Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Core/Shell Spherical Fe/Fe3O4 Nanoparticles
2.2. Preparation of Hexagonal and Cubic Fe3O4 Nanoparticles
2.3. Experimental Waveguide Testbed
2.4. Magnetic Nanoparticles Test Groups
2.5. Contributions of E- and H-Fields to Microwave Heating
2.6. Microwave Heating Enhancements with Practical Interstitial Applicators
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P.M. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497. [Google Scholar] [CrossRef]
- Dahl, O.; Dalene, R.; Schem, B.C.; Mella, O. Status of Clinical Hyperthermia. Acta Oncol. 1999, 38, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Dewhirst, M.W.; Vujaskovic, Z.; Jones, E.; Thrall, D. Re-setting the biologic rationale for thermal therapy. Int. J. Hyperth. 2005, 21, 779–790. [Google Scholar] [CrossRef]
- Hildebrandt, B.; Wust, P. The biologic rationale of hyperthermia. Cancer Treat. Res. 2007, 134, 171–184. [Google Scholar] [PubMed]
- Dewey, W.C. Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperth. 2009, 25, 3–20. [Google Scholar] [CrossRef]
- Hurwitz, M.D. Today’s thermal therapy: Not your father’s hyperthermia: Challenges and opportunities in application of hyperthermia for the 21st century cancer patient. Am. J. Clin. Oncol. 2010, 33, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Diederich, C.J.; Hynynen, K. Ultrasound technology for hyperthermia. Ultrasound Med. Biol. 1999, 25, 871–887. [Google Scholar] [CrossRef]
- Lee, R.J.; Buchanan, M.; Kleine, L.J.; Hynynen, K. Arrays of multielement ultrasound applicators for interstitial hyperthermia. IEEE Trans. Biomed. Eng. 1999, 46, 880–890. [Google Scholar] [CrossRef]
- Emami, B.; Stauffer, P.; Dewhirst, M.W.; Prionas, S.; Ryan, T.; Corry, P.; Herman, T.; Kapp, D.S.; Myerson, R.J.; Samulski, T.; et al. RTOG quality assurance guidelines for interstitial hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 1117–1124. [Google Scholar] [CrossRef]
- LeVeen, H.H.; Ahmed, N.; Piccone, V.A.; Shugaar, S.; Falk, G. Radio-Frequency Therapy: Clinical Experience. Ann. N. Y. Acad. Sci. 1980, 335, 362–371. [Google Scholar] [CrossRef]
- Storm, F.K.; Elliott, R.S.; Harrison, W.H.; Morton, D.L. Clinical RF Hyperthermia by Magnetic-Loop Induction: A New Approach to Human Cancer Therapy. IEEE Trans. Microw. Theory Tech. 1982, 30, 1149–1158. [Google Scholar] [CrossRef]
- Saito, K.; Yoshimura, H.; Ito, K.; Aoyagi, Y.; Horita, H. Clinical trials of interstitial microwave hyperthermia by use of coaxial-slot antenna with two slots. IEEE Trans. Microw. Theory Tech. 2004, 52, 1987–1991. [Google Scholar] [CrossRef]
- Lindholm, C.-E.; Kjellen, E.; Nilsson, P.; Hertzman, S. Microwave-induced hyperthermia and radiotherapy in human superficial tumours: Clinical results with a comparative study of combined treatment versus radiotherapy alone. Int. J. Hyperth. 1987, 3, 393–411. [Google Scholar] [CrossRef]
- Chou, C.-K. Application of electromagnetic energy in cancer treatment. IEEE Trans. Instrum. Meas. 1998, 37, 547–551. [Google Scholar] [CrossRef]
- Melamed, J.R.; Edelstein, R.S.; Day, E.S. Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy. ACS Nano 2015, 9, 6–11. [Google Scholar] [CrossRef]
