Exploring the Different Degrees of Magnetic Disorder in TbxR1−xCu2 Nanoparticle Alloys
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Structural Characterisation: XRD
3.2. Structural Characterisation: Neutron Diffraction
3.3. Magnetic Characterisation
3.3.1. Static Magnetic Susceptibility
3.3.2. Isothermal Magnetisation
3.3.3. Dynamic Magnetic Susceptibility
3.4. Specific Heat
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NP | Nanoparticle |
MNPs | Magnetic Nanoparticles |
R | Rare Earth |
t | Milling time |
CEF | Crystal Electric Field |
SG | Spin Glass |
SSG | Super Spin Glass |
CSG | Cluster Spin Glass |
FM | Ferromagnetic |
AF | Antiferromagnetic |
SAF | Superantiferromagnetism |
XRD | X-Ray Diffraction |
ND | Neutron Diffraction |
TEM | Transmission Electron Microscopy |
Bragg Error Factor | |
Coercitive Field | |
ZFC | Zero Field Cooling |
FC | Field Cooling |
References
- Mydosh, J.A. Spin Glasses: An Experimental Introduction; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Blügel, S. Magnetism of 4d and 5d transition metal adlayers on Ag (001): Dependence on the adlayer thickness. Phys. Rev. B 1995, 51, 2025. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, M.; Marquina, C.; Garcia-Orza, L.; Del Moral, A. Giant field induced volume magnetostriction in TbMn2 cubic intermetallic compound. Solid State Commun. 1993, 87, 695–698. [Google Scholar] [CrossRef]
- Mesquita, F.; Magalhaes, S.; Pureur, P.; Diop, L.; Isnard, O. Electrical magnetotransport properties in RCo12B6 compounds (R = Y, Gd, and Ho). Phys. Rev. B 2020, 101, 224414. [Google Scholar] [CrossRef]
- Luong, H.; Franse, J. Magnetic Properties of Rare Earth-Cu2 Compounds, 8th ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Zhou, G.F.; Bakker, H. Spin-glass behaviour of mechanilly milled crystalline GdAl2. Phys. Rev. Lett. 1994, 73, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luong, N.H.; Franse, J.; Hien, T.D. Specific heat and thermal expansion in GdxY1−xCu2. J. Phys. F Met. Phys. 1985, 15, 1751. [Google Scholar] [CrossRef]
- Luong, N.H.; Hien, T.D.; Duc, N.H. Magnetic properties of TbxY1−xCu2 compounds at low temperatures. Phys. B+C 1982, 109, 2135–2137. [Google Scholar] [CrossRef]
- Vernay, F.; Kachkachi, H. Single-particle versus collective effects in assemblies of nanomagnets: Screening. J. Magn. Magn. Mater. 2020, 500, 166286. [Google Scholar] [CrossRef] [Green Version]
- Rojas, D.; Barquín, L.F.; Fernández, J.R.; Espeso, J.; Sal, J.G. Size effects in the magnetic behaviour of TbAl2 milled alloys. J. Phys. Condens. Matter 2007, 19, 186214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Fuertes, A.; Barquín, L.F.; Fernández, J.R.; de Pedro, I.; Fdez-Gubieda, M.; Alonso, J.; Olivi, L.; et al. Interplay between microstructure and magnetism in NiO nanoparticles: Breakdown of the antiferromagnetic order. Nanoscale 2014, 6, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Oh, M.H.; Cho, M.G.; Chung, D.Y.; Park, I.; Kwon, Y.P.; Ophus, C.; Kim, D.; Kim, M.G.; Jeong, B.; Gu, X.W.; et al. Design and synthesis of multigrain nanocrystals via geometric misfit strain. Nature 2020, 577, 359–363. [Google Scholar] [CrossRef]
