Electrokinetic and Hemostatic Profiles of Nonwoven Cellulosic/Synthetic Fiber Blends with Unbleached Cotton
Abstract
:1. Introduction
1.1. Polysaccharide-Based Nonwovens with Hemostatic Activity
1.2. Thromboelastography for Assessment of Nonwoven Fiber Blends
1.3. Greige Cotton Nonwovens
2. Results and Discussion
2.1. Composition and Surface Chemistry
Sample ID | Sample description | Density (g/m2) |
---|---|---|
I | 100% greige cotton (fine aperture) | 35 |
II | 100% greige cotton | 45 |
III | 100% greige cotton (no pattern) | 45 |
IV | 75% greige cotton/25% viscose | 25 |
V | 50% greige cotton/50% viscose | 35 |
VI | 50% greige cotton/50% viscose | 45 |
VII | 40% polyester/30% greige cotton/30% viscose | 35 |
VIII | 50% polypropylene/50% greige cotton | 25 |
Sample ID | Density (g/m2) | Moisture content (%) | IEP pH | Plateau potential (mV) | Swell test K (min−1) | ζ0 (mV) | ζ∞ (mV) | ∆ζ | Swell ratio | R2 |
---|---|---|---|---|---|---|---|---|---|---|
I | 35 | 9.23 | 2.0 | −27 | 0.018 | −32.7 | −29.4 | 0.101 | 1.054 | 0.939 |
II | 45 | 7.34 | 2.2 | −25 | 0.001 | −25.9 | −16.4 | 0.125 | 1.069 | 0.970 |
III | 45 | 7.18 | 2.2 | −26 | 0.008 | −27.1 | −23.5 | 0.132 | 1.073 | 0.953 |
IV | 25 | 9.25 | 1.8 | −25 | 0.006 | −24.7 | −22.6 | 0.083 | 1.044 | 0.973 |
V | 35 | 9.68 | 2.1 | −22 | 0.005 | −21.1 | −19.9 | 0.056 | 1.029 | 0.920 |
VI | 55 | 9.86 | 2.2 | −18 | 0.007 | −18.9 | −17.3 | 0.086 | 1.046 | 0.972 |
VII | 35 | 6.86 | 2.1 | −37 | 0.004 | −35.5 | −27.1 | 0.125 | 1.069 | 0.991 |
VIII | 25 | 4.04 | 2.2 | −61 | 0.011 | −54.6 | −45.3 | 0.171 | 1.098 | 0.961 |
Rayon-polyester | – | – | 2.8 | −16 | 0.030 | 22.3 | 16.6 | 0.255 | 1.158 | 0.991 |
Polypropylene | – | – | 2.5 | −32 | 0.032 | 66.1 | 41.8 | 0.370 | 1.259 | 0.989 |
2.2. Clotting Profiles
Sample | R (min) | Std dev * | K (min) | Std dev * | Angle (°) | Std dev * | MA (Mm) | Std dev * |
---|---|---|---|---|---|---|---|---|
Bovine Blood | 11.6 | 0.6 | 7.0 | 1.3 | 35.4 | 0.2 | 25.0 | 2.1 |
Kaolin Control | 4.2 | 0.1 | 4.9 | 0.1 | 54.6 | 4.2 | 26.0 | 0.5 |
Combat Gauze | 5.5 | 0.8 | 5.3 | 0.4 | 25.6 | 1.1 | 31.1 | 1.1 |
Rayon/Polyester | 4.9 | 0.3 | 7.8 | 1.5 | 24.6 | 2.6 | 31.6 | 0.1 |
I | 6.2 | 0.9 | 8.5 | 0.1 | 19.5 | 0.9 | 27.0 | 0.5 |
II | 6.6 | 0.2 | 7.8 | 0.6 | 20.8 | 0.8 | 29.2 | 0.6 |
III | 9.9 | 1.8 | 4.8 | 0.4 | 23.8 | 5.3 | 29.9 | 3.1 |
IV | 8.3 | 1.4 | 5.6 | 0.7 | 22.4 | 2.2 | 31.2 | 2.1 |
V | 5.4 | 0.2 | 11.6 | 0.1 | 17.8 | 0.9 | 29.2 | 2.5 |
VI | 7.4 | 0.1 | 9.4 | 1.6 | 17.6 | 1.6 | 27.1 | 0.7 |
VII | 7.7 | 1.3 | 6.7 | 0.8 | 21.3 | 1.5 | 37.2 | 0.6 |
VIII | 5.7 | 1.0 | 5.8 | 0.7 | 26.3 | 1.9 | 32.6 | 1.6 |
Polyester | 11.1 | 1.2 | 5.2 | 0.3 | 24.0 | 9.1 | 27.1 | 1.4 |
Polypropylene (70 g/m2) | 10.0 | 1.2 | 5.6 | 0.3 | 24.5 | 5.1 | 28.4 | 1.9 |
Viscose | 10.8 | 2.3 | 7.7 | 1.7 | 21.2 | 2.2 | 51.6 | 4.1 |
Sample | nM thrombin | CV * | Velocity index | CV * |
---|---|---|---|---|
I | 457.8 | 8.5 | 336.5 | 39.4 |
II | 391.7 | 8.8 | 391.7 | 8.8 |
III | 360.1 | 2.6 | 180.0 | 2.6 |
IV | 442.8 | 0.9 | 442.8 | 0.9 |
V | 373.7 | 8.0 | 186.8 | 8.0 |
VI | 350.5 | 0.5 | 263.3 | 47.6 |
VII | 360.1 | 0.4 | 360.1 | 0.4 |
