Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium
Abstract
:1. Introduction
2. Cell Sources for Tissue Engineering of Corneal Endothelium
3. Substrates for Cultivation of Human Corneal Endothelial Cells
Main Groups of Substrate | Specific Substrates | Author(s)/Year | Cell Suspension/Sheet on Substrate | Cell Density */Suspension at Time of Seeding on Substrate | Final Cell Density on the Substrate * | Morphology | Phenotype |
---|---|---|---|---|---|---|---|
Biological Substrates | |||||||
Amniotic membrane | Denuded human AM | Ishino et al., 2004 [68] | Cell suspension (trypsinized) | 3285 ± 62 | 2410 ± 31 | Polygonal, uniformly sized cells with cell-cell and cell-AM contact | ZO-1 |
Decellularized/devitalized corneal materials | Culture flasks + ** human cornea denuded of endothelium | Insler and Lopez, 1986 [29] | Cell suspension (trypsinized) | 100 µL of 7.5 × 105 cells | 560–1650 | – | – |
Culture flasks + human cornea denuded of endothelium | Insler and Lopez, 1991 [30] | Cell suspension (trypsinized) | – | – | – | – | |
Culture flasks + human cornea denuded of endothelium | Insler and Lopez, 1991 [31] | Cell suspension (trypsinized) | 2000–2200 | 1000–1600 | – | – | |
Culture plates + human cornea denuded of endothelium | Chen et al., 2001 [62] | Cell suspension (trypsinized) | 1503–2159 | 1895 ± 178 | Polygonal with cell-cell adhesion complexes and gap junction | ZO-1 | |
Bovine ECM coated culture dishes + human cornea denuded of endothelium | Amano, 2003 [67] | Cell suspension (trypsinized) | Cell suspension 2 × 105 in 2 mL | 2380 ± 264 | Uniform in size and shape | – | |
Bovine ECM coated culture dishes + rat cornea denuded of endothelium and coated with fibronectin | Mimura et al., 2004 [27] | Cell suspension (trypsinized) | 300 µL of 1 × 106 cells | 2744 ± 337 | Polygonal | – | |
Bovine ECM coated culture dishes + human cornea denuded of endothelium | Amano et al., 2005 [71] | Cell suspension (trypsinized) | 2 mL of 2 × 105 cells | 2380 ± 264 | In vivo morphology with cell-cell contact | – | |
Decellularized human corneal stroma | Choi et al., 2010 [90] | Cell suspension (trypsinized) | 130–3000 | – | Compact cells | ZO-1, Na+K+ATPase, connexin 43 | |
Culture plates + decellularized posterior lamellae of bovine cornea | Bayyoud et al., 2012 [137] | Cell suspension (trypsinized) | 5 × 104 cells/well | 2380 ± 179 | Polygonal | ZO-1, Na+K+ATPase, Na+HCO3−, connexin 43 | |
Culture plates + decellularized porcine cornea | Yoeruek et al., 2012 [138] | Cell suspension (trypsinized) | – | – | – | – | |
Lens capsule | Deepithelialized human anterior lens capsule | Yoeruek et al., 2009 [88] | Cell suspension (trypsinized) | 5 × 104 cells/well | 3012 ± 109 | Polygonal | ZO-1, Na+K+ATPase, connexin 43 |
Culture plates + deepithelialized human anterior lens capsule | Kopsachilis et al., 2012 [99] | Cell suspension (trypsinized) | 5 × 104 cells/well | 2455 ± 284 | Hexagonal | ZO-1, Na+K+ATPase | |
Natural polymers | Collagen-coated, dextran-based microcarrier beads | Insler and Lopez, 1990 [56] | Cell suspension (isolated cells) | – | – | Cobbelstone | – |
Collagen membranes | Kopsachilis et al., 2012 [99] | Cell suspension (trypsinized) | 5 × 104 cells/well | 2072 ± 325 | Hexagonal | – | |
Atelocollagen coated culture dishes + collagen vitrigel | Yoshida et al., 2014 [139] | Cell suspension (trypsinized) | 1.3 × 106 cells/well | 2650 ± 100 | – | – | |
Type I collagen sponges | Orwin and Hubel, 2000 [65] | Cell suspension (trypsinized) | – | – | Cobbelstone | – | |
Bovine ECM coated culture dishes + type I collagen sheet | Mimura et al., 2004 [28] | Cell suspension (trypsinized) | 300 µL of 1 × 106 cells | – | Also fibroblast like cells | – | |
Type I collagen coated culture dishes | Choi et al., 2013 [97] | Cell suspension (trypsinized) | – | – | – | ZO-1, Na+K+ATPase | |
Type I collagen coated culture plates | Numata et al., 2014 [110] | Cell suspension (trypsinized) | – | – | Hexagonal | ZO-1, Na+K+ATPase | |
Type IV collagen coated culture dishes | Choi et al., 2010 [90] | Cell suspension (trypsinized) | – | – | Compact | – | |
Type IV collagen coated culture dishes | Yamaguchi et al., 2011 [93] | Cell suspension (trypsinized) | 6000 | – | – | – | |
Type IV collagen coated culture dishes | Choi et al., 2013 [97] | Cell suspension (trypsinized) | – | – | – | ZO-1, Na+K+ATPase | |
Type IV collagen coated culture plates | Numata et al., 2014 [110] | Cell suspension (trypsinized) | – | – | Hexagonal | ZO-1, Na+K+ATPase | |
Bovine ECM coated culture plates | Blake et al., 1997 [59] | Cell suspension (trypsinized) | – | – | Hexagonal | – | |
Bovine ECM coated culture plates | Yamaguchi et al., 2011 [93] | Cell suspension (trypsinized) | 6000 | – | – | – | |
Fibronectin coated culture plates | Blake et al., 1997 [59] | Cell suspension (trypsinized) | – | – | Hexagonal | – | |
Fibronectin coated culture plates | Choi et al., 2010 [90] | Cell suspension (trypsinized) | – | – | Compact | – | |
Fibronectin coated culture dishes | Yamaguchi et al., 2011 [93] | Cell suspension (trypsinized) | 6000 | – | – | – | |
Fibronectin coated culture plates | Choi et al., 2013 [97] | Cell suspension (trypsinized) | – | – | – | ZO-1, Na+K+ATPase | |
Fibronectin coated culture plates | Numata et al., 2014 [110] | Cell suspension (trypsinized) | – | – | Hexagonal | ZO-1, Na+K+ATPase | |
FNC coating mix coated culture plates | Choi et al., 2013 [97] | Cell suspension (trypsinized) | – | – | – | ZO-1, Na+K+ATPase | |