- Ovid’Ko, I. Deformation of nanostructures. Science 2002, 295, 2386–2386. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.W.; Thomas, G. Grain boundaries in nanophase materials. Ultramicroscopy 1992, 40, 376–384. [Google Scholar] [CrossRef]
- Jefremovas, E.; Masa, J.A.; Rodríguez, M.; Fernández, J.R.; Espeso, J.; Rojas, D.; García-Prieto, A.; Fernández-Gubieda, M.; Barquín, L.F. Investigating the Size and Microstrain Influence in the Magnetic Order/Disorder State of GdCu2 Nanoparticles. Nanomaterials 2020, 10, 1117. [Google Scholar] [CrossRef] [PubMed]
- Echevarria-Bonet, C.; Rojas, D.P.; Espeso, J.I.; Fernández, J.R.; de la Fuente Rodríguez, M.; Barquín, L.F.; Fernández, L.R.; Gorria, P.; Blanco, J.A.; Fdez-Gubieda, M.L.; et al. Magnetic phase diagram of superantiferromagnetic TbCu2 nanoparticles. J. Phys. Condens. Matter 2015, 27, 496002–496017. [Google Scholar] [CrossRef] [Green Version]
- Everschor-Sitte, K.; Masell, J.; Reeve, R.M.; Kläui, M. Perspective: Magnetic skyrmions—Overview of recent progress in an active research field. J. Appl. Phys. 2018, 124, 240901. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Balasubramanian, B.; Skomski, R.; Mukherjee, P.; Valloppilly, S.R.; Hadjipanayis, G.C.; Sellmyer, D.J. Effect of size confinement on skyrmionic properties of MnSi nanomagnets. Nanoscale 2018, 10, 9504–9508. [Google Scholar] [CrossRef]
- Kumar, R.; Iyer, K.K.; Paulose, P.; Sampathkumaran, E. Magnetic and transport anomalies in R2RhSi3 (R = Gd, Tb, and Dy) resembling those of the exotic magnetic material Gd2PdSi3. Phys. Rev. B 2020, 101, 144440. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Giant magnetocaloric effect in Gd5 (Si2Ge2). Phys. Rev. Lett. 1997, 78, 4494. [Google Scholar] [CrossRef]
- Rajivgandhi, R.; Chelvane, J.A.; Nigam, A.; Malik, S.; Nirmala, R. Preservation of large low temperature magnetocaloric effect in metamagnetic intermetallic compounds RCu2 (R = Gd, Tb, Dy, Ho and Er) upon rapid solidification. J. Alloys Compd. 2020, 815, 152659. [Google Scholar] [CrossRef]
- McMichael, R.; Shull, R.; Swartzendruber, L.; Bennett, L.; Watson, R. Magnetocaloric effect in superparamagnets. J. Magn. Magn. Mater. 1992, 111, 29–33. [Google Scholar] [CrossRef]
- Poddar, P.; Gass, J.; Rebar, D.; Srinath, S.; Srikanth, H.; Morrison, S.; Carpenter, E. Magnetocaloric effect in ferrite nanoparticles. J. Magn. Magn. Mater. 2006, 307, 227–231. [Google Scholar] [CrossRef]
- Bender, P.; Fock, J.; Hansen, M.; Bogart, L.; Southern, P.; Ludwig, F.; Wiekhorst, F.; Szczerba, W.; Zeng, L.; Heinke, D.; et al. Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles. Nanotechnology 2018, 29, 425705. [Google Scholar] [CrossRef] [Green Version]
- Majetich, S.; Sachan, M. Magnetostatic interactions in magnetic nanoparticle assemblies: Energy, time and length scales. J. Phys. D Appl. Phys. 2006, 39, R407. [Google Scholar] [CrossRef]
- Rotter, M.; Lindbaum, A.; Gratz, E.; Hilscher, G.; Sassik, H.; Fischer, H.; Fernandez-Diaz, M.; Arons, R.; Seidl, E. The magnetic structure of GdCu2. J. Magn. Magn. Mater. 2000, 214, 281–290. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Posth, O.; Hansen, M.F.; Steinhoff, U.; Bogart, L.; Southern, P.; Svedlindh, P.; Grüttner, C.; Barquin, L.F.; Szczerba, W.; Ludwig, F.; et al. Classification of analysis methods for characterization of magnetic nanoparticle properties. In Proceedings of the Imeko XXI World Congress, Czech Technical University, Prague, Czech Republic, 30 August–4 September 2015; pp. 1362–1367. [Google Scholar]