VIII | 385.9 | 8.3 | 158.9 | 20.2 |
Viscose | 423.5 | 2.8 | 315.5 | 44.6 |
Polyester | 461.9 | 3.2 | N/A | – |
Rayon/Polyester | 418.3 | 1.5 | 418.3 | 1.5 |
Plasma Control | 327.4 | 1.9 | 163.7 | 1.9 |
Control High/Buffer | 288.2 | 3.5 | N/A | – |
Control Low/Buffer | 187.2 | 1.0 | 77.9 | 27.3 |
2.3. Coagulation Cascade Contact Coagulation Properties
3. Experimental Section
3.1. Thromboelastography
3.2. Thrombin-Generation Assay
3.3. Zeta Potential Measurements
3.4. Time-Dependent/Swell Behavior
3.5. Environmental Scanning Electron Microscope
3.6. Contact Angle Measurements
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References and Notes
- Abou-Okeil, A.; Sheta, A.M.; Amr, A.; Ali, M.A. Wound dressing based on nonwoven viscose fabrics. Carbohydr. Polym. 2012, 90, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Parikh, D.V.; Calamari, J.; Timothy, A.; Sawhney, A.P.S.; Sachinvala, N.N.D.; Goynes, W.R.; Hemstreet, J.M.; Von Hoven, T.; Patience, D. Woven and nonwoven medical/surgical materials. Int. Nonwovens J. 1999, 8, 24–28. [Google Scholar]
- Das, D.; Pradhan, A.K.; Chattopadhyay, R.; Singh, S.N. Composite nonwovens. Text. Prog. 2012, 44, 1–84. [Google Scholar] [CrossRef]
- Doh, S.; Lee, J.; Lim, D.; Im, J. Manufacturing and analyses of wet-laid nonwoven consisting of carboxymethyl cellulose fibers. Fibers Polym. 2013, 14, 2176–2184. [Google Scholar] [CrossRef]
- Barnett, S.E.; Varley, S.J. The effects of calcium alginate on wound healing. Ann. R. Coll. Surg. Engl. 1987, 69, 153–155. [Google Scholar] [PubMed]
- Fischer, T.H.; Vournakis, J.N.; Manning, J.E.; McCurdy, S.L.; Rich, P.B.; Nichols, T.C.; Scull, C.M.; McCord, M.G.; Decorta, J.A.; Johnson, P.C.; et al. The design and testing of a dual fiber textile matrix for accelerating surface hemostasis. J. Biomed. Mater. Res. B 2009, 91, 381–389. [Google Scholar] [CrossRef]
- Groth, T.; Wagenknecht, W. Anticoagulant potential of regioselective derivatized cellulose. Biomaterials 2001, 22, 2719–2729. [Google Scholar] [CrossRef] [PubMed]
- Gu, R.; Sun, W.; Zhou, H.; Wu, Z.; Meng, Z.; Zhu, X.; Tang, Q.; Dong, J.; Dou, G. The performance of a fly-larva shell-derived chitosan sponge as an absorbable surgical hemostatic agent. Biomaterials 2010, 31, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, R.; George, K.; Johns, D.; Craven, L.; Zhang, G.; Shnoda, P. Hemostatic efficacy and tissue reaction of oxidized regenerated cellulose hemostats. Cellulose 2013, 20, 537–545. [Google Scholar] [CrossRef]
- Islam, S.; Arnold, L.; Padhye, R. Application of chitosan on wool-viscose nonwoven for wound dressing. J. Biobased Mater. Bioenergy 2013, 7, 439–443. [Google Scholar] [CrossRef]
- Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P.T.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Palm, M.D.; Altman, J.S. Topical hemostatic agents: A review. Dermatol. Surg. 2008, 34, 431–445. [Google Scholar] [PubMed]
- Segal, H.C.; Hunt, J.B.; Gilding, K. The effects of alginate and non-alginate wound dressings on blood coagulatino and platelet activation. J. Biomater. Appl. 1998, 12, 249–257. [Google Scholar] [PubMed]