Gelatin coated culture flasks | Nayak and Binder, 1984 [50] | Cell suspension (trypsinized) | – | – | Flattened and polygonal | – | |
A mixture of laminin and chondroitin sulfate coated culture plates | Engelmann et al., 1988 [51] | Cell suspension (trypsinized) | – | – | Mosaic pattern | – | |
Thermoresponsive PIPAAm–grafted surfaces + gelatin discs | Hsiue et al., 2006 [76] | Cell sheet | – | – | Polygonal | ZO-1 | |
Thermoresponsive PIPAAm–grafted surfaces + gelatin discs | Lai et al., 2007 [32] | Cell sheet | 4 × 104 cells | 2587 ± 272 | Polygonal with cell-cell contact | ZO-1, Na+K+ATPase | |
Type IV collagen coated culture dishes + gelatin hydrogel sheets | Watanabe et al., 2011 [94] | Cell suspension (trypsinized) | 3–5 × 103 | – | Mosaic pattern with ruffled borders | ZO-1, Na+K+ATPase, N-cadherin | |
Laminin-5 coated culture dishes | Yamaguchi et al., 2011 [93] | Cell suspension (trypsinized) | 6000 | – | – | – | |
Laminin coated culture plates | Choi et al., 2013 [97] | Cell suspension (trypsinized) | – | – | – | ZO-1, Na+K+ATPase | |
Synthetic Substrates | |||||||
Rose chamber | Mannagh and Irving, 1965 [45] | Cell suspension (isolated cells) | – | – | Elongated with cell-cell contact | – | |
Tissue culture dishes or flasks | Newsome et al., 1974 [46] | Endothelium-Descemet’s membrane explant | – | – | Flat and polygonal | – | |
Culture flasks or Petri culture dishes | Baum et al., 1979 [47] | Endothelium-Descemet’s membrane explant | – | – | Small and uniform in young donors. Large and pleomorphic in older donors | – | |
Coverglass of disposable tissue culture chamber | Tripathi and Tripathi, 1982 [49] | Isolation of cells by scraping and Descemet’s membrane explant | – | – | Flattened and hexagonal or polygonal | – | |
Culture plates | Blake et al., 1997 [59] | Cell suspension (trypsinized) | – | – | Hexagonal | – | |
Collagen type IV coated culture dishes + thermoresponsive PIPAAm–grafted surfaces | Sumide et al., 2006 [74] | Cell sheet | 3 × 106 cells/dish | 3000 | Hexagonal with cilia and microvilli | – | |
Thermoresponsive PIPAAm-grafted culture dishes | Ide et al., 2006 [140] | Cell sheet | – | – | Polygonal with cilia and microvilli | – | |
Thermoresponsive PIPAAm-grafted culture dishes | Lai et al., 2006 [141] | Cell sheet | 4 × 104 cells | 2500 | Hexagonal | ZO-1, Na+K+ATPase | |
Bovine ECM coated culture dishes + culture plates and culture inserts | Hitani et al., 2008 [25] | Cell sheet | 600 µL of 4 × 106 cells | 2425 ± 83 | Uniformly sized cells | ZO-1, Na+K+ATPase | |
Culture plates | Choi et al., 2010 [90] | Cell suspension (trypsinized) | – | – | Compact | – | |
Culture plates | Yamaguchi et al., 2011 [93] | Cell suspension (trypsinized) | 6000 | – | – | – | |
Culture plates | Kopsachilis et al., 2012 [99] | Cell suspension (trypsinized) | 5 × 104 cells/well | 2507 ± 303 | Hexagonal | – | |
Culture plates | Choi et al., 2013 [97] | Cell suspension (trypsinized) | – | – | – | ZO-1, Na+K+ATPase | |
Biosynthetic Substrate | |||||||
FNC coating mix coated culture dishes + FNC coated RAFT + collagen gel (compressed plastic and type I collagen) | Levis et al., 2012 [101] | Cell suspension (trypsinized) | 2000 | 1941 | Polygonal | ZO-1, Na+K+ATPase |
3.1. Biological Substrates
3.1.1. Amniotic Membrane
3.1.2. Decellularized/Devitalized Corneal Materials
3.1.3. Lens Capsule
3.1.4. Natural Polymers
3.2. Synthetic Substrates
3.3. Biosynthetic Substrates
4. Conclusions and Future Perspective
Acknowledgment
Conflicts of Interests
References
- Nishida, T. Neurotrophic mediators and corneal wound healing. Ocul. Surf. 2005, 3, 194–202. [Google Scholar] [CrossRef]
- Dua, H.S.; Faraj, L.A.; Said, D.G.; Gray, T.; Lowe, J. Human corneal anatomy redefined: A novel pre-Descemet’s layer (dua’s layer). Ophthalmology 2013, 120, 1778–1785. [Google Scholar] [CrossRef] [PubMed]
- Rüfer, F.; Schröder, A.; Erb, C. White-to-white corneal diameter: Normal values in healthy humans obtained with the orbscan II topography system. Cornea 2005, 24, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Rozsa, A.J.; Beuerman, R.W. Density and organization of free nerve endings in the corneal epithelium of the rabbit. Pain 1982, 14, 105–120. [Google Scholar] [CrossRef]
- Dua, H.S.; Azuara-Blanco, A. Limbal stem cells of the corneal epithelium. Surv. Ophthalmol. 2000, 44, 415–425. [Google Scholar] [CrossRef]
- Meek, K.M.; Dennis, S.; Khan, S. Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells. Biophys. J. 2003, 85, 2205–2212. [Google Scholar] [CrossRef]
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Tuft, S.J.; Coster, D.J. The corneal endothelium. Eye 1990, 4, 389–424. [Google Scholar] [CrossRef] [PubMed]
- Joyce, N.C. Proliferative capacity of corneal endothelial cells. Exp. Eye Res. 2012, 95, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Nucci, P.; Brancato, R.; Mets, M.B.; Shevell, S.K. Normal endothelial cell density range in childhood. Arch. Ophthalmol. 1990, 108, 247–248. [Google Scholar] [CrossRef] [PubMed]
- Bourne, W.M.; Nelson, L.R.; Hodge, D.O. Central corneal endothelial cell changes over a ten-year period. Investig. Ophthalmol. Vis. Sci. 1997, 38, 779–782. [Google Scholar]
- Steele, C. Corneal wound healing: A review. Optom. Today 1999, 25, 28–32. [Google Scholar]
- Melles, G.R.; Ong, T.S.; Ververs, B.; van der Wees, J. Descemet membrane endothelial keratoplasty (DMEK). Cornea 2006, 25, 987–990. [Google Scholar] [PubMed]
