensive Textbook of Postpartum Hemorrhage; Lynch, C.B., Keith, L.G., Lalonde, A.B., Karoshi, M., Eds.; Sapiens Publishing: Duncow, Kirkmahoe, Dumfriesshire, UK, 2006; pp. 408–412. [Google Scholar]
- Toy, P.; Gajic, O.; Bacchetti, P.; Looney, M.R.; Gropper, M.A.; Hubmayr, R.; Lowell, C.A.; Norris, P.J.; Murphy, E.L.; Weiskopf, R.B.; et al. Transfusion-related acute lung injury: Incidence and risk factors. Blood 2012, 119, 1757–1767. [Google Scholar] [PubMed]
- Shander, A.; Javidroozi, M.; Ozawa, S.; Hare, G.M. What is really dangerous: Anaemia or transfusion? Br. J. Anaesth. 2011, 107, i41–i59. [Google Scholar]
- Engoren, M.C.; Habib, R.H.; Zacharias, A.; Schwann, T.A.; Riordan, C.J.; Durham, S.J. Effect of blood transfusion on long-term survival after cardiac operation. Ann. Thorac. Surg. 2002, 74, 1180–1186. [Google Scholar] [PubMed]
- Koch, C.G.; Li, L.; Duncan, A.I.; Mihaljevic, T.; Loop, F.D.; Starr, N.J.; Blackstone, E.H. Transfusion in coronary artery bypass grafting is associated with reduced long-term survival. Ann. Thorac. Surg. 2006, 81, 1650–1657. [Google Scholar] [PubMed]
- Gupte, S.C.; Shaw, A. Evaluation of single unit red cell transfusions given to adults during surgery. Asian J. Transfus. Sci. 2007, 1, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Cobain, T.J.; Vamvakas, E.C.; Wells, A.; Titlestad, K. A survey of the demographics of blood use. Transfus. Med. 2007, 17, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Gombotz, H.; Rehak, P.H.; Shander, A.; Hofmann, A. Blood use in elective surgery: The Austrian benchmark study. Transfusion 2007, 47, 1468–1480. [Google Scholar] [PubMed]
- Ma, M.; Eckert, K.; Ralley, F.; Chin-Yee, I. A retrospective study evaluating single-unit red blood cell transfusions in reducing allogeneic blood exposure. Transfus. Med. 2005, 15, 307–312. [Google Scholar] [PubMed]
- Berger, M.D.; Gerber, B.; Arn, K.; Senn, O.; Schanz, U.; Stussi, G. Significant reduction of red blood cell transfusion requirements by changing from a double-unit to a single-unit transfusion policy in patients receiving intensive chemotherapy or stem cell transplantation. Haematologica 2012, 97, 116–122. [Google Scholar] [PubMed]
- Paone, G.; Likosky, D.S.; Brewer, R.; Theurer, P.F.; Bell, G.F.; Cogan, C.M.; Prager, R.L. Transfusion of 1 and 2 units of red blood cells is associated with increased morbidity and mortality. Ann. Thorac. Surg. 2014, 97, 87–93. [Google Scholar] [PubMed]
- Casutt, M.; Seifert, B.; Pasch, T.; Schmid, E.R.; Turina, M.I.; Spahn, D.R. Factors influencing the individual effects of blood transfusions on oxygen delivery and oxygen consumption. Crit. Care Med. 1999, 27, 2194–2200. [Google Scholar] [PubMed]
- Palmer, A.F.; Intaglietta, M. Blood substitutes. Annu. Rev. Biomed. Eng. 2014, 16, 77–101. [Google Scholar] [PubMed]
- Vandegriff, K.D.; Malavalli, A.; Woodridge, J.; Lohman, J.; Winslow, R.M. MP4, a new nonvasoactive PEG-Hb conjugate. Transfusion 2003, 43, 509–516. [Google Scholar] [PubMed]
- Simoni, J.; Simoni, G.; Moeller, J.F.; Feola, M.; Wesson, D.E. Artificial oxygen carrier with pharmacologic actions of adenosine-5′-triphosphate, adenosine, and reduced glutathione formulated to treat an array of medical conditions. Artif. Organs 2014, 38, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Hsia, C.J.; Ma, L. A hemoglobin-based multifunctional therapeutic: Polynitroxylated pegylated hemoglobin. Artif. Organs 2012, 36, 215–220. [Google Scholar] [PubMed]
