Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor
Abstract
:1. Introduction
2. The Structure of 2D Silicon Carbide
3. Electronic Properties of 2D Silicon Carbide
4. Optical Properties of 2D Silicon Carbide
5. Magnetic Properties
6. Mechanical Properties
7. Device Applications
7.1. Optoelectronics
7.2. Electronics and Spintronics
7.3. Chemical Sensing and Energy Applications
8. Growth Approaches
9. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Melinon, P.; Masenelli, B.; Tournus, F.; Perez, A. Playing with carbon and silicon at the nanoscale. Nat. Mater. 2007, 6, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Susi, T.; Skákalová, V.; Mittelberger, A.; Kotrusz, P.; Hulman, M.; Pennycook, T.J.; Mangler, C.; Kotakoski, J.; Meyer, J.C. Computational insights and the observation of SiC nanograin assembly: Towards 2D silicon carbide. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ferdos, N.; Islam, S.; Park, J.; Hashimoto, A. Tunable electronic properties in stanene and two dimensional silicon- carbide heterobilayer: A first principles investigation. AIP Adv. 2019, 9, 0025120. [Google Scholar] [CrossRef] [Green Version]
- Hsueh, H.C.; Guo, G.Y.; Louie, S.G. Excitonic effects in the optical properties of a SiC sheet and nanotubes. Phys. Rev. B 2011, 84, 085404. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, C.; Karmakar, S.; Datta, A. Monolayer Group IV—VI Monochalcogenides: Low-Dimensional Materials for Photocatalytic Water Splitting. J. Phys. Chem. C 2017, 121, 7615–7624. [Google Scholar] [CrossRef]
- Fan, D.; Lu, S.; Guo, Y.; Hu, X. Novel bonding patterns and optoelectronic properties of the two-dimensional Si x C y monolayers. J. Mater. Chem. C 2017, 5, 3561–3567. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.S. Light-Emitting Two-Dimensional Ultrathin Silicon Carbide. J. Phys. Chem. C 2012, 116, 3951–3955. [Google Scholar] [CrossRef]
- Chabi, S.; Chang, H.; Xia, Y.; Zhu, Y. From graphene to silicon carbide: Ultrathin silicon carbide flakes. Nanotechnology 2016, 27, 075602. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Z.; Kutana, A.; Yakobson, B.I. Predicting Two-Dimensional Silicon Carbide Monolayers. ACS Nano 2015, 9, 9802–9809. [Google Scholar] [CrossRef] [PubMed]
- Hoat, D.M.; Naseri, M.; Hieu, N.N.; Ponce-Pérez, R.; Rivas-Silva, J.F.; Cocoletzi, G.H. Transition from indirect to direct band gap in SiC monolayer by chemical functionalization: A first principles study. Superlattices Microstruct. 2020, 137. [Google Scholar] [CrossRef]
- Churchill, H.O.H.; Jarillo-Herrero, P. Two-Dimensional crystals: Phosphorus joins the family. Nat. Publ. Gr. 2014, 9, 330–331. [Google Scholar] [CrossRef]
- Yang, K.; Cahangirov, S.; Cantarero, A.; Rubio, A.; Agosta, R.D. Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 2014, 125403, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Enriquez, H.; Kara, A. Silicene structures on silver surfaces. J. Phys. Condens. Matter 2012, 24, 314211. [Google Scholar] [CrossRef] [Green Version]
- Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J.O.; Narasimha-Acharya, K.L.; Blanter, S.I.; Groenendijk, D.J.; Buscema, M.; Steele, G.A.; Alvarez, J.V.; et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001. [Google Scholar] [CrossRef]
- Vogt, P.; Vogt, P. Silicene, germanene and other group IV 2D materials. Beilstein J. Nanotechnol. 2018, 2665–2667. [Google Scholar] [CrossRef]
- Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene fi eld-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231. [Google Scholar] [CrossRef]
- Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C.S.; Berner, N.C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z.; et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Brook, A.G.; Nyburg, S.C.; Abdesaken, F.; Gutekunst, B.; Gutekunst, G.; Kallury, R.K.M.R.; Poon, Y.C.; Chang, Y.; Wong-ng, W. Stable Silaethylenes. J. Am. Chem. Soc. 1982, 104, 5667–5672. [Google Scholar] [CrossRef]
- Igarashi, M.; Ichinohe, M.; Sekiguchi, A. Air-stable disilacyclopropene with a Si=C bond and its conversion to disilacyclopropenylium ion: Silicon-carbon hybrid 2π-electron systems. J. Am. Chem. Soc. 2007, 129, 12660–12661. [Google Scholar] [CrossRef]
- Tokitoh, N.; Wakita, K.; Okazaki, R.; Nagase, S.; Von Rague, P.; Uni, V. A Stable Neutral Silaaromatic Compound, 2-{2,4,6-Tris [bis(trimethylsilyl) methyl]phenyl}- 2-silanaphthalene. J. Am. Chem. Soc. Soc. 1997, 119, 6951–6952. [Google Scholar] [CrossRef]
- Leigh, W.J.; Kerst, C.; Boukherroub, R.; Morkin, T.L.; Jenkins, S.I.; Sung, K.; Tidwell, T.T. Substituent effects on the reactivity of the silicon-carbon double bond. Substituted 1,1-dimethylsilenes from Far-UV laser flash photolysis of α- silylketenes and (trimethylsilyl)diazomethane. J. Am. Chem. Soc. 1999, 121, 4744–4753. [Google Scholar] [CrossRef]
- Matsuo, T.; Hayakawa, N. π-Electron systems containing Si=Si double bonds. Sci. Technol. Adv. Mater. 2018, 19, 108–129. [Google Scholar] [CrossRef]
- Oláh, J.; Veszprémi, T. Relationship between stability and dimerization ability of silylenes. J. Organomet. Chem. 2003, 686, 112–117. [Google Scholar] [CrossRef]
- Löfaìšs, H.; Orthaber, A.; Jahn, B.O.; Rouf, A.M.; Grigoriev, A.; Ott, S.; Ahuja, R.; Ottosson, H. New class of molecular conductance switches based on the [1,3]-silyl migration from silanes to silenes. J. Phys. Chem. C 2013, 117, 10909–10918. [Google Scholar] [CrossRef]
- Lee, V.Y.; Sekiguchi, A.; Ichinohe, M.; Fukaya, N. Stable aromatic compounds containing heavier Group 14 elements. J. Organomet. Chem. 2000, 611, 228–235. [Google Scholar] [CrossRef]
- Veszprémi, T.; Takahashi, M.; Hajgató, B.; Ogasawara, J.; Sakamoto, K.; Kira, M. Substituent effects on the structure and aromaticity of 4-silatriafulvene. J. Phys. Chem. A 1998, 102, 10530–10535. [Google Scholar] [CrossRef]
- Okazaki, R. Kinitic Stabilization of Highly Reactive Species Bearing Heteroatoms. Heteroat. Chem. 2014, 25. [Google Scholar] [CrossRef]
- Freeman, C.L.; Claeyssens, F.; Allan, N.L.; Harding, J.H. Graphitic nanofilms as precursors to wurtzite films: Theory. Phys. Rev. Lett. 2006, 96. [Google Scholar] [CrossRef]
- Tusche, C.; Meyerheim, H.L.; Kirschner, J. Observation of depolarized ZnO(0001) monolayers: Formation of unreconstructed planar sheets. Phys. Rev. Lett. 2007, 99, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S.A.; Grazianetti, C.; Chiappe, D.; Molle, A.; Fanciulli, M.; et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Appl. Phys. Lett. 2013, 103, 10–13. [Google Scholar] [CrossRef]
- Goniakowski, J.; Noguera, C.; Giordano, L. Using polarity for engineering oxide nanostructures: Structural phase diagram in free and supported MgO(111) ultrathin films. Phys. Rev. Lett. 2004, 93, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Goniakowski, J.; Noguera, C.; Giordano, L. Prediction of uncompensated polarity in ultrathin films. Phys. Rev. Lett. 2007, 98, 1–4. [Google Scholar] [CrossRef]
- Huda, M.N.; Yan, Y.; Al-Jassim, M.M. On the existence of Si-C double bonded graphene-like layers. Chem. Phys. Lett. 2009, 479, 255–258. [Google Scholar] [CrossRef]
- Lin, X.; Lin, S.; Xu, Y.; Hakro, A.A.; Hasan, T.; Zhang, B.; Yu, B.; Luo, J.; Li, E.; Chen, H. Ab initio study of electronic and optical behavior of two-dimensional silicon carbide. J. Mater. Chem. C 2013, 1, 2131. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Yu, B.D. Computational designing of graphitic silicon carbide and its tubular forms. Appl. Phys. Lett. 2002, 80, 586–588. [Google Scholar] [CrossRef]