- Okumura, N.; Koizumi, N.; Kay, E.P.; Ueno, M.; Sakamoto, Y.; Nakamura, S.; Hamuro, J.; Kinoshita, S. The rock inhibitor eye drop accelerates corneal endothelium wound healing. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2493–2502. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T.; Shimomura, N.; Usui, T.; Noda, Y.; Kaji, Y.; Yamgami, S.; Amano, S.; Miyata, K.; Araie, M. Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp. Eye Res. 2003, 76, 745–751. [Google Scholar] [CrossRef]
- Okumura, N.; Koizumi, N.; Ueno, M.; Sakamoto, Y.; Takahashi, H.; Tsuchiya, H.; Hamuro, J.; Kinoshita, S. Rock inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am. J. Pathol. 2012, 181, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T.; Yamagami, S.; Usui, T.; Ishii, Y.; Ono, K.; Yokoo, S.; Funatsu, H.; Araie, M.; Amano, S. Long-term outcome of iron-endocytosing cultured corneal endothelial cell transplantation with magnetic attraction. Exp. Eye Res. 2005, 80, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Moysidis, S.N.; Alvarez-Delfin, K.; Peschansky, V.J.; Salero, E.; Weisman, A.D.; Bartakova, A.; Raffa, G.A.; Merkhofer, R.M., Jr.; Kador, K.E.; Kunzevitzky, N.J.; et al. Magnetic field-guided cell delivery with nanoparticle-loaded human corneal endothelial cells. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Hoppenreijs, V.P.T.; Pels, E.; Vrensen, G.F.J.M.; Treffers, W.F. Corneal endothelium and growth factors. Surv. Ophthalmol. 1996, 41, 155–164. [Google Scholar] [CrossRef]
- Pipparelli, A.; Arsenijevic, Y.; Thuret, G.; Gain, P.; Nicolas, M.; Majo, F. Rock inhibitor enhances adhesion and wound healing of human corneal endothelial cells. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.J.; Zhao, J.; Hu, X.Z.; Ma, X.Y.; Zhang, W.B.; Yang, C.Z. Therapeutic efficiency of tissue-engineered human corneal endothelium transplants on rabbit primary corneal endotheliopathy. J. Zhejiang Univ. Sci. B 2011, 12, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Ma, X.; Zhao, J.; Wen, Q.; Hu, X.; Yu, H.; Shi, W. Transplantation of tissue-engineered human corneal endothelium in cat models. Mol. Vis. 2013, 19, 400–407. [Google Scholar] [PubMed]
- Mohay, J.; Lange, T.M.; Soltau, J.B.; Wood, T.O.; McLaughlin, B.J. Transplantation of corneal endothelial cells using a cell carrier device. Cornea 1994, 13, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Mohay, J.; Wood, T.O.; McLaughlin, B.J. Long-term evaluation of corneal endothelial cell transplantation. Trans. Am. Ophthalmol. Soc. 1997, 95, 131–151. [Google Scholar] [PubMed]
- Hitani, K.; Yokoo, S.; Honda, N.; Usui, T.; Yamagami, S.; Amano, S. Transplantation of a sheet of human corneal endothelial cell in a rabbit model. Mol. Vis. 2008, 14, 1–9. [Google Scholar] [PubMed]
- Jumblatt, M.M.; Maurice, D.M.; McCulley, J.P. Transplantation of tissue-cultured corneal endothelium. Investig. Ophthalmol. Vis. Sci. 1978, 17, 1135–1141. [Google Scholar]
- Mimura, T.; Amano, S.; Usui, T.; Araie, M.; Ono, K.; Akihiro, H.; Yokoo, S.; Yamagami, S. Transplantation of corneas reconstructed with cultured adult human corneal endothelial cells in nude rats. Exp. Eye Res. 2004, 79, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T.; Yamagami, S.; Yokoo, S.; Usui, T.; Tanaka, K.; Hattori, S.; Irie, S.; Miyata, K.; Araie, M.; Amano, S. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2992–2997. [Google Scholar] [CrossRef] [PubMed]
- Insler, M.S.; Lopez, J.G. Transplantation of cultured human neonatal corneal endothelium. Curr. Eye Res. 1986, 5, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Insler, M.S.; Lopez, J.G. Heterologous transplantation versus enhancement of human corneal endothelium. Cornea 1991, 10, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Insler, M.S.; Lopez, J.G. Extended incubation times improve corneal endothelial cell transplantation success. Investig. Ophthalmol. Vis. Sci. 1991, 32, 1828–1836. [Google Scholar]
- Lai, J.Y.; Chen, K.H.; Hsiue, G.H. Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Transplantation 2007, 84, 1222–1232. [Google Scholar] [CrossRef] [PubMed]
- Proulx, S.; Bensaoula, T.; Nada, O.; Audet, C.; d’Arc Uwamaliya, J.; Devaux, A.; Allaire, G.; Germain, L.; Brunette, I. Transplantation of a tissue-engineered corneal endothelium reconstructed on a devitalized carrier in the feline model. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2686–2694. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N.; Sakamoto, Y.; Okumura, N.; Tsuchiya, H.; Torii, R.; Cooper, L.J.; Ban, Y.; Tanioka, H.; Kinoshita, S. Cultivated corneal endothelial transplantation in a primate: Possible future clinical application in corneal endothelial regenerative medicine. Cornea 2008, 27, S48–S55. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N.; Sakamoto, Y.; Okumura, N.; Okahara, N.; Tsuchiya, H.; Torii, R.; Cooper, L.J.; Ban, Y.; Tanioka, H.; Kinoshita, S. Cultivated corneal endothelial cell sheet transplantation in a primate model. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4519–4526. [Google Scholar] [CrossRef] [PubMed]
- Tchah, H. Heterologous corneal endothelial cell transplantation—Human corneal endothelial cell transplantation in lewis rats. J. Korean Med. Sci. 1992, 7, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.E.; Lloyd, S.A.; He, Y.G.; McCash, C.S. Extended life of human corneal endothelial cells transfected with the SV40 large T antigen. Investig. Ophthalmol. Vis. Sci. 1993, 34, 2112–2123. [Google Scholar]