- van der Weyden, E.A. Treatment of a venous leg ulcer with a honey alginate dressing. Br. J. Community Nurs. 2005, 10. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Yao, J.; Liu, K. Study on hemostatic mechanism of fully soluble hemostatic fiber. Blood Coagul. Fibrinolysis 2007, 18, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Raccuia, J.S.; Simonian, G.; Dardik, M.; Hallac, D.; Raccuia, S.V.; Stahl, R.; Dardik, H. Comparative efficacy of topical hemostatic agents in a rat kidney model. Am. J. Surg. 1992, 163, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Rathinamoorthy, R.; Sasikala, I. Polysaccharide fibers in wound management. Int. J. Pharm. Pharm. Sci. 2013, 3, 38–44. [Google Scholar]
- Fischer, T.H.; Bode, A.P.; Demcheva, M.; Vournakis, J.N. Hemostatic properties of glucosamine-based materials. J. Biomed. Mater. Res. A 2007, 80, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.H.; Valeri, C.R.; Smith, C.J.; Scull, C.M.; Merricks, E.P.; Nichols, T.C.; Demcheva, M.; Vournakis, J.N. Non-classical processes in surface hemostasis: Mechanisms for the poly-n-acetyl glucosamine-induced alteration of red blood cell morphology and surface prothrombogenicity. Biomed. Mater. 2008, 3. [Google Scholar] [CrossRef]
- Peng, H.T.; Blostein, M.D.; Shek, P.N. Experimental optimization of an in situ forming hydrogel for hemorrhage control. J. Biomed. Mater. Res. B 2009, 89, 199–209. [Google Scholar] [CrossRef]
- Peng, H.T. Thromboelastographic study of biomaterials. J. Biomed. Mater. Res. B 2010, 94, 469–485. [Google Scholar] [CrossRef]
- Wakelyn, P.J.; Bertoniere, N.R.; French, A.D.; Thibodeaux, D.P.; Triplett, B.A.; Rousselle, M.A.; Goynes, W.R., Jr.; Edwards, J.V.; Hunter, L.; McAlister, D.D.; et al. Cotton Fiber Chemisry and Technology; CRC Press: Boca Raton, FL, USA, 2006; p. 162. [Google Scholar]
- French, A.D. Cellulose. In Encyclopedia of Biophysics; Roberts, G.C.K., Ed.; Springer: New York, NY, USA, 2013; pp. 248–253. [Google Scholar]
- French, A.; Concha, M.; Dowd, M.; Stevens, E. Electron (charge) density studies of cellulose models. Cellulose 2014, 21, 1051–1063. [Google Scholar] [CrossRef]
- Condon, B.; Gary, L.; Sawhney, A.P.S.; Reynolds, M.; Slopek, R.; Delhom, C.; Hui, D. Properties of nonwoven fabrics made with ultraclean™ cotton. World J. Eng. 2010, 7, 180–184. [Google Scholar]
- Sawhney, A.P.S.; Condon, B.; Reynolds, M.; Slopek, R.; Hui, D. Advent of greige cotton non-wovens made using a hydro-entanglement process. Tex. Res. J. 2010, 80, 1540–1549. [Google Scholar] [CrossRef]
- Sawhney, P.; Allen, C.; Reynolds, M.; Condon, B.; Slopek, R. Effect of water pressure on absorbency of hydroentangled greige cotton non-woven fabrics. Tex. Res. J. 2012, 82, 21–26. [Google Scholar] [CrossRef]
- Edwards, J.V.; Bopp, A.; Graves, E.; Condon, B. A comparison of hemorrhage control and hydrogen peroxide generation in commercial and cotton-based wound dressing materials. In Proceedings of 23rd Annual Meeting of the Wound Healing Society; SAWC Spring/WHS Joint Meeting; Silver (25th) Anniversary of the Wound Healing Society, Denver, CO, USA, 1–4 May 2013.