- Gao, G.; Ashcroft, N.W.; Hoffmann, R. The unusual and the expected in the Si/C phase diagram. J. Am. Chem. Soc. 2013, 135, 11651–11656. [Google Scholar] [CrossRef]
- Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kukushkin, S.A.; Osipov, A.V.; Feoktistov, N.A. Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: A review. Phys. Solid State 2014, 56, 1507–1535. [Google Scholar] [CrossRef]
- Drissi, L.B.; Ramadan, F.Z.; Ferhati, H.; Djeffal, F.; Kanga, N.B.J. New highly efficient 2D SiC UV-absorbing material with plasmonic light trapping. J. Phys. Condens. Matter 2020, 32. [Google Scholar] [CrossRef]
- Hess, P. Thickness of elemental and binary single atomic monolayers. Nanoscale Horizons 2020, 5, 385–399. [Google Scholar] [CrossRef]
- Lü, T.Y.; Liao, X.X.; Wang, H.Q.; Zheng, J.C. Tuning the indirect-direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: A quasiparticle GW study. J. Mater. Chem. 2012, 22, 10062–10068. [Google Scholar] [CrossRef]
- Dimoulas, A. Silicene and germanene: Silicon and germanium in the “flatland”. Microelectron. Eng. 2015, 131, 68–78. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, R. Two-dimensional topological insulators with binary honeycomb lattices: SiC3 siligraphene and its analogs. Phys. Rev. B 2014, 89, 195427. [Google Scholar] [CrossRef]
- Xu, Y.; Ning, Z.; Zhang, H.; Ni, G.; Shao, H.; Peng, B.; Zhang, X.; He, X.; Zhu, Y.; Zhu, H. Anisotropic ultrahigh hole mobility in two-dimensional penta-SiC2 by strain-engineering: Electronic structure and chemical bonding analysis. RSC Adv. 2017, 7, 45705–45713. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Wang, L.; Zhou, L.; Hou, T.; Li, Y. Theoretical investigations on novel SiC5 siligraphene as gas sensor for air pollutants. Carbon N. Y. 2017, 13, 114–121. [Google Scholar] [CrossRef]
- Dong, H.; Zhou, L.; Frauenheim, T.; Hou, T.; Lee, S.T.; Li, Y. SiC7 siligraphene: A novel donor material with extraordinary sunlight absorption. Nanoscale 2016, 8, 6994–6999. [Google Scholar] [CrossRef]
- Liu, X.; Shao, X.; Yang, B.; Zhao, M. Negative Poisson’s ratio and high-mobility transport anisotropy in SiC6 siligraphene. Nanoscale 2018, 10, 2108–2114. [Google Scholar] [CrossRef]
- Gutzler, R.; Schön, J.C. Two-dimensional Silicon-Carbon Compounds: Structure Prediction and Band Structures. Z. Anorg. Allg. Chem. 2017, 643, 1368–1373. [Google Scholar] [CrossRef]
- Lu, X.K.; Xin, T.Y.; Zhang, Q.; Xu, Q.; Wei, T.H.; Wang, Y.X. Versatile mechanical properties of novel g-SiC x monolayers from graphene to silicene: A first-principles study. Nanotechnology 2018, 29, 315701. [Google Scholar] [CrossRef]
- Zhou, L.J.; Zhang, Y.F.; Wu, L.M. SiC2 siligraphene and nanotubes: Novel donor materials in excitonic solar cells. Nano Lett. 2013, 13, 5431–5436. [Google Scholar] [CrossRef]
- Levinshtein, M.E.; Rumyantsev, S.L.; Shur, M.S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe; John Wiley & Sons: Hoboken, NJ, USA, 2001; ISBN 0471358274. [Google Scholar]
- Bekaroglu, E.; Topsakal, M.; Cahangirov, S.; Ciraci, S. First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys. Rev. B 2010, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wu, I.J.; Guo, G.Y. Optical properties of SiC nanotubes: An ab initio study. Phys. Rev. B 2007, 76, 035343. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Li, Y.; Li, Z.; Li, Q.; Zhou, Z.; Chen, Z.; Yang, J.; Hou, J.G. Electronic structures of SiC nanoribbons. J. Chem. Phys. 2008, 129, 174114. [Google Scholar] [CrossRef]