- Ebbini, E.S.; ter Haar, G. Ultrasound-guided therapeutic focused ultrasound: Current status and future directions. Int. J. Hyperth. 2015, 31, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Ter Haar, G. Heat and sound: Focused ultrasound in the clinic. Int. J. Hyperth. 2015, 31, 223–224. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.; Gellermann, J.; Nadobny, J.; Wust, P.; Seebass, M. Electromagnetic phased arrays for regional hyperthermia: Optimal frequency and antenna arrangement. Int. J. Hyperth. 2001, 17, 321–336. [Google Scholar]
- Petrovich, Z.; Emami, B.; Astrahan, M.; Langholz, B.; Luxton, G. Regional hyperthermia with BSD-1000 annular phased array in the management of recurrent deep seated malignant tumors. Strahlenther. Onkol. 1987, 163, 430–433. [Google Scholar]
- Lin, J.C.; Wang, J.Y. Interstitial microwave antennas for thermal therapy. Int. J. Hyperth. 1987, 3, 37–47. [Google Scholar] [CrossRef]
- Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P.M. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497. [Google Scholar] [CrossRef]
- Gazelle, G.S.; Goldberg, S.N.; Solbiati, L.; Livraghi, T. Tumor Ablation with Radio-frequency Energy. Radiology 2000, 217, 633–646. [Google Scholar] [CrossRef]
- Andreano, A.; Huang, Y.; Meloni, M.F.; Lee, F.T.; Brace, C. Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue. Med. Phys. 2010, 37, 2967–2973. [Google Scholar] [CrossRef]
- Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664. [Google Scholar] [CrossRef]
- Elliott, A.M.; Shetty, A.M.; Wang, J.; Hazle, J.D.; Jason Stafford, R. Use of gold nanoshells to constrain and enhance laser thermal therapy of metastatic liver tumours. Int. J. Hyperth. 2010, 26, 434–440. [Google Scholar] [CrossRef]
- Mashal, A.; Sitharaman, B.; Li, X.; Avti, P.K.; Sahakian, A.V.; Booske, J.H.; Hagness, S.C. Toward Carbon-Nanotube-Based Theranostic Agents for Microwave Detection and Treatment of Breast Cancer: Enhanced Dielectric and Heating Response of Tissue-Mimicking Materials. IEEE Trans. Biomed. Eng. 2010, 57, 1831–1834. [Google Scholar] [CrossRef]
- Sun, M.; Kiourti, A.; Wang, H.; Zhao, S.; Zhao, G.; Lu, X.; Volakis, J.L.; He, X. Enhanced Microwave Hyperthermia of Cancer Cells with Fullerene. Mol. Pharm. 2016, 13, 2184–2192. [Google Scholar] [CrossRef]
- York, J.N.; Albanese, C.; Rodriguez, O.; Le, Y.-C.; Ackun-Farmmer, M.; Van Keuren, E. The effects of particle shape and size on T2 relaxation in magnetic resonance imaging. J. Biomed. Nanotechnol. 2014, 10, 3392–3396. [Google Scholar] [CrossRef]
- Etheridge, M.L.; Bischof, J.C. Optimizing magnetic nanoparticle based thermal therapies within the physical limits of heating. Ann. Biomed. Eng. 2013, 41, 78–88. [Google Scholar] [CrossRef]
- Petryk, A.A.; Giustini, A.J.; Gottesman, R.E.; Trembly, B.S.; Hoopes, P.J. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model. Int. J. Hyperth. 2013, 29, 819–827. [Google Scholar] [CrossRef]
- Attaluri, A.; Kandala, S.K.; Wabler, M.; Zhou, H.; Cornejo, C.; Armour, M.; Hedayati, M.; Zhang, Y.; DeWeese, T.L.; Herman, C.; et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. Int. J. Hyperth. 2015, 31, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Ren, J.; Li, J.; Leng, J.; Qu, Y.; Lin, C.; Shi, D. Magnetothermally responsive star-block copolymeric micelles for controlled drug delivery and enhanced thermo-chemotherapy. Nanoscale 2015, 7, 9655–9663. [Google Scholar] [CrossRef] [PubMed]