- Bednarz, J.; Teifel, M.; Friedl, P.; Engelmann, K. Immortalization of human corneal endothelial cells using electroporation protocol optimized for human corneal endothelial and human retinal pigment epithelial cells. Acta Ophthalmol. Scand. 2000, 78, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, T.; Seko, Y.; Yokoi, T.; Makino, H.; Hatou, S.; Yamada, M.; Kiyono, T.; Umezawa, A.; Nishina, H.; Azuma, N. Establishment of functioning human corneal endothelial cell line with high growth potential. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Ryu, Y.H.; Ahn, J.I.; Park, J.K.; Kim, J.C. Characterization of immortalized human corneal endothelial cell line using HPV 16 E6/E7 on lyophilized human amniotic membrane. Korean J. Ophthalmol. 2006, 20, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Takeuchi, K.; Ozawa, Y.; Kohara, A.; Mizusawa, H. Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture. Vitro Cell. Dev. Biol. Anim. 2009, 45, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Han, Y.; Wu, B.; Fang, W. Altered cytoskeletal structures in transformed cells exhibiting obviously metastatic capabilities. Cell Res. 1990, 1, 141–151. [Google Scholar] [CrossRef]
- Fan, T.; Zhao, J.; Ma, X.; Xu, X.; Zhao, W.; Xu, B. Establishment of a continuous untransfected human corneal endothelial cell line and its biocompatibility to denuded amniotic membrane. Mol. Vis. 2011, 17, 469–480. [Google Scholar] [PubMed]
- Schmedt, T.; Chen, Y.; Nguyen, T.T.; Li, S.; Bonanno, J.A.; Jurkunas, U.V. Telomerase immortalization of human corneal endothelial cells yields functional hexagonal monolayers. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Mannagh, J.J.; Irving, A., Jr. Human corneal endothelium: Growth in tissue cultures. Arch. Ophthalmol. 1965, 74, 847–849. [Google Scholar] [CrossRef] [PubMed]
- Newsome, D.A.; Takasugi, M.; Kenyon, K.R.; Stark, W.F.; Opelz, G. Human corneal cells in vitro: Morphology and histocompatibility (HL-A) antigens of pure cell populations. Investig. Ophthalmol. 1974, 13, 23–32. [Google Scholar]
- Baum, J.L.; Niedra, R.; Davis, C.; Yue, B.Y.J.T. Mass culture of human corneal endothelial cells. Arch. Ophthalmol. 1979, 97, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Fabricant, R.N.; Alpar, A.J.; Centifanto, Y.M.; Kaufman, H.E. Epidermal growth factor receptors on corneal endothelium. Arch. Ophthalmol. 1981, 99, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.C.; Tripathi, B.J. Human trabecular endothelium, corneal endothelium, keratocytes, and scleral fibroblasts in primary cell culture. A comparative study of growth characteristics, morphology, and phagocytic activity by light and scanning electron microscopy. Exp. Eye Res. 1982, 35, 611–624. [Google Scholar] [CrossRef]
- Nayak, S.K.; Binder, P.S. The growth of endothelium from human corneal rims in tissue culture. Investig. Ophthalmol. Vis. Sci. 1984, 25, 1213–1216. [Google Scholar]
- Engelmann, K.; Böhnke, M.; Friedl, P. Isolation and long-term cultivation of human corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 1988, 29, 1656–1662. [Google Scholar]
- Yue, B.Y.; Sugar, J.; Gilboy, J.E.; Elvart, J.L. Growth of human corneal endothelial cells in culture. Investig. Ophthalmol. Vis. Sci. 1989, 30, 248–253. [Google Scholar]
- Lass, J.H.; Reinhart, W.J.; Skelnik, D.L.; Bruner, W.E.; Shockley, R.P.; Park, J.Y.; Hom, D.L.; Lindstrom, R.L. An in vitro and clinical comparison of corneal storage with chondroitin sulfate corneal storage medium with and without dextran. Ophthalmology 1990, 97, 96–103. [Google Scholar] [CrossRef]
- Engelmann, K.; Friedl, P. Optimization of culture conditions for human corneal endothelial cells. Vitro Cell. Dev. Biol. 1989, 25, 1065–1072. [Google Scholar] [CrossRef]
- Samples, J.R.; Binder, P.S.; Nayak, S.K. Propagation of human corneal endothelium in vitro effect of growth factors Exp. Eye Res. 1991, 52, 121–128. [Google Scholar] [CrossRef]
- Insler, M.S.; Lopez, J.G. Microcarrier cell culture of neonatal human corneal endothelium. Curr. Eye Res. 1990, 9, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, K.; Friedl, P. Growth of human corneal endothelial cells in a serum-reduced medium. Cornea 1995, 14, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Hoppenreijs, V.P.; Pels, E.; Vrensen, G.F.; Treffers, W.F. Basic fibroblast growth factor stimulates corneal endothelial cell growth and endothelial wound healing of human corneas. Investig. Ophthalmol. Vis. Sci. 1994, 35, 931–944. [Google Scholar]
- Blake, D.A.; Yu, H.; Young, D.L.; Caldwell, D.R. Matrix stimulates the proliferation of human corneal endothelial cells in culture. Investig. Ophthalmol. Vis. Sci. 1997, 38, 1119–1129. [Google Scholar]
- Bednarz, J.; Rodokanaki-von Schrenck, A.; Engelmann, K. Different characteristics of endothelial cells from central and peripheral human cornea in primary culture and after subculture. Vitro Cell. Dev. Biol. Anim. 1998, 34, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Schonthal, A.H.; Hwang, J.J.; Stevenson, D.; Trousdale, M.D. Expression and activity of cell cycle-regulatory proteins in normal and transformed corneal endothelial cells. Exp. Eye Res. 1999, 68, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Azar, D.; Joyce, N.C. Transplantation of adult human corneal endothelium ex vivo: A morphologic study. Cornea 2001, 20, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, K.; Bednarz, J.; Schafer, H.J.; Friedl, P. Isolation and characterization of a mouse monoclonal antibody against human corneal endothelial cells. Exp. Eye Res. 2001, 73, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Miyata, K.; Drake, J.; Osakabe, Y.; Hosokawa, Y.; Hwang, D.; Soya, K.; Oshika, T.; Amano, S. Effect of donor age on morphologic variation of cultured human corneal endothelial cells. Cornea 2001, 20, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Orwin, E.J.; Hubel, A. In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix. Tissue Eng. 2000, 6, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Mertens, S.; Bednarz, J.; Richard, G.; Engelmann, K. Effect of perfluorodecalin on human retinal pigment epithelium and human corneal endothelium in vitro. Graefes Arch. Clin. Exp. Ophthalmol. 2000, 238, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Amano, S. Transplantation of cultured human corneal endothelial cells. Cornea 2003, 22, S66–S74. [Google Scholar] [CrossRef] [PubMed]
