Light Trapping in Single Elliptical Silicon Nanowires
Abstract
:1. Introduction
2. Model and Methods
2.1. Model
2.2. Methods
2.2.1. The Normalized Electric Field (Er)
2.2.2. The Absorption Mode Profile (Pabs)
2.2.3. The Absorption Efficiency (Qabs)
2.2.4. The Photogeneration Rate (G)
2.2.5. The Ultimate Photocurrent (Jph)
2.2.6. The Photocurrent Enhancement Factor (PEF)
3. Results and Discussion
3.1. Light-Trapping Mechanism in Single Elliptical Nanowire (ENW)
3.1.1. The Absorption Efficiency (Qabs)
3.1.2. The Ultimate Photocurrent (Jph)
3.1.3. The Normalized Electric Field (Er)
3.1.4. The Absorption Mode Profile (Pabs)
3.1.5. The Photogeneration Rate (G)
3.2. The Light-Trapping Performance of Single ENWs
3.2.1. The Absorption Efficiency of Single ENWs
3.2.2. The ultimate photocurrent of Single ENWs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tian, B.; Zheng, X.; Kempa, T.J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C.M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kaushik, A.; Abolhassani, R.; Mishra, Y.K.; Kim, K.H.; Kumar, S. 1D semiconductor nanowires for energy conversion, harvesting and storage applications. Nano Energy 2020, 76, 104991. [Google Scholar] [CrossRef]
- Li, Z.; Tan, H.H.; Jagadish, C.; Fu, L. III–V Semiconductor Single Nanowire Solar Cells: A Review. Adv. Mater. Technol. 2018, 3, 1800005. [Google Scholar] [CrossRef]
- Kempa, T.J.; Day, R.W.; Kim, S.-K.; Park, H.-G.; Lieber, C.M. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 2013, 6, 719–733. [Google Scholar] [CrossRef] [Green Version]
- Christesen, J.D.; Zhang, X.; Pinion, C.W.; Celano, T.A.; Flynn, C.J.; Cahoon, J.F. Design principles for photovoltaic devices based on Si nanowires with axial or radial p–n junctions. Nano Lett. 2012, 12, 6024–6029. [Google Scholar] [CrossRef]
- Zhan, Y.; Li, X.; Li, Y. Numerical Simulation of Light-Trapping and Photoelectric Conversion in Single Nanowire Silicon Solar Cells. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1–8. [Google Scholar] [CrossRef]
- Tian, B.; Kempa, T.J.; Lieber, C.M. Single nanowire photovoltaics. Chem. Soc. Rev. 2009, 38, 16–24. [Google Scholar] [CrossRef]
- Tang, J.; Huo, Z.; Brittman, S.; Gao, H.; Yang, P. Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 2011, 6, 568–572. [Google Scholar] [CrossRef]
- Holm, J.V.; Jørgensen, H.I.; Krogstrup, P.; Nygård, J.; Liu, H.; Aagesen, M. Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon. Nat. Commun. 2013, 4, 1498. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Chen, X.; Yan, X.; Wei, W.; Zhang, Y.; Zhang, X. Absorption-Enhanced Ultra-Thin Solar Cells Based on Horizontally Aligned p–i–n Nanowire Arrays. Nanomaterials 2020, 10, 1111. [Google Scholar] [CrossRef]
- Chen, W.; Roca i Cabarrocas, P. Rational design of nanowire solar cells: From single nanowire to nanowire arrays. Nanotechnology 2019, 30, 194002. [Google Scholar] [CrossRef] [PubMed]
- Otnes, G.; Barrigón, E.; Sundvall, C.; Svensson, K.E.; Heurlin, M.; Siefer, G.; Samuelson, L.; Åberg, I.; Borgström, M.T. Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements. Nano Lett. 2018, 18, 3038–3046. [Google Scholar] [CrossRef] [PubMed]