- Alaal, N.; Loganathan, V.; Medhekar, N.; Shukla, A. First principles many-body calculations of electronic structure and optical properties of SiC nanoribbons. J. Phys. D. Appl. Phys. 2016. [Google Scholar] [CrossRef] [Green Version]
- Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhang, S.; Li, X.; Xu, W.; Pi, X.; Liu, X. Quasi-Two-Dimensional SiC and SiC 2: Interaction of Silicon and Carbon at Atomic Thin Lattice Plane. J. Phys. Chem. C 2015, 119, 19772–19779. [Google Scholar] [CrossRef]
- Ugeda, M.M.; Bradley, A.J.; Shi, S.F.; Da Jornada, F.H.; Zhang, Y.; Qiu, D.Y.; Ruan, W.; Mo, S.K.; Hussain, Z.; Shen, Z.X.; et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095. [Google Scholar] [CrossRef] [Green Version]
- Pennington, G.; Goldsman, N. Self-consistent calculations for n -type hexagonal SiC inversion layers. J. Appl. Phys. 2013, 95. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Liu, Z. Controlling electronic and optical properties of layered SiC and GeC sheets by strain engineering. Mater. Des. 2016, 108, 333–342. [Google Scholar] [CrossRef]
- Borlido, P.; Huran, A.W.; Marques, M.A.L.; Botti, S. Novel two-dimensional silicon–carbon binaries by crystal structure prediction. Phys. Chem. Chem. Phys. 2020, 22, 8442–8449. [Google Scholar] [CrossRef]
- Prins, F.; Goodman, A.J.; Tisdale, W.A. Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS 2. Nano Lett. 2014, 14, 6087–6091. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Wang, Y. Geometric and Electronic Structures of Two-Dimensional SiC 3 Compound. J. Phys. Chem. C 2014, 118, 4509–4515. [Google Scholar] [CrossRef]
- Qin, X.; Liu, Y.; Li, X.; Xu, J.; Chi, B.; Zhai, D.; Zhao, X. Origin of dirac cones in SiC silagraphene: A combined density functional and tight-binding study. J. Phys. Chem. Lett. 2015, 6, 1333–1339. [Google Scholar] [CrossRef]
- Houmad, M.; El Kenz, A.; Benyoussef, A. Thermal and electrical properties of siligraphene and its derivatives. Optik 2018, 157, 936–943. [Google Scholar] [CrossRef]
- Lopez-Bezanilla, A.; Huang, J.; Kent, P.R.C.; Sumpter, B.G. Tuning from half-metallic to semiconducting behavior in sic nanoribbons. J. Phys. Chem. C 2013, 117, 15447–15455. [Google Scholar] [CrossRef]
- Vargas-Bernal, R. Electrical Properties of Two-Dimensional Materials Used in Gas Sensors. Sensors 2019, 19, 1295. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Shen, Y.H.; Yin, T.L. Ab initio study of electronic and magnetic properties in TM-doped 2D silicon carbide. Phys. E Low-Dimens. Syst. Nanostructures 2017, 85, 280–284. [Google Scholar] [CrossRef]
- Luo, M.; Shen, Y.H. Magnetic Properties of SiC Monolayer with Different Nonmagnetic Metal Dopants. J. Supercond. Nov. Magn. 2018, 31, 3277–3282. [Google Scholar] [CrossRef]
- Manju, M.S.; Ajith, K.M.; Valsakumar, M.C. Strain induced anisotropic mechanical and electronic properties of 2D-SiC. Mech. Mater. 2018, 120, 43–52. [Google Scholar] [CrossRef]
- Houmad, M.; Dakir, O.; Abbassi, A.; Benyoussef, A.; El Kenz, A.; Ez-Zahraouy, H. Optical properties of SiC nanosheet. Opt. J. Light Electron Opt. 2016, 127, 1867–1870. [Google Scholar] [CrossRef]
- Attaccalite, C.; Nguer, A.; Cannuccia, E.; Grüning, M. Strong second harmonic generation in SiC, ZnO, GaN two-dimensional hexagonal crystals from first-principles many-body calculations. Phys. Chem. Chem. Phys. 2015, 17, 9533–9540. [Google Scholar] [CrossRef] [Green Version]