- Ishino Y, S.Y.; Nakamura, T.; Connon, C.J.; Rigby, H.; Fullwood, N.J.; Kinoshita, S. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Investig. Ophthalmol. Vis. Sci. 2004, 45, 800–806. [Google Scholar] [CrossRef]
- Zhu, C.; Joyce, N.C. Proliferative response of corneal endothelial cells from young and older donors. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1743–1751. [Google Scholar] [CrossRef]
- Joyce, N.C.; Zhu, C.C. Human corneal endothelial cell proliferation: Potential for use in regenerative medicine. Cornea 2004, 23, S8–S19. [Google Scholar] [CrossRef] [PubMed]
- Amano, S.; Mimura, T.; Yamagami, S.; Osakabe, Y.; Miyata, K. Properties of corneas reconstructed with cultured human corneal endothelial cells and human corneal stroma. Jpn. J. Ophthalmol. 2005, 49, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Yokoo, S.; Yamagami, S.; Yanagi, Y.; Uchida, S.; Mimura, T.; Usui, T.; Amano, S. Human corneal endothelial cell precursors isolated by sphere-forming assay. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1626–1631. [Google Scholar] [CrossRef] [PubMed]
- Konomi, K.; Zhu, C.; Harris, D.; Joyce, N.C. Comparison of the proliferative capacity of human corneal endothelial cells from the central and peripheral areas. Investig. Ophthalmol. Vis. Sci. 2005, 46, 4086–4091. [Google Scholar] [CrossRef] [PubMed]
- Sumide, T.; Nishida, K.; Yamato, M.; Ide, T.; Hayashida, Y.; Watanabe, K.; Yang, J.; Kohno, C.; Kikuchi, A.; Maeda, N.; et al. Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. FASEB J. 2006, 20, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, K.; Mimura, T.; Harris, D.L.; Joyce, N.C. Age differences in cyclin-dependent kinase inhibitor expression and RB hyperphosphorylation in human corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4330–4340. [Google Scholar] [CrossRef] [PubMed]
- Hsiue, G.H.; Lai, J.Y.; Chen, K.H.; Hsu, W.M. A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet. Transplantation 2006, 81, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.Y.; Lu, P.L.; Chen, K.H.; Tabata, Y.; Hsiue, G.H. Effect of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy. Biomacromolecules 2006, 7, 1836–1844. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M.; Zhu, C.; Senoo, T.; Obara, Y.; Joyce, N.C. P27kip1 sirna induces proliferation in corneal endothelial cells from young but not older donors. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4803–4809. [Google Scholar] [CrossRef] [PubMed]
- Joko, T.; Nanba, D.; Shiba, F.; Miyata, K.; Shiraishi, A.; Ohashi, Y.; Higashiyama, S. Effects of promyelocytic leukemia zinc finger protein on the proliferation of cultured human corneal endothelial cells. Mol. Vis. 2007, 13, 649–658. [Google Scholar] [PubMed]
- Li, W.; Sabater, A.L.; Chen, Y.T.; Hayashida, Y.; Chen, S.Y.; He, H.; Tseng, S.C. A novel method of isolation, preservation, and expansion of human corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 2007, 48, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Suh, L.H.; Zhang, C.; Chuck, R.S.; Stark, W.J.; Naylor, S.; Binley, K.; Chakravarti, S.; Jun, A.S. Cryopreservation and lentiviral-mediated genetic modification of human primary cultured corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3056–3061. [Google Scholar] [CrossRef] [PubMed]
- Yoeruek, E.; Spitzer, M.S.; Tatar, O.; Aisenbrey, S.; Bartz-Schmidt, K.U.; Szurman, P. Safety profile of bevacizumab on cultured human corneal cells. Cornea 2007, 26, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.T.; Hayashida, Y.; Kheirkhah, A.; He, H.; Chen, S.Y.; Tseng, S.C. Characterization and comparison of intercellular adherent junctions expressed by human corneal endothelial cells in vivo and in vitro. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3879–3886. [Google Scholar] [CrossRef] [PubMed]
- Ishino, Y.; Zhu, C.; Harris, D.L.; Joyce, N.C. Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells. Mol. Vis. 2008, 14, 61–70. [Google Scholar] [PubMed]
- Miyai, T.; Maruyama, Y.; Osakabe, Y.; Nejima, R.; Miyata, K.; Amano, S. Karyotype changes in cultured human corneal endothelial cells. Mol. Vis. 2008, 14, 942–950. [Google Scholar] [PubMed]
- Patel, S.V.; Bachman, L.A.; Hann, C.R.; Bahler, C.K.; Fautsch, M.P. Human corneal endothelial cell transplantation in a human ex vivo model. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2123–2131. [Google Scholar] [CrossRef] [PubMed]
- Engler, C.; Kelliher, C.; Speck, C.L.; Jun, A.S. Assessment of attachment factors for primary cultured human corneal endothelial cells. Cornea 2009, 28, 1050–1054. [Google Scholar] [CrossRef] [PubMed]