- Bachmann, R.; DiSalvo, F., Jr.; Geballe, T.; Greene, R.; Howard, R.; King, C.; Kirsch, H.; Lee, K.; Schwall, R.; Thomas, H.U.; et al. Heat capacity measurements on small samples at low temperatures. Rev. Sci. Instrum. 1972, 43, 205–214. [Google Scholar] [CrossRef]
- Lindbaum, A.; Heathman, S.; Kresse, G.; Rotter, M.; Gratz, E.; Schneidewind, A.; Behr, G.; Litfin, K.; Le Bihan, T.; Svoboda, P. Structural stability of LaCu2 and YCu2 studied by high-pressure X-ray diffraction and ab initio total energy calculations. J. Phys. Condens. Matter 2000, 12, 3219. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Ivanov, E.; Boldyrev, V. The science and technology of mechanical alloying. Mater. Sci. Eng. A 2001, 304, 151–158. [Google Scholar] [CrossRef]
- Rauch, H.; Zawisky, M.; Stellmach, C.; Geltenbort, P. Giant absorption cross section of ultracold neutrons in gadolinium. Phys. Rev. Lett. 1999, 83, 4955. [Google Scholar] [CrossRef]
- Šíma, V.; Smetana, Z.; Lebech, B.; Gratz, E. Temperature dependence of the magnetic structure of TbCu2. J. Magn. Magn. Mater. 1986, 54, 1357–1358. [Google Scholar] [CrossRef]
- Echevarria-Bonet, C.; Rojas, D.P.; Espeso, J.I.; Fernández, J.R.; de la Fuente Rodríguez, M.; Barquín, L.F.; Fernández, L.R.; Gorria, P.; Blanco, J.A.; Fdez-Gubieda, M.L.; et al. Size-induced superantiferromagnetism with reentrant spin-glass behavior in metallic nanoparticles of TbCu2. Phys. Rev. B 2013, 87, 180407(R). [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, J.; Iyer, K.K.; Sampathkumaran, E. Reentrant spin-glass and transport behavior of Gd4PtAl, a compound with three sites for Gd. J. Magn. Magn. Mater. 2019, 490, 165515. [Google Scholar] [CrossRef] [Green Version]
- Bedanta, S.; Kleemann, W. Topical review superparamagnetism. J. Phys. D Appl. Phys. 2009, 42, 013001. [Google Scholar] [CrossRef]
- Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Fuertes, A.; Barquín, L.F.; Puente-Orench, I.; Blanco, J. Scrutinizing the role of size reduction on the exchange bias and dynamic magnetic behavior in NiO nanoparticles. Nanotechnology 2015, 26, 305705. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.F.; Bakker, H. Mechanically induced structural and magnetic changes in the GdAl2 Laves phase. Phys. Rev. B 1995, 52, 9437–9445. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, P.; Vejpravová, J.; Doerr, M.; Rotter, M.; Hoffmann, J.U.; Satoh, I.; Komatsubara, T. Ising-axis conversion in (Tb0.5Y0.5) Cu2. J. Magn. Magn. Mater. 2007, 310, 1767–1769. [Google Scholar] [CrossRef]
- Hien, T.; Luong, N.; Duc, N.; Thuy, N.; Frings, P.; Franse, J. Magnetic properties of RCu2 (R = Dy, Ho, Er) and DyxY1-xCu2 compounds. J. Magn. Magn. Mater. 1983, 31, 245–246. [Google Scholar] [CrossRef]
- Kumar, A.; Senyshyn, A.; Pandey, D. Evidence for cluster spin glass phase with precursor short-range antiferromagnetic correlations in the B-site disordered Ca(Fe1/2Nb1/2)O3 perovskite. Phys. Rev. B 2019, 99, 214425. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, J.; Thouless, D.J. Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A Math. Gen. 1978, 11, 983. [Google Scholar] [CrossRef] [Green Version]