- Vandegriff, K.D.; Young, M.A.; Lohman, J.; Bellelli, A.; Samaja, M.; Malavalli, A.; Winslow, R.M. CO-MP4, a polyethylene glycol-conjugated haemoglobin derivative and carbon monoxide carrier that reduces myocardial infarct size in rats. Br. J. Pharmacol. 2008, 154, 1649–1661. [Google Scholar] [PubMed]
- Hangai-Hoger, N.; Tsai, A.G.; Cabrales, P.; Suematsu, M.; Intaglietta, M. Microvascular and systemic effects following top load administration of saturated carbon monoxide-saline solution. Crit. Care Med. 2007, 35, 335–237. [Google Scholar] [CrossRef]
- Intaglietta, M.; Johnson, P.C.; Winslow, R.M. Microvascular and tissue oxygen distribution. Cardiovasc. Res. 1996, 32, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Alayash, A.I. Oxygen therapeutics: Can we tame haemoglobin? Nat. Rev. Drug Dis. 2004, 3, 152–159. [Google Scholar] [CrossRef]
- Alayash, A.I. Setbacks in blood substitutes research and development: A biochemical perspective. Clin. Lab. Med. 2010, 30, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.G.; Cabrales, P. Can the effects of vasoactivity of molecular hemoglobin-based plasma expanders be ignored? Crit. Care Med. 2006, 34, 1566–1567. [Google Scholar]
- Messmer, K. Hemodilution. Surg. Clin. N. Am. 1975, 55, 659–678. [Google Scholar] [PubMed]
- Messmer, K.; Sunder-Plassmann, L.; Jesch, F.; Goernandt, L.; Sinagowitz, E.; Kessler, M. Oxygen supply to the tissues during limited normovolemic hemodilution. Res. Exp. Med. 1973, 159, 152–166. [Google Scholar]
- Salazar Vázquez, B.Y.; Martini, J.; Chávez Negrete, A.; Tsai, A.G.; Forconi, S.; Cabrales, P.; Johnson, P.C.; Intaglietta, M. Cardiovascular benefits in moderate increases of blood and plasma viscosity surpass those associated with lowering viscosity: Experimental and clinical evidence. Clin. Hemorheol. Microcirc. 2010, 44, 75–85. [Google Scholar]
- Tsai, A.G.; Cabrales, P.; Intaglietta, M. Blood viscosity: A factor in tissue survival? Crit. Care Med. 2005, 33, 1662–1663. [Google Scholar] [CrossRef]
- Tsai, A.G.; Friesenecker, B.; McCarthy, M.; Sakai, H.; Intaglietta, M. Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skinfold model. Am. J. Physiol. 1998, 275, H2170–H2180. [Google Scholar] [PubMed]
- Tsai, A.G.; Intaglietta, M. High viscosity plasma expanders: Volume restitution fluids for lowering the transfusion trigger. Biorheology 2001, 38, 229–237. [Google Scholar] [PubMed]
- Krieter, H.; Bruckner, U.B.; Kefalianakis, F.; Messmer, K. Does colloid-induced plasma hyperviscosity in haemodilution jeopardize perfusion and oxygenation of vital organs? Acta Anaesthesiol. Scand. 1995, 39, 236–244. [Google Scholar]
- Waschke, K.F.; Krieter, H.; Hagen, G.; Albrecht, D.M.; van Ackern, K.; Kuchinsky, W. Lack of dependence of cerebral blood flow on blood viscosity after blood exchange with a Newtonian O2 carrier. J. Cereb. Blood Flow Metab. 1994, 14, 871–876. [Google Scholar] [PubMed]
- Kameneva, M.V.; Watach, M.J.; Borovetz, H.S. Gender difference in rheologic properties of blood and risk of cardiovascular diseases. Clin. Hemorheol. Microcirc. 1999, 21, 357–363. [Google Scholar] [PubMed]
- Papaioannou, T.G.; Stefanadis, C. Vascular wall shear stress: Basic principles and methods. Hellenic J. Cardiol. 2005, 46, 9–15. [Google Scholar] [PubMed]