- Yoeruek, E.; Saygili, O.; Spitzer, M.S.; Tatar, O.; Bartz-Schmidt, K.U.; Szurman, P. Human anterior lens capsule as carrier matrix for cultivated human corneal endothelial cells. Cornea 2009, 28, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Joyce, N.C.; Harris, D.L. Decreasing expression of the G1-phase inhibitors, p21cip1 and p16INK4a, promotes division of corneal endothelial cells from older donors. Mol. Vis. 2010, 16, 897–906. [Google Scholar] [PubMed]
- Choi, J.S.; Williams, J.K.; Greven, M.; Walter, K.A.; Laber, P.W.; Khang, G.; Soker, S. Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials 2010, 31, 6738–6745. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Campolmi, N.; Ha Thi, B.M.; Dumollard, J.M.; Peoc’h, M.; Garraud, O.; Piselli, S.; Gain, P.; Thuret, G. Optimization of immunolocalization of cell cycle proteins in human corneal endothelial cells. Mol. Vis. 2011, 17, 3494–3511. [Google Scholar] [PubMed]
- Shima, N.; Kimoto, M.; Yamaguchi, M.; Yamagami, S. Increased proliferation and replicative lifespan of isolated human corneal endothelial cells with l-ascorbic acid 2-phosphate. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8711–8717. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Ebihara, N.; Shima, N.; Kimoto, M.; Funaki, T.; Yokoo, S.; Murakami, A.; Yamagami, S. Adhesion, migration, and proliferation of cultured human corneal endothelial cells by laminin-5. Investig. Ophthalmol. Vis. Sci. 2011, 52, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, R.; Hayashi, R.; Kimura, Y.; Tanaka, Y.; Kageyama, T.; Hara, S.; Tabata, Y.; Nishida, K. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng. A 2011, 17, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Song, J.S.; Smith, R.E.; Kay, E.P. Human corneal endothelial cells employ phosphorylation of p27(Kip1) at both Ser10 and Thr187 sites for FGF-2-mediated cell proliferation via PI 3-kinase. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8216–8223. [Google Scholar] [CrossRef] [PubMed]
- Hara, H.; Koike, N.; Long, C.; Piluek, J.; Roh, D.S.; SundarRaj, N.; Funderburgh, J.L.; Mizuguchi, Y.; Isse, K.; Phelps, C.J.; et al. Initial in vitro investigation of the human immune response to corneal cells from genetically engineered pigs. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5278–5286. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Kim, E.Y.; Kim, M.J.; Giegengack, M.; Khan, F.A.; Khang, G.; Soker, S. In vitro evaluation of the interactions between human corneal endothelial cells and extracellular matrix proteins. Biomed. Mater. 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.L.; Zhou, Q.; Du, F.; Wu, M.F.; Xu, G.T.; Sui, G.Q. Regulation of functional corneal endothelial cells isolated from sphere colonies by rho-associated protein kinase inhibitor. Exp. Ther. Med. 2013, 5, 433–437. [Google Scholar] [PubMed]
- Kopsachilis, N.; Tsinopoulos, I.; Tourtas, T.; Kruse, F.E.; Luessen, U.W. Descemet’s membrane substrate from human donor lens anterior capsule. Clin. Exp. Ophthalmol. 2012, 40, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Kimoto, M.; Shima, N.; Yamaguchi, M.; Amano, S.; Yamagami, S. Role of hepatocyte growth factor in promoting the growth of human corneal endothelial cells stimulated by l-ascorbic acid 2-phosphate. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7583–7589. [Google Scholar] [CrossRef] [PubMed]
- Levis, H.J.; Peh, G.S.; Toh, K.P.; Poh, R.; Shortt, A.J.; Drake, R.A.; Mehta, J.S.; Daniels, J.T. Plastic compressed collagen as a novel carrier for expanded human corneal endothelial cells for transplantation. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Okumura, N.; Hirano, H.; Numata, R.; Nakahara, M.; Ueno, M.; Hamuro, J.; Kinoshita, S.; Koizumi, N. Cell surface markers of functional phenotypic corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7610–7618. [Google Scholar] [CrossRef] [PubMed]
- Kopsachilis, N.; Tsaousis, K.T.; Tsinopoulos, I.T.; Welge-Luessen, U. Air toxicity for primary human-cultured corneal endothelial cells: An in vitro model. Cornea 2013, 32, e31–e35. [Google Scholar] [CrossRef] [PubMed]
- Peh, G.S.; Toh, K.P.; Ang, H.P.; Seah, X.Y.; George, B.L.; Mehta, J.S. Optimization of human corneal endothelial cell culture: Density dependency of successful cultures in vitro. BMC Res. Notes 2013, 6. [Google Scholar] [CrossRef] [PubMed]
- Cheong, Y.K.; Ngoh, Z.X.; Peh, G.S.; Ang, H.P.; Seah, X.Y.; Chng, Z.; Colman, A.; Mehta, J.S.; Sun, W. Identification of cell surface markers glypican-4 and CD200 that differentiate human corneal endothelium from stromal fibroblasts. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4538–4547. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Mehra, R.; Lee, S.E.; Roh, D.S.; Long, C.; Funderburgh, J.L.; Ayares, D.L.; Cooper, D.K.; Hara, H. Comparison of proliferative capacity of genetically-engineered pig and human corneal endothelial cells. Ophthalmic Res. 2013, 49, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, M.; Okumura, N.; Kay, E.P.; Hagiya, M.; Imagawa, K.; Hosoda, Y.; Kinoshita, S.; Koizumi, N. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.J.; Wang, E.F.; Ismail, S.; McGhee, J.J.; Sherwin, T. Sphere-forming cells from peripheral cornea demonstrate polarity and directed cell migration. Cell Biol. Int. 2013, 37, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Chng, Z.; Peh, G.S.; Herath, W.B.; Cheng, T.Y.; Ang, H.P.; Toh, K.P.; Robson, P.; Mehta, J.S.; Colman, A. High throughput gene expression analysis identifies reliable expression markers of human corneal endothelial cells. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Numata, R.; Okumura, N.; Nakahara, M.; Ueno, M.; Kinoshita, S.; Kanematsu, D.; Kanemura, Y.; Sasai, Y.; Koizumi, N. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Giasson, C.J.; Deschambeault, A.; Carrier, P.; Germain, L. Adherens junction proteins are expressed in collagen corneal equivalents produced in vitro with human cells. Mol. Vis. 2014, 20, 386–394. [Google Scholar] [PubMed]