- Luong, N.H.; Franse, J. Thermal expansion, forced magnetostriction, and pressure dependence of the Néel temperature in GdCu2 and TbCu2. Phys. Status Solidi 1981, 66, 399–406. [Google Scholar] [CrossRef]
- De Lacheisserie, E.d.T.; Gignoux, D.; Schlenker, M. Magnetism; Springer Science & Business Media: Berlin, Germany, 2005; Volume 1. [Google Scholar]
- Yamada, Y.; Sakata, A. Weak antiferromagnetism in NbFe2. J. Phys. Soc. Jpn. 1988, 57, 46–49. [Google Scholar] [CrossRef]
- Barquín, L.F.; Sal, J.C.G.; Gorria, P.; Garitaonandia, J.S.; Barandiarán, J.M. Dynamic susceptibility of reentrant Fe-rich inhomogeneous amorphous alloys. Eur. Phys. J. B Condens. Matter Complex Syst. 2003, 35, 3–12. [Google Scholar] [CrossRef]
- Jönsson, P.; Hansen, M.; Svedlindh, P.; Nordblad, P. Spin-glass-like transition in a highly concentrated Fe–C nanoparticle system. J. Magn. Magn. Mater. 2001, 226, 1315–1316. [Google Scholar] [CrossRef] [Green Version]
- Souletie, J.; Tholence, J. Critical slowing down in spin glasses and other glasses: Fulcher versus power law. Phys. Rev. B 1985, 32, 516. [Google Scholar] [CrossRef]
- Chen, X.; Bedanta, S.; Petracic, O.; Kleemann, W.; Sahoo, S.; Cardoso, S.; Freitas, P. Superparamagnetism versus superspin glass behavior in dilute magnetic nanoparticle systems. Phys. Rev. B 2005, 72, 214436. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Fang, P. Cole—Cole diagram and the distribution of relaxation times. J. Chem. Phys. 1965, 42, 3411–3413. [Google Scholar] [CrossRef]
- Bitoh, T.; Ohba, K.; Takamatsu, M.; Shirane, T.; Chikazawa, S. Comparative study of linear and nonlinear susceptibilities of fine-particle and spin-glass systems: Quantitative analysis based on the superparamagnetic blocking model. J. Magn. Magn. Mater. 1996, 154, 59–65. [Google Scholar] [CrossRef]
- Azhar, A.; Mitescu, C.; Johanson, W.; Zimm, C.; Barclay, J. Specific heat of GdRh. J. Appl. Phys. 1985, 57, 3235–3237. [Google Scholar] [CrossRef]
- Gratz, E.; Loewenhaupt, M.; Divis, M.; Steiner, W.; Bauer, E.; Pillmayr, N.; Muller, H.; Nowotny, H.; Frick, B. Structural, magnetic, electronic and transport properties of NdCu2. J. Phys. Condens. Matter 1991, 3, 9297. [Google Scholar] [CrossRef]
- Bouvier, M.; Lethuillier, P.; Schmitt, D. Specific heat in some gadolinium compounds. I. Experimental. Phys. Rev. B 1991, 43, 13137. [Google Scholar] [CrossRef] [PubMed]
- García-Saiz, A.; de Pedro, I.; Migowski, P.; Vallcorba, O.; Junquera, J.; Blanco, J.A.; Fabelo, O.; Sheptyakov, D.; Waerenborgh, J.C.; Fernández-Díaz, M.T.; et al. Anion- π and Halide–Halide Nonbonding Interactions in a New Ionic Liquid Based on Imidazolium Cation with Three-Dimensional Magnetic Ordering in the Solid State. Inorg. Chem. 2014, 53, 8384–8396. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, B.; Matar, S.F.; Ménétrier, M.; Marcos, J.S.; Fernandez, J.R. Influence of Ce–H bonding on the physical properties of the hydrides CeCoSiH1.0 and CeCoGeH1.0. J. Phys. Condens. Matter 2006, 18, 6045. [Google Scholar] [CrossRef]
- Rotter, M.; Loewenhaupt, M.; Doerr, M.; Lindbaum, A.; Michor, H. Noncollinear amplitude-modulated magnetic order in Gd compounds. Phys. Rev. B 2001, 64, 014402. [Google Scholar] [CrossRef]