- Song, K.-D.; Kempa, T.J.; Park, H.-G.; Kim, S.-K. Laterally assembled nanowires for ultrathin broadband solar absorbers. Opt. Express 2014, 22, A992–A1000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Pinion, C.W.; Christesen, J.D.; Flynn, C.J.; Celano, T.A.; Cahoon, J.F. Horizontal Silicon Nanowires With Radial p-n Junctions: A Platform for Unconventional Solar Cells. J. Phys. Chem. Lett. 2013, 4, 2002–2009. [Google Scholar] [CrossRef] [PubMed]
- Floris, F.; Fornasari, L.; Bellani, V.; Marini, A.; Banfi, F.; Marabelli, F.; Beltram, F.; Ercolani, D.; Battiato, S.; Sorba, L.; et al. Strong Modulations of Optical Reflectance in Tapered Core–Shell Nanowires. Materials 2019, 12, 3572. [Google Scholar] [CrossRef] [Green Version]
- Floris, F.; Fornasari, L.; Marini, A.; Bellani, V.; Banfi, F.; Roddaro, S.; Ercolani, D.; Rocci, M.; Beltram, F.; Cecchini, M. Self-Assembled InAs Nanowires as Optical Reflectors. Nanomaterials 2017, 7, 400. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Hazama, Y.; Reddy, A.; Watanabe, K.; Nakano, Y.; Sugiyama, M.; Akiyama, H. Modeling and design for low-cost multijunction solar cell via light-trapping rear texture technique: Applied in InGaP/GaAs/InGaAs triple junction. Prog. Photovolt. Res. Appl. 2020, 28, 251–265. [Google Scholar] [CrossRef]
- Peter Amalathas, A.; Alkaisi, M.M. Nanostructures for Light Trapping in Thin Film Solar Cells. Micromachines 2019, 10, 619. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Hao, H.; Li, J.; Shi, L.; Zhong, T.; Zhang, C.; Dong, J.; Xing, J.; Liu, H.; Zhang, Z. Light Trapping Effect in Perovskite Solar Cells by the Addition of Ag Nanoparticles, Using Textured Substrates. Nanomaterials 2018, 8, 815. [Google Scholar] [CrossRef] [Green Version]
- Martinsen, F.A.; Smeltzer, B.K.; Ballato, J.; Hawkins, T.; Jones, M.; Gibson, U.J. Light trapping in horizontally aligned silicon microwire solar cells. Opt. Express 2015, 23, A1463–A1471. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Thomann, I.; Park, J.; Kang, J.H.; Vasudev, A.P.; Brongersma, M.L. Light Trapping for Solar Fuel Generation with Mie Resonances. Nano Lett. 2014, 14, 1446–1452. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.J.; Gao, L.; Park, J.S.; Lee, Y.R.; Cocoran, C.J.; Nuzzo, R.G.; Chanda, D.; Rogers, J.A. Light Trapping in Ultrathin Monocrystalline Silicon Solar Cells. Adv. Energy Mater. 2013, 3, 1401–1406. [Google Scholar] [CrossRef]
- Rothemund, R.; Umundum, T.; Meinhardt, G.; Hingerl, K.; Fromherz, T.; Jantsch, W. Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings. Prog. Photovolt. Res. Appl. 2013, 21, 747–753. [Google Scholar] [CrossRef]
- Callahan, D.M.; Munday, J.N.; Atwater, H.A. Solar cell light trapping beyond the ray optic limit. Nano Lett. 2012, 12, 214–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Oh, J.I.; Shen, W.Z. Light Trapping in Single Coaxial Nanowires for Photovoltaic Applications. IEEE Electron. Device Lett. 2011, 32, 45–47. [Google Scholar] [CrossRef]
- Ferry, V.E.; Polman, A.; Atwater, H.A. Modeling light trapping in nanostructured solar cells. ACS Nano 2011, 5, 10055–10064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnett, E.; Yang, P. Light Trapping in Silicon Nanowire Solar Cells. Nano Lett. 2010, 10, 1082–1087. [Google Scholar] [CrossRef]
- Cao, L.; White, J.S.; Park, J.-S.; Schuller, J.A.; Clemens, B.M.; Brongersma, M.L. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 2009, 8, 643–647. [Google Scholar] [CrossRef]