- Choi, J.S.; Kim, E.Y.; Kim, M.J.; Khan, F.A.; Giegengack, M.; D’Agostino, R., Jr.; Criswell, T.; Khang, G.; Soker, S. Factors affecting successful isolation of human corneal endothelial cells for clinical use. Cell Transplant. 2014, 23, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Choi, J.S.; Wang, Z.; Skardal, A.; Giegengack, M.; Soker, S. Heparin-modified gelatin scaffolds for human corneal endothelial cell transplantation. Biomaterials 2014, 35, 4005–4014. [Google Scholar] [CrossRef] [PubMed]
- Ha Thi, B.M.; Campolmi, N.; He, Z.; Pipparelli, A.; Manissolle, C.; Thuret, J.Y.; Piselli, S.; Forest, F.; Peoc’h, M.; Garraud, O.; et al. Microarray analysis of cell cycle gene expression in adult human corneal endothelial cells. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.; Muhammad, R.; Peh, G.S.; Mehta, J.S.; Yim, E.K. Micro- and nanotopography with extracellular matrix coating modulate human corneal endothelial cell behavior. Acta Biomater. 2014, 10, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, R.; Peh, G.S.; Adnan, K.; Law, J.B.; Mehta, J.S.; Yim, E.K. Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells. Acta Biomater. 2015, 19, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Okumura, N.; Kakutani, K.; Numata, R.; Nakahara, M.; Schlotzer-Schrehardt, U.; Kruse, F.; Kinoshita, S.; Koizumi, N. Laminin-511 and -521 enable efficient in vitro expansion of human corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2933–2942. [Google Scholar] [CrossRef] [PubMed]
- Vianna, L.M.; Kallay, L.; Toyono, T.; Belfort, R., Jr.; Holiman, J.D.; Jun, A.S. Use of human serum for human corneal endothelial cell culture. Br. J. Ophthalmol. 2015, 99, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Peh, G.S.; Chng, Z.; Ang, H.P.; Cheng, T.Y.; Adnan, K.; Seah, X.Y.; George, B.L.; Toh, K.P.; Tan, D.T.; Yam, G.H.; et al. Propagation of human corneal endothelial cells: A novel dual media approach. Cell Transplant. 2015, 24, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Hyldahl, L. Primary cell cultures from human embryonic corneas. J. Cell Sci. 1984, 66, 343–351. [Google Scholar] [PubMed]
- Konomi, K.; Joyce, N.C. Age and topographical comparison of telomere lengths in human corneal endothelial cells. Mol. Vis. 2007, 13, 1251–1258. [Google Scholar] [PubMed]
- Mimura, T.; Joyce, N.C. Replication competence and senescence in central and peripheral human corneal endothelium. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wang, Y.; Xie, L.; Zang, X.; Yin, H. Expression of senescence-related genes in human corneal endothelial cells. Mol. Vis. 2008, 14, 161–170. [Google Scholar] [PubMed]
- Gao, Y.; Zhou, Q.; Qu, M.; Yang, L.; Wang, Y.; Shi, W. In vitro culture of human fetal corneal endothelial cells. Graefe Arch. Clin. Exp. Ophthalmol. 2011, 249, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.W.; Kim, J.J.; Hyon, J.Y.; Chung, E.S.; Chung, T.Y.; Yi, K.; Wee, W.R.; Shin, Y.J. Stemness characteristics of human corneal endothelial cells cultured in various media. Eye Contact Lens 2015, 41, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Amano, S.; Yamagami, S.; Mimura, T.; Uchida, S.; Yokoo, S. Corneal stromal and endothelial cell precursors. Cornea 2006, 25, S73–S77. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T.; Yamagami, S.; Yokoo, S.; Usui, T.; Amano, S. Selective isolation of young cells from human corneal endothelium by the sphere-forming assay. Tissue Eng. Part C Methods 2010, 16, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Rajasekhar, V.K.; Begemann, M. Concise review: Roles of polycomb group proteins in development and disease: A stem cell perspective. Stem Cells 2007, 25, 2498–2510. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.Y.; Sheridan, C.; Grierson, I.; Mason, S.; Kearns, V.; Lo, A.C.; Wong, D. Progenitors for the corneal endothelium and trabecular meshwork: A potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J. Biomed. Biotechnol. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pang, K.; Wu, X. Isolation and transplantation of corneal endothelial cell-like cells derived from in vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2014, 23, 1340–1354. [Google Scholar] [CrossRef] [PubMed]
- Hatou, S.; Yoshida, S.; Higa, K.; Miyashita, H.; Inagaki, E.; Okano, H.; Tsubota, K.; Shimmura, S. Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and wnt/beta-catenin signaling. Stem Cells Dev. 2013, 22, 828–839. [Google Scholar] [CrossRef] [PubMed]
- Joyce, N.C.; Harris, D.L.; Markov, V.; Zhang, Z.; Saitta, B. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol. Vis. 2012, 18, 547–564. [Google Scholar] [PubMed]
- Dai, Y.; Guo, Y.; Wang, C.; Liu, Q.; Yang, Y.; Li, S.; Guo, X.; Lian, R.; Yu, R.; Liu, H.; et al. Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Fu, Y.; Lu, W.; Fan, X. Bone marrow-derived endothelial progenitor cells: A promising therapeutic alternative for corneal endothelial dysfunction. Cells Tissues Organs 2011, 193, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Ju, C.; Zhang, K.; Wu, X. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Johnson, D.H.; Bourne, W.M.; Campbell, R.J. The ultrastructure of Descemet’s membrane. I. Changes with age in normal corneas. Arch. Ophthalmol. 1982, 100, 1942–1947. [Google Scholar] [CrossRef] [PubMed]