- Alaal, N.; Loganathan, V.; Medhekar, N.; Shukla, A. From Half-Metal to Semiconductor: Electron-Correlation Effects in Zigzag SiC Nanoribbons from First Principles. Phys. Rev. Appl. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lundquist, P.M.; Ong, H.C.; Lin, W.P.; Chang, R.P.H.; Ketterson, J.B.; Wong, G.K. Large second-order optical nonlinearities in pulsed laser ablated silicon carbide thin films. Appl. Phys. Lett. 1995, 67, 2919. [Google Scholar] [CrossRef]
- Cheng, C.H.; Wu, C.L.; Lin, Y.H.; Yan, W.L.; Shih, M.H.; Chang, J.H.; Wu, C.I.; Lee, C.K.; Lin, G.R. Strong optical nonlinearity of the nonstoichiometric silicon carbide. J. Mater. Chem. C 2015, 3, 10164–10176. [Google Scholar] [CrossRef]
- Wu, C.-W.; Huang, J.-H.; Yao, D.-X. Tunable room-temperature ferromagnetism in the SiC monolayer. J. Magn. Magn. Mater. 2019, 469, 306–314. [Google Scholar] [CrossRef] [Green Version]
- He, X.; He, T.; Wang, Z.; Zhao, M. Neutral vacancy-defect-induced magnetism in SiC monolayer. Phys. E Low-Dimens. Syst. Nanostructures 2010, 42, 2451–2454. [Google Scholar] [CrossRef]
- Yang, G.; Wu, Y.; Ma, S.; Fu, Y.; Gao, D.; Zhang, Z.; Li, J. Defect-induced room temperature ferromagnetism in silicon carbide nanosheets. Superlattices Microstruct. 2018, 119, 19–24. [Google Scholar] [CrossRef]
- Houmad, M.; Dakir, O.; Benzidi, H.; Mounkachi, O.; El Kenz, A.; Benyoussef, A. Magnetic behavior of Mn-doped silicon carbide nanosheet. Int. J. Mod. Phys. B 2017, 31, 1750163. [Google Scholar] [CrossRef]
- Bezi Javan, M. Electronic and magnetic properties of monolayer SiC sheet doped with 3d-transition metals. J. Magn. Magn. Mater. 2016, 401, 656–661. [Google Scholar] [CrossRef]
- Luo, M.; Shen, Y.H.; Yin, T.L. Tunable magnetism in 2D silicon carbide doped with Co and Fe dopants: Ab initio study. Optik 2017, 130, 589–593. [Google Scholar] [CrossRef]
- Luo, M.; Xu, Y.E.; Song, Y.X. Impact of isotropic strain on electronic and magnetic properties of O-adsorbed SiC monolayer. Mater. Sci. Semicond. Process. 2018. [Google Scholar] [CrossRef]
- Lu, D.B.; Song, Y.L.; Yang, Z.X.; Xu, H.R.; Wang, C.; Gao, Z.H. Electronic and magnetic properties of SiC nanoribbons by F termination. Eur. Phys. J. B 2011, 424, 419–424. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Wang, Q.; Jena, P. Magnetic properties of two dimensional silicon carbide triangular nanoflakes-based kagome lattices. J. Nanoparticle Res. 2012, 14, 1056. [Google Scholar] [CrossRef]
- Le, M.-Q. Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. J. Comput. Theor. Nanosci. 2014, 11, 1458–1464. [Google Scholar] [CrossRef]
- Le, M.-Q.; Nguyen, D.-T. Atomistic simulations of pristine and defective hexagonal BN and SiC sheets under uniaxial tension. Mater. Sci. Eng. A 2014, 615, 481–488. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Le, M.Q. Mechanical properties of various two-dimensional silicon carbide sheets: An atomistic study. Superlattices Microstruct. 2016, 85, 280–284. [Google Scholar] [CrossRef]
- Islam, A.S.M.J.; Islam, M.S.; Ferdous, N.; Park, J.; Bhuiyan, A.G.; Hashimoto, A. Anisotropic mechanical behavior of two dimensional silicon carbide: Effect of temperature and vacancy defects. Mater. Res. Express 2019, 6, 125073. [Google Scholar] [CrossRef]
- Guan, J.; Liu, D.; Zhu, Z.; Tománek, D. Two-Dimensional Phosphorus Carbide: Competition between sp2 and sp3 Bonding. Nano Lett. 2016, 16, 3247–3252. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Klots, A.; Yang, Y.; Li, W.; Kravchenko, I.I.; Briggs, D.P.; Bolotin, K.I.; Valentine, J. Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals. Appl. Phys. Lett. 2015. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Dong, H.; Pu, S.; Zhang, X. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport. Nano Res. 2018, 11, 4074–4081. [Google Scholar] [CrossRef]
- Zhou, H.; Lin, X.; Guo, H.; Lin, S.; Sun, Y