- Cao, L.; Fan, P.; Vasudev, A.P.; White, J.S.; Yu, Z.; Cai, W.; Schuller, J.A.; Fan, S.; Brongersma, M.L. Semiconductor Nanowire Optical Antenna Solar Absorbers. Nano Lett. 2010, 10, 439–445. [Google Scholar] [CrossRef]
- Brönstrup, G.; Jahr, N.; Leiterer, C.; Csáki, A.; Fritzsche, W.; Christiansen, S. Optical properties of individual silicon nanowires for photonic devices. ACS Nano 2010, 4, 7113–7122. [Google Scholar] [CrossRef]
- Kim, S.; Cahoon, J.F. Geometric Nanophotonics: Light Management in Single Nanowires through Morphology. Acc. Chem. Res. 2019, 52, 3511–3520. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Kim, K.-H.; No, Y.-S. Spatially localized wavelength-selective absorption in morphology-modulated semiconductor nanowires. Opt. Express 2017, 25, 22750–22759. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Wu, K.; Li, X. Design of asymmetric nanovoid resonator for silicon-based single-nanowire solar absorbers. Nano Energy 2016, 27, 611–618. [Google Scholar] [CrossRef]
- Luo, S.; Yu, W.B.; He, Y.; Ouyang, G. Size-dependent optical absorption modulation of Si/Ge and Ge/Si core/shell nanowires with different cross-sectional geometries. Nanotechnology 2015, 26, 085702. [Google Scholar] [CrossRef]
- Kim, S.-K.; Song, K.-D.; Kempa, T.J.; Day, R.W.; Lieber, C.M.; Park, H.-G. Design of Nanowire Optical Cavities as Efficient Photon Absorbers. ACS Nano 2014, 8, 3707–3714. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K.; Day, R.W.; Cahoon, J.F.; Kempa, T.J.; Song, K.-D.; Park, H.-G.; Lieber, C.M. Tuning Light Absorption in Core/Shell Silicon Nanowire Photovoltaic Devices through Morphological Design. Nano Lett. 2012, 12, 4971–4976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempa, T.J.; Cahoon, J.F.; Kim, S.-K.; Day, R.W.; Bell, D.C.; Park, H.-G.; Lieber, C.M. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. USA 2012, 109, 1407–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Oh, J.I.; Shen, W.Z. Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires. Nanotechnology 2011, 22, 125705. [Google Scholar] [CrossRef]
- Liu, W.; Guo, X.; Xing, S.; Yao, H.; Wang, Y.; Bai, L.; Wang, Q.; Zhang, L.; Wu, D.; Zhang, Y.; et al. Off-Resonant Absorption Enhancement in Single Nanowires via Graded Dual-Shell Design. Nanomaterials 2020, 10, 1740. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Li, Z.; Gao, Q.; Li, Z.; Peng, K.; Li, L.; Mokkapati, S.; Vora, K.; Wu, J.; Zhang, G.; et al. Efficiency enhancement of axial junction InP single nanowire solar cells by dielectric coating. Nano Energy 2016, 28, 106–114. [Google Scholar] [CrossRef]
- Solanki, A.; Gentile, P.; Boutami, S.; Calvo, V.; Pauc, N. Dielectric Coating-Induced Absorption Enhancement in Si Nanowire Junctions. Adv. Opt. Mater. 2015, 3, 120–128. [Google Scholar] [CrossRef]
- Kim, S.-K.; Zhang, X.; Hill, D.J.; Song, K.-D.; Park, J.-S.; Park, H.-G.; Cahoon, J.F. Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas. Nano Lett. 2015, 15, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ferry, V.E.; Alivisatos, A.P.; Cao, L. Dielectric Core–Shell Optical Antennas for Strong Solar Absorption Enhancement. Nano Lett. 2012, 12, 3674–3681. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhan, Y.; Wang, C. Broadband enhancement of coaxial heterogeneous gallium arsenide single-nanowire solar cells. Prog. Photovolt. Res. Appl. 2015, 23, 628–636. [Google Scholar] [CrossRef]