- Luong, N.H. Crystalline-electric-field effect in some rare-earth intermetallic compounds. Phys. B Condens. Matter 2002, 319, 90–104. [Google Scholar] [CrossRef]
Alloy | t(h) | a (Å) | b (Å) | c (Å) | (nm) | (%) | (%) | |
---|---|---|---|---|---|---|---|---|
TbGdCu | bulk | 4.312(2) | 6.858(5) | 7.325(5) | 216.6(3) | — | — | 13.3 |
2 h | 4.319(3) | 6.842(4) | 7.313(4) | 216.1(2) | 9.0(8) | 0.5(1) | 6.6 | |
5 h | 4.320(5) | 6.839(6) | 7.312(7) | 216.0(1) | 7.0(9) | 0.6(1) | 5.8 | |
TbLaCu | bulk | 4.381(5) | 7.057(1) | 7.416(1) | 229.3(3) | — | — | 24.5 |
2 h | 4.400(2) | 7.084(4) | 7.429(5) | 231.6(2) | 12.9(8) | 0.4(1) | 9.7 | |
5 h | 4.421(5) | 7.116(6) | 7.478(8) | 235.6(2) | 9.0(9) | 0.4(1) | 8.7 | |
TbYCu | bulk | 4.302(4) | 6.865(2) | 7.295(2) | 215.4(1) | — | — | 16.2 |
2 h | 4.314(3) | 6.878(2) | 7.304(1) | 216.7(1) | 9.0(8) | 0.47(9) | 3.2 | |
5 h | 4.310(4) | 6.887(2) | 7.317(3) | 217.2(1) | 7.5(4) | 0.95(2) | 1.7 |
Alloy | t(h) | (K) | (K) | (K) | |
---|---|---|---|---|---|
TbGdCu | bulk | 47.2(1) | absent | 19.9 (5) | 9.26(1) |
2 h | absent | 19.7(1) | 16.1(1) | 9.31(3) | |
5 h | absent | 21.2(1) | 13.2(3) | 9.86(1) | |
TbLaCu | bulk | 33.1(1) | absent | 20.3(2) | 10.23(2) |
2 h | 27.1(1) | 6.2(1) | 10.2(7) | 10.16(2) | |
5 h | 26.3(1) | 7.0(1) | 7.3(1) | 10.29(4) | |
TbYCu | bulk | absent | 4.1(1) | 2.84(1) | 10.53(2) |
2 h | absent | 3.5(1) | −0.34(4) | 10.56(2) | |
5 h | absent | 3.0(1) * | −0.79(4) | 10.76(6) |
Alloy | t(h) | (s) | z | T (K) | |
---|---|---|---|---|---|
TbGdCu | 2 h | 0.058(2) | 10 | 9.11(9) | 18.7(5) |
5 h | 0.049(2) | 10 | 5.92(11) | 21.51(7) | |
TbLaCu | 2 h | 0.070(4) | 5 × 10 | 5.6(5) | 7.4(1) |
5 h | 0.077(3) | 5 × 10 | 5.4(2) | 7.5(1) | |
TbYCu | bulk | 0.048(2) | 10 | 6.66(14) | 4.00(2) |
2 h | 0.075(3) | 10 | 6.5(4) | 3.80(5) | |
5 h | 0.092(8) | —— | —– | —– |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jefremovas, E.M.; Rodríguez, M.d.l.F.; Alonso, J.; Fernández, J.R.; Espeso, J.I.; Puente-Orench, I.; Rojas, D.P.; García-Prieto, A.; Fdez-Gubieda, M.L.; Fernández, L.R.; et al. Exploring the Different Degrees of Magnetic Disorder in TbxR1−xCu2 Nanoparticle Alloys. Nanomaterials 2020, 10, 2148. https://doi.org/10.3390/nano10112148
Jefremovas EM, Rodríguez MdlF, Alonso J, Fernández JR, Espeso JI, Puente-Orench I, Rojas DP, García-Prieto A, Fdez-Gubieda ML, Fernández LR, et al. Exploring the Different Degrees of Magnetic Disorder in TbxR1−xCu2 Nanoparticle Alloys. Nanomaterials. 2020; 10(11):2148. https://doi.org/10.3390/nano10112148
Chicago/Turabian StyleJefremovas, Elizabeth M., María de la Fuente Rodríguez, Javier Alonso, Jesús Rodríguez Fernández, José Ignacio Espeso, Inés Puente-Orench, Daniel P. Rojas, Ana García-Prieto, María Luisa Fdez-Gubieda, Lidia Rodríguez Fernández, and et al. 2020. "Exploring the Different Degrees of Magnetic Disorder in TbxR1−xCu2 Nanoparticle Alloys" Nanomaterials 10, no. 11: 2148. https://doi.org/10.3390/nano10112148
APA StyleJefremovas, E. M., Rodríguez, M. d. l. F., Alonso, J., Fernández, J. R., Espeso, J. I., Puente-Orench, I., Rojas, D. P., García-Prieto, A., Fdez-Gubieda, M. L., Fernández, L. R., & Barquín, L. F. (2020). Exploring the Different Degrees of Magnetic Disorder in TbxR1−xCu2 Nanoparticle Alloys. Nanomaterials, 10(11), 2148. https://doi.org/10.3390/nano10112148