- Malekar, S.A.; Sarode, A.L.; Bach, A.C.; Bose, A.; Bothun, G.; Worthen, D.R. Radio Frequency-Activated Nanoliposomes for Controlled Combination Drug Delivery. AAPS PharmSciTech 2015, 16, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef] [PubMed]
- Abenojar, E.C.; Wickramasinghe, S.; Bas-Concepcion, J.; Samia, A.C.S. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog. Nat. Sci. Mater. Int. 2016, 26, 440–448. [Google Scholar] [CrossRef]
- Bauer, L.M.; Situ, S.F.; Griswold, M.A.; Samia, A.C.S. High-performance iron oxide nanoparticles for magnetic particle imaging—Guided hyperthermia (hMPI). Nanoscale 2016, 8, 12162–12169. [Google Scholar] [CrossRef]
- Nemati, Z.; Alonso, J.; Martinez, L.M.; Khurshid, H.; Garaio, E.; Garcia, J.A.; Phan, M.H.; Srikanth, H. Enhanced Magnetic Hyperthermia in Iron Oxide Nano-Octopods: Size and Anisotropy Effects. J. Phys. Chem. C 2016, 120, 8370–8379. [Google Scholar] [CrossRef]
- Lacroix, L.-M.; Frey Huls, N.; Ho, D.; Sun, X.; Cheng, K.; Sun, S. Stable Single-Crystalline Body Centered Cubic Fe Nanoparticles. Nano Lett. 2011, 11, 1641–1645. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shrestha, T.B.; Basel, M.T.; Pyle, M.; Toledo, Y.; Konecny, A.; Thapa, P.; Ikenberry, M.; Hohn, K.L.; Chikan, V.; et al. Hexagonal magnetite nanoprisms: Preparation, characterization and cellular uptake. J. Mater. Chem. B 2015, 3, 4647–4653. [Google Scholar] [CrossRef]
- Kim, D.; Lee, N.; Park, M.; Kim, B.H.; An, K.; Hyeon, T. Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 2009, 131, 454–455. [Google Scholar] [CrossRef]
- Basel, M.T.; Balivada, S.; Wang, H.; Shrestha, T.B.; Seo, G.M.; Pyle, M.; Abayaweera, G.; Dani, R.; Koper, O.B.; Tamura, M.; et al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int. J. Nanomedicine 2012, 7, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shrestha, T.B.; Basel, M.T.; Dani, R.K.; Seo, G.M.; Balivada, S.; Pyle, M.; Prock, H.; Koper, O.; Thapa, P.; et al. Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages. Beilstein J. Nanotechnol. 2012, 3, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hodgson, J.; Shrestha, T.B.; Thapa, P.S.; Moore, D.; Wu, X.; Ikenberry, M.; Troyer, D.L.; Wang, D.; Hohn, K.L.; et al. Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst. Beilstein J. Nanotechnol. 2014, 5, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Udukala, D.N.; Samarakoon, T.N.; Basel, M.T.; Kalita, M.; Abayaweera, G.; Manawadu, H.; Malalasekera, A.; Robinson, C.; Villanueva, D.; et al. Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases. Photochem. Photobiol. Sci. 2014, 13, 231–240. [Google Scholar] [CrossRef] [PubMed]
- James, B.J.; Strohbehn, J.W.; Mechling, J.A.; Trembly, B.S. The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia. Int. J. Hyperth. 1989, 5, 733–747. [Google Scholar] [CrossRef]
- Haemmerich, D.; Schutt, D.J.; dos Santos, I.; Webster, J.G.; Mahvi, D.M. Measurement of temperature-dependent specific heat of biological tissues. Physiol. Meas. 2005, 26, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, P.R.; Rossetto, F.; Prakash, M.; Neuman, D.G.; Lee, T. Phantom and animal tissues for modelling the electrical properties of human liver. Int. J. Hyperth. 2003, 19, 89–101. [Google Scholar] [CrossRef]