- Yang, Z.; Cao, G.; Shang, A.; Lei, D.Y.; Zhang, C.; Gao, P.; Ye, J.; Li, X. Enhanced Photoelectrical Response of Hydrogenated Amorphous Silicon Single-Nanowire Solar Cells by Front-Opening Crescent Design. Nanoscale Res. Lett. 2016, 11, 233. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Li, X.; Lei, D.Y.; Shang, A.; Wu, S. Omnidirectional absorption enhancement of symmetry-broken crescent-deformed single-nanowire photovoltaic cells. Nano Energy 2015, 13, 9–17. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Shang, A.; Wu, S.; Zhan, Y.; Li, X. Improved optical absorption of silicon single-nanowire solar cells by off-axial core/shell design. Nano Energy 2015, 17, 233–240. [Google Scholar] [CrossRef]
- Shi, L.; Zhou, Z.; Huang, Z. The influence of silver core position on enhanced photon absorption of singlenanowire a-Si solar cells. Opt. Express 2013, 21, A1007–A1017. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, Z.; Wu, Y.; Xia, Z.; Qin, X. Significantly enhanced coupling to half-space irradiation using a partially capped nanowire for solar cells. Nano Energy 2018, 45, 61–67. [Google Scholar] [CrossRef]
- Leahu, G.; Petronijevic, E.; Belardini, A.; Centini, M.; Sibilia, C.; Hakkarainen, T.; Koivusalo, E.; Rizzo Piton, M.; Suomalainen, S.; Guina, M. Evidence of Optical Circular Dichroism in GaAs-Based Nanowires Partially Covered with Gold. Adv. Opt. Mater. 2017, 5, 1601063. [Google Scholar] [CrossRef] [Green Version]
- Mann, S.A.; Garnett, E.C. Extreme Light Absorption in Thin Semiconductor Films Wrapped around Metal Nanowires. Nano Lett. 2013, 13, 3173–3178. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Qiu, M.; Wu, H.; Cui, Y.; Fan, S.; Ruan, Z. Theory of Half-space Light Absorption Enhancement for Leaky Mode Resonant Nanowires. Nano Lett. 2015, 15, 5513–5518. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Leu, P.W. Enhanced absorption in silicon nanocone arrays for photovoltaics. Nanotechnology 2012, 23, 194003. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Stevens, E.; Leu, P.W. Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells. Opt. Express 2014, 22, A386–A395. [Google Scholar] [CrossRef] [PubMed]
- Anttu, N.; Mäntynen, H.; Sorokina, A.; Kivisaari, P.; Sadi, T.; Lipsanen, H. Geometry Tailoring of Emission from Semiconductor Nanowires and Nanocones. Photonics 2020, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Yu, X.; Zhu, J. Metal-Core/Semiconductor-Shell Nanocones for Broadband Solar Absorption Enhancement. Nano Lett. 2014, 14, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Huangfu, H.; He, L.; Wang, J.; Yang, D.; Guo, J.; Wang, H. Light-trapping properties of the Si inclined nanowire arrays. Opt. Commun. 2017, 382, 332–336. [Google Scholar] [CrossRef]
- Kayes, M.; Leu, P. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics. Nanoscale Res. Lett. 2014, 9, 620. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Rusli; Wang, X.; Zheng, H.; Wang, H.; Yu, H. Design guidelines for slanting silicon nanowire arrays for solar cell application. J. Appl. Phys. 2013, 114, 084303–084306. [Google Scholar] [CrossRef]
- Adibzadeh, F.; Olyaee, S. Optical absorption enhancement in vertical InP nanowire random structures for photovoltaic applications. Opt. Quantum Electron. 2020, 52, 6. [Google Scholar] [CrossRef]