- Tsai, A.G.; Acero, C.; Nance, P.R.; Cabrales, P.; Frangos, J.A.; Buerk, D.G.; Intaglietta, M. Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H1730–H1739. [Google Scholar] [CrossRef] [PubMed]
- Cabrales, P.; Tsai, A.G.; Intaglietta, M. Alginate plasma expander maintains perfusion and plasma viscosity during extreme hemodilution. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H1708–H1716. [Google Scholar] [PubMed]
- Cabrales, P.; Tsai, A.G. Plasma viscosity regulates systemic and microvascular perfusion during acute extreme anemic conditions. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H2445–H2452. [Google Scholar] [PubMed]
- Cabrales, P.; Intaglietta, M.; Tsai, A.G. Increase plasma viscosity sustains microcirculation after resuscitation from hemorrhagic shock and continuous bleeding. Shock 2005, 23, 549–555. [Google Scholar] [PubMed]
- Abuchowski, A.; van Es, T.; Palczuk, N.C.; Davis, F.F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 1977, 252, 3578–3581. [Google Scholar] [PubMed]
- Cabrales, P.; Tsai, A.G.; Winslow, R.M.; Intaglietta, M. Extreme hemodilution with PEG-hemoglobin vs. PEG-albumin. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2392–H2400. [Google Scholar] [PubMed]
- Sriram, K.; Tsai, A.G.; Cabrales, P.; Meng, F.; Acharya, S.A.; Tartakovsky, D.M.; Intaglietta, M. PEG-albumin supra plasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H2489–H2497. [Google Scholar] [PubMed]
- Késmárky, G.; Kenyeres, P.; Rábai, M.; Tóth, K. Plasma viscosity: A forgotten variable. Clin. Hemorheol. Microcirc. 2008, 39, 243–246. [Google Scholar] [PubMed]
- Hangai-Hoger, N.; Nacharaju, P.; Manjula, B.N.; Cabrales, P.; Tsai, A.G.; Acharya, S.A.; Intaglietta, M. Microvascular effects following treatment with polyethylene glycol-albumin in lipopolysaccharide-induced endotoxemia. Crit. Care Med. 2006, 34, 108–117. [Google Scholar] [PubMed]
- Kerger, H.; Saltzman, D.J.; Menger, M.D.; Messmer, K.; Intaglietta, M. Systemic and subcutaneous microvascular Po2 dissociation during 4-h hemorrhagic shock in conscious hamsters. Am. J. Physiol. Heart Circ. Physiol. 1996, 270, H827–H836. [Google Scholar]
- Shen, W.; Xu, X.; Ochoa, M.; Zhao, G.; Bernstein, R.D.; Forfia, P.; Hintze, T.H. Endogenous nitric oxide in the control of skeletal muscle oxygen extraction during exercise. Acta Physiol. Scand. 2000, 168, 675–686. [Google Scholar] [PubMed]
- Bolaños, J.P.; Almeida, A.; Stewart, V.; Peuchen, S.; Land, J.M.; Clark, J.B.; Heales, S.J. Nitric oxide-mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases. J. Neurochem. 1997, 68, 2227–2240. [Google Scholar] [PubMed]
- Mirhashemi, S.; Ertefai, S.; Messmer, K.; Intaglietta, M. Model analysis of the enhancement of tissue oxygenation by hemodilution due to increased microvascular flow velocity. Microvasc. Res. 1987, 34, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Intaglietta, M. Whitaker lecture 1996: Microcirculation, biomedical engineering and artificial blood. Ann. Biomed. Eng. 1997, 25, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Endrich, B.; Asaishi, K.; Götz, A.; Messmer, K. Technical report: A new chamber technique for microvascular studies in unanaesthetized hamsters. Res. Exp. Med. 1980, 177, 125–134. [Google Scholar]