- Teng, W.; Liu, K.W.; Lin, C.C.; Jeng, W.J.; Chen, W.T.; Sheen, I.S.; Lin, C.Y.; Lin, S.M. Insufficient ablative margin determined by early computed tomography may predict the recurrence of hepatocellular carcinoma after radiofrequency ablation. Liver Cancer 2015, 4, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, M.; Gneveckow, U.; Thiesen, B.; Taymoorian, K.; Cho, C.H.; Waldöfner, N.; Scholz, R.; Jordan, A.; Loening, S.A.; Wust, P. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol. 2007, 52, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.A.; Cook, J.R.; Emelianov, S.Y. Ferrimagnetic nanoparticles enhance microwave heating for tumor hyperthermia therapy. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 2751–2754. [Google Scholar]
Sample | MNP Concentration (mg/mL) | Heating Rate (°C/s) | p-Value |
---|---|---|---|
Cubic | 20 | 0.3 ± 0.03 | 0.9955 |
10 | 0.3 ± 0.01 | 0.9946 | |
Hexagonal | 20 | 0.81 ± 0.02 | 0.0009 |
10 | 0.58 ± 0.02 | 0.0745 | |
5 | 0.51 ± 0.03 | 0.4197 | |
10 nm spherical | 20 | 1.61 ± 0.03 | <0.0001 |
10 | 1.04 ± 0.02 | <0.0001 | |
5 | 0.78 ± 0.02 | 0.0015 | |
2.5 | 0.53 ± 0.01 | 0.2702 | |
20 nm spherical | 20 | 1.38 ± 0.1 | <0.0001 |
10 | 0.92 ± 0.01 | 0.0003 | |
5 | 0.72 ± 0.01 | 0.0038 | |
2.5 | 0.56 ± 0.02 | 0.1269 | |
Control | 0 | 0.5 ± 0.1 |
Structure | Frequency (GHz) | Heating Rate (°C/s) | p-Value |
---|---|---|---|
Cubic | 2.0 | 0.38 ± 0.02 | >0.9999 |
2.45 | 0.3 ± 0.01 | 0.9946 | |
2.6 | 0.4 ± 0.01 | 0.9237 | |
Hexagonal | 2.0 | 0.81 ± 0.08 | 0.0002 |
2.45 | 0.58 ± 0.02 | 0.0745 | |
2.6 | 0.48 ± 0.01 | <0.0001 | |
10 nm Spherical | 2.0 | 1.7 ± 0.04 | <0.0001 |
2.45 | 1.04 ± 0.02 | <0.0001 | |
2.6 | 0.77 ± 0.02 | <0.0001 | |
20 nm Spherical | 2.0 | 1.23 ± 0.01 | <0.0001 |
2.45 | 0.92 ± 0.01 | 0.0003 | |
2.6 | 0.84 ± 0.01 | <0.0001 | |
Control | 2.0 | 0.47 ± 0.02 | |
2.45 | 0.5 ± 0.1 | ||
2.6 | 0.41 ± 0.01 |
Structure | Distance (mm) | Average Temperature Rise (°C) | p-Value |
---|---|---|---|
10 nm Spherical | 5 | 35.2 ± 1.3 | 0.0002 |
10 | 25.5 ± 5.1 | 0.0041 | |
15 | 16.2 ± 3.2 | 0.001 | |
20 | 5.8 ± 1.3 | 0.0077 | |
20 nm Spherical | 5 | 39.02 ± 3.4 | <0.0001 |
10 | 21.2 ± 2.6 | 0.0016 | |
15 | 7.74 ± 1.4 | 0.0413 | |
20 | 3.7 ± 0.4 | 0.3828 | |
Control | 5 | 25 ± 2.7 | |
10 | 14.7 ± 1 | ||
15 | 6.3 ± 0.5 | ||
20 | 3.6 ± 0.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McWilliams, B.T.; Wang, H.; Binns, V.J.; Curto, S.; Bossmann, S.H.; Prakash, P. Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia. J. Funct. Biomater. 2017, 8, 21. https://doi.org/10.3390/jfb8030021
McWilliams BT, Wang H, Binns VJ, Curto S, Bossmann SH, Prakash P. Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia. Journal of Functional Biomaterials. 2017; 8(3):21. https://doi.org/10.3390/jfb8030021
Chicago/Turabian StyleMcWilliams, Brogan T., Hongwang Wang, Valerie J. Binns, Sergio Curto, Stefan H. Bossmann, and Punit Prakash. 2017. "Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia" Journal of Functional Biomaterials 8, no. 3: 21. https://doi.org/10.3390/jfb8030021
APA StyleMcWilliams, B. T., Wang, H., Binns, V. J., Curto, S., Bossmann, S. H., & Prakash, P. (2017). Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia. Journal of Functional Biomaterials, 8(3), 21. https://doi.org/10.3390/jfb8030021