- Qin, X.; Wu, Y.; Zhang, Z.; Xia, Z.; Zhou, J.; Zhu, J. Broadband light absorption enhancement in randomly rotated elliptical nanohole arrays for photovoltaic application. Appl. Opt. 2019, 58, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kramarenko, M.; Osmond, J.; Toudert, J.; Martorell, J. Natural Random Nanotexturing of the Au Interface for Light Backscattering Enhanced Performance in Perovskite Solar Cells. ACS Photonics 2018, 5, 2243–2250. [Google Scholar] [CrossRef]
- Dhindsa, N.; Saini, S.S. Comparison of ordered and disordered silicon nanowire arrays: Experimental evidence of photonic crystal modes. Opt. Lett. 2016, 41, 2045–2048. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Ruan, X. Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications. Opt. Lett. 2010, 35, 3378–3380. [Google Scholar] [CrossRef]
- Sychugov, I.; Sangghaleh, F.; Bruhn, B.; Pevere, F.; Luo, J.W.; Zunger, A.; Linnros, J. Strong Absorption Enhancement in Si Nanorods. Nano Lett. 2016, 16, 7937–7941. [Google Scholar] [CrossRef]
- Kolezas, G.D.; Zouros, G.P.; Pagiatakis, G.K.; Roumeliotis, J.A. All–Anisotropic Spheroidal Photonic Antennas: Theory and Modeling. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 8300312. [Google Scholar] [CrossRef]
- Wu, Y.; Xia, Z.; Liang, Z.; Zhou, J.; Jiao, H.; Cao, H.; Qin, X. Broadband absorption enhancement in elliptical silicon nanowire arrays for photovoltaic applications. Opt. Express 2014, 22, A1292–A1302. [Google Scholar] [CrossRef]
- Qin, X.; Xia, Z.; Wu, Y.; Zhou, J.; Zhang, Z. Enhanced light absorption in perpendicular elliptical silicon nanocone array for solar cells. Appl. Opt. 2017, 56, 2307–2313. [Google Scholar] [CrossRef]
- Xia, Z.; Qin, X.; Wu, Y.; Pan, Y.; Zhou, J.; Zhang, Z. Efficient broadband light absorption in elliptical nanohole arrays for photovoltaic application. Opt. Lett. 2015, 40, 5814–5817. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: London, UK, 1985. [Google Scholar]
- Kane, Y. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed.; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Ee, H.S.; Song, K.D.; Kim, S.K.; Park, H.G. Finite-Difference Time-Domain Algorithm for Quantifying Light Absorption in Silicon Nanowires. Isr. J. Chem. 2012, 52, 1027–1036. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Munday, J.N.; Atwater, H.A. Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett. 2010, 11, 2195–2201. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wang, Y.; Guo, X.; Song, J.; Wang, X.; Yi, Y. Light Trapping in Single Elliptical Silicon Nanowires. Nanomaterials 2020, 10, 2121. https://doi.org/10.3390/nano10112121
Liu W, Wang Y, Guo X, Song J, Wang X, Yi Y. Light Trapping in Single Elliptical Silicon Nanowires. Nanomaterials. 2020; 10(11):2121. https://doi.org/10.3390/nano10112121
Chicago/Turabian StyleLiu, Wenfu, Yinling Wang, Xiaolei Guo, Jun Song, Xiao Wang, and Yasha Yi. 2020. "Light Trapping in Single Elliptical Silicon Nanowires" Nanomaterials 10, no. 11: 2121. https://doi.org/10.3390/nano10112121
APA StyleLiu, W., Wang, Y., Guo, X., Song, J., Wang, X., & Yi, Y. (2020). Light Trapping in Single Elliptical Silicon Nanowires. Nanomaterials, 10(11), 2121. https://doi.org/10.3390/nano10112121