- Bayyoud, T.; Thaler, S.; Hofmann, J.; Maurus, C.; Spitzer, M.S.; Bartz-Schmidt, K.U.; Szurman, P.; Yoeruek, E. Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr. Eye Res. 2012, 37, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Yoeruek, E.; Bayyoud, T.; Maurus, C.; Hofmann, J.; Spitzer, M.S.; Bartz-Schmidt, K.U.; Szurman, P. Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Acta Ophthalmol 2012, 90, e125–e131. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, J.; Oshikata-Miyazaki, A.; Yokoo, S.; Yamagami, S.; Takezawa, T.; Amano, S. Development and evaluation of porcine atelocollagen vitrigel membrane with a spherical curve and transplantable artificial corneal endothelial grafts. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4975–4981. [Google Scholar] [CrossRef] [PubMed]
- Ide, T.; Nishida, K.; Yamato, M.; Sumide, T.; Utsumi, M.; Nozaki, T.; Kikuchi, A.; Okano, T.; Tano, Y. Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 2006, 27, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.Y.; Chen, K.H.; Hsu, W.M.; Hsiue, G.H.; Lee, Y.H. Bioengineered human corneal endothelium for transplantation. Arch. Ophthalmol. 2006, 124, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Chikama, T.; Nakamura, M.; Nishida, T. Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea 1999, 18, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.J.; Pires, R.T.; Tseng, S.C. Amniotic membrane transplantation for severe neurotrophic corneal ulcers. Br. J. Ophthalmol. 2000, 84, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Kubo, M.; Sonoda, Y.; Muramatsu, R.; Usui, M. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1539–1546. [Google Scholar]
- Wencan, W.; Mao, Y.; Wentao, Y.; Fan, L.; Jia, Q.; Qinmei, W.; Xiangtian, Z. Using basement membrane of human amniotic membrane as a cell carrier for cultivated cat corneal endothelial cell transplantation. Curr. Eye Res. 2007, 32, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Utheim, T.P.; Lyberg, T.; Raeder, S. The culture of limbal epithelial cells. Methods Mol. Biol. 2013, 1014, 103–129. [Google Scholar] [PubMed]
- Proulx, S.; Audet, C.; Uwamaliya, J.; Deschambeault, A.; Carrier, P.; Giasson, C.J.; Brunette, I.; Germain, L. Tissue engineering of feline corneal endothelium using a devitalized human cornea as carrier. Tissue Eng. Part A 2009, 15, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Funamoto, S.; Sasaki, S.; Honda, T.; Hattori, S.; Nam, K.; Kimura, T.; Mochizuki, M.; Fujisato, T.; Kobayashi, H.; et al. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 2010, 31, 3941–3948. [Google Scholar] [CrossRef] [PubMed]
- Madden, P.W.; Lai, J.N.; George, K.A.; Giovenco, T.; Harkin, D.G.; Chirila, T.V. Human corneal endothelial cell growth on a silk fibroin membrane. Biomaterials 2011, 32, 4076–4084. [Google Scholar] [CrossRef] [PubMed]
- Menashi, S.; Vlodavsky, I.; Ishai-Michaeli, R.; Legrand, Y.; Fridman, R. The extracellular matrix produced by bovine corneal endothelial cells contains progelatinase a. FEBS Lett. 1995, 361, 61–64. [Google Scholar] [CrossRef]
- Astete, C.E.; Sabliov, C.M. Synthesis and characterization of plga nanoparticles. J. Biomater. Sci. Polym. Ed. 2006, 17, 247–289. [Google Scholar] [CrossRef] [PubMed]
- Hadlock, T.; Singh, S.; Vacanti, J.P.; McLaughlin, B.J. Ocular cell monolayers cultured on biodegradable substrates. Tissue Eng. 1999, 5, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Haghjou, N.; Soheilian, M.; Abdekhodaie, M.J. Sustained release intraocular drug delivery devices for treatment of uveitis. J. Ophthal. Vis. Res. 2011, 6, 317–329. [Google Scholar]
- Wadood, A.C.; Armbrecht, A.M.; Aspinall, P.A.; Dhillon, B. Safety and efficacy of a dexamethasone anterior segment drug delivery system in patients after phacoemulsification. J. Cataract Refract. Surg. 2004, 30, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, W.; Han, B.; Wei, X.; Yang, C. Preparation and properties of a chitosan-based carrier of corneal endothelial cells. J. Mater. Sci. Mater. Med. 2008, 19, 3611–3619. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Wang, I.J.; Lu, J.N.; Young, T.H. Novel chitosan-polycaprolactone blends as potential scaffold and carrier for corneal endothelial transplantation. Mol. Vis. 2012, 18, 255–264. [Google Scholar] [PubMed]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navaratnam, J.; Utheim, T.P.; Rajasekhar, V.K.; Shahdadfar, A. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium. J. Funct. Biomater. 2015, 6, 917-945. https://doi.org/10.3390/jfb6030917
Navaratnam J, Utheim TP, Rajasekhar VK, Shahdadfar A. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium. Journal of Functional Biomaterials. 2015; 6(3):917-945. https://doi.org/10.3390/jfb6030917
Chicago/Turabian StyleNavaratnam, Jesintha, Tor P. Utheim, Vinagolu K. Rajasekhar, and Aboulghassem Shahdadfar. 2015. "Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium" Journal of Functional Biomaterials 6, no. 3: 917-945. https://doi.org/10.3390/jfb6030917
APA StyleNavaratnam, J., Utheim, T. P., Rajasekhar, V. K., & Shahdadfar, A. (2015). Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium. Journal of Functional Biomaterials, 6(3), 917-945. https://doi.org/10.3390/jfb6030917