- Papenfuss, H.D.; Gross, J.F.; Intaglietta, M.; Treese, F.A. A transparent access chamber for the rat dorsal skin fold. Microvasc. Res. 1979, 18, 311–318. [Google Scholar] [PubMed]
- Cabrales, P.; Tsai, A.G.; Intaglietta, M. Microvascular pressure and functional capillary density in extreme hemodilution with low and high plasma viscosity expanders. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H363–H373. [Google Scholar] [CrossRef] [PubMed]
- Cabrales, P.; Tsai, A.G.; Frangos, J.A.; Intaglietta, M. Role of endothelial nitric oxide in microvascular oxygen delivery and consumption. Free Radic. Biol. Med. 2005, 39, 1229–1237. [Google Scholar] [PubMed]
- Cabrales, P.; Tsai, A.G.; Intaglietta, M. Hemorrhagic shock resuscitation with carbon monoxide saturated blood. Resuscitation 2007, 72, 306–318. [Google Scholar] [PubMed]
- Cabrales, P.; Tsai, A.G.; Intaglietta, M. Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity? Shock 2007, 27, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Wettstein, R.; Cabrales, P.; Erni, D.; Tsai, A.G.; Winslow, R.M.; Intaglietta, M. Resuscitation from hemorrhagic shock with MalPEG-albumin: Comparison with MalPEG-hemoglobin. Shock 2004, 22, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Chatpun, S.; Cabrales, P. Cardiac systolic function recovery after hemorrhage determines survivability during shock. J. Trauma 2011, 70, 787–793. [Google Scholar] [PubMed]
- Chatpun, S.; Cabrales, P. Effects of plasma viscosity modulation on cardiac function during moderate hemodilution. Asian J. Transfus. Sci. 2010, 4, 102–108. [Google Scholar] [PubMed]
- Chatpun, S.; Cabrales, P. Effects on cardiac function of a novel low viscosity plasma expander based on polyethylene glycol conjugated albumin. Minerva Anestesiol. 2011, 77, 704–714. [Google Scholar] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, A.G.; Salazar Vázquez, B.Y.; Cabrales, P.; Kistler, E.B.; Tartakovsky, D.M.; Subramaniam, S.; Acharya, S.A.; Intaglietta, M. Replacing the Transfusion of 1–2 Units of Blood with Plasma Expanders that Increase Oxygen Delivery Capacity: Evidence from Experimental Studies. J. Funct. Biomater. 2014, 5, 232-245. https://doi.org/10.3390/jfb5040232
Tsai AG, Salazar Vázquez BY, Cabrales P, Kistler EB, Tartakovsky DM, Subramaniam S, Acharya SA, Intaglietta M. Replacing the Transfusion of 1–2 Units of Blood with Plasma Expanders that Increase Oxygen Delivery Capacity: Evidence from Experimental Studies. Journal of Functional Biomaterials. 2014; 5(4):232-245. https://doi.org/10.3390/jfb5040232
Chicago/Turabian StyleTsai, Amy G., Beatriz Y. Salazar Vázquez, Pedro Cabrales, Erik B. Kistler, Daniel M. Tartakovsky, Shankar Subramaniam, Seetharama A. Acharya, and Marcos Intaglietta. 2014. "Replacing the Transfusion of 1–2 Units of Blood with Plasma Expanders that Increase Oxygen Delivery Capacity: Evidence from Experimental Studies" Journal of Functional Biomaterials 5, no. 4: 232-245. https://doi.org/10.3390/jfb5040232
APA StyleTsai, A. G., Salazar Vázquez, B. Y., Cabrales, P., Kistler, E. B., Tartakovsky, D. M., Subramaniam, S., Acharya, S. A., & Intaglietta, M. (2014). Replacing the Transfusion of 1–2 Units of Blood with Plasma Expanders that Increase Oxygen Delivery Capacity: Evidence from Experimental Studies. Journal of Functional Biomaterials, 5(4), 232-245. https://doi.org/10.3390/jfb5040232