- Grahame, D.C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441–501. [Google Scholar] [CrossRef] [PubMed]
- Grancaric, A.M.; Tarbuk, A.; Pusic, T. Electrokinetic properties of textile fabrics. Color. Technol. 2005, 121, 221–227. [Google Scholar] [CrossRef]
- Ribitsch, V.; Stana-Kleinscheck, K. Characterizing textile fiber surfaces with streaming potential measurements. Text. Res. J. 1998, 68, 701–707. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Edwards, J.V.; Prevost, N. Thrombin production and human neutrophil elastase sequestration by modified cellulosic dressings and their electrokinetic analysis. J. Funct. Biomater. 2011, 2, 391–413. [Google Scholar] [CrossRef] [PubMed]
- Maas, C.; Oschatz, C.; Renne, T. The plasma contact system 2.0. Semin. Thromb. Hemostasis 2011, 37, 375–381. [Google Scholar] [CrossRef]
- Margolis, J. Initiation of blood coagulation by glass and related surfaces. J. Physiol. 1957, 137, 95–109. [Google Scholar] [PubMed]
- Ratnoff, O.D.; Rosenblum, J.M. Role of hageman factor in the initiation of clotting by glass: Evidence that glass frees hageman factor from inhibition. Am. J. Med. 1958, 25, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Morrissey, J.H. Polyphosphate enhances fibrin clot structure. Blood 2008, 112, 2810–2816. [Google Scholar] [CrossRef] [PubMed]
- Bjorn, S.; Thim, L. Activation of coagulation factor VII to VIIa. Res. Discl. 1986, 269, 564–565. [Google Scholar]
- Pedersen, A.H.; Lund-Hansen, T.; Bisgaard-Frantzen, H.; Olsen, F.; Petersen, L.C. Autoactivation of human recombinant coagulation factor VII. Biochemistry 1989, 28, 9331–9336. [Google Scholar] [CrossRef] [PubMed]
- White, G.C., II. The partial thromboplastin time: Defining an era in coagulation. J. Throm. Haemostasis 2003, 1, 2267–2270. [Google Scholar] [CrossRef]
- Maas, C.; Renne, T. Regulatory mechanisms of the plasma contact system. Throm. Res. 2012, 129, S73–S76. [Google Scholar] [CrossRef]
- Renne, T.; Schmaier, A.H.; Nickel, K.F.; Blomback, M.; Maas, C. In vivo roles of factor XII. Blood 2012, 120, 4296–4303. [Google Scholar] [CrossRef] [PubMed]
- Griep, M.A.; Fujikawa, K.; Nelsestuen, G.L. Possible basis for the apparent surface selectivity of the contact activation of human blood coagulation factor XII. Biochemistry 1986, 25, 6688–6694. [Google Scholar] [CrossRef] [PubMed]
- Vogler, E.A.; Siedlecki, C.A. Contact activation of blood-plasma coagulation. Biomaterials 2009, 30, 1857–1869. [Google Scholar] [CrossRef] [PubMed]
- Sperling, C.; Fischer, M.; Maitz, M.F.; Werner, C. Blood coagulation on biomaterials requires the combination of distinct activation processes. Biomaterials 2009, 30, 4447–4456. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.H.; Thatte, H.S.; Nichols, T.C.; Bender-Neal, D.E.; Bellinger, A.D.; Vournakis, J.N. Synergistic platelet integrin signaling and factor xii activation in poly-n-acetyl glucosamine fiber-mediated hemostasis. Biomaterials 2005, 26, 5433–5443. [Google Scholar] [CrossRef] [PubMed]
- Hecker, J.F.; Edwards, R.O. Effects of roughness on the thrombogenicity of a plastic. J. Biomed. Mater. Res. 1981, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vroman, L. Effects of hydrophobic surfaces upon blood coagulation. Throm. Diathesis Haemorrh. 1964, 10, 455–493. [Google Scholar]
- Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edwards, J.V.; Graves, E.; Bopp, A.; Prevost, N.; Santiago, M.; Condon, B. Electrokinetic and Hemostatic Profiles of Nonwoven Cellulosic/Synthetic Fiber Blends with Unbleached Cotton. J. Funct. Biomater. 2014, 5, 273-287. https://doi.org/10.3390/jfb5040273
Edwards JV, Graves E, Bopp A, Prevost N, Santiago M, Condon B. Electrokinetic and Hemostatic Profiles of Nonwoven Cellulosic/Synthetic Fiber Blends with Unbleached Cotton. Journal of Functional Biomaterials. 2014; 5(4):273-287. https://doi.org/10.3390/jfb5040273
Chicago/Turabian StyleEdwards, J. Vincent, Elena Graves, Alvin Bopp, Nicolette Prevost, Michael Santiago, and Brian Condon. 2014. "Electrokinetic and Hemostatic Profiles of Nonwoven Cellulosic/Synthetic Fiber Blends with Unbleached Cotton" Journal of Functional Biomaterials 5, no. 4: 273-287. https://doi.org/10.3390/jfb5040273
APA StyleEdwards, J. V., Graves, E., Bopp, A., Prevost, N., Santiago, M., & Condon, B. (2014). Electrokinetic and Hemostatic Profiles of Nonwoven Cellulosic/Synthetic Fiber Blends with Unbleached Cotton. Journal of Functional Biomaterials, 5(4), 273-287. https://doi.org/10.3390/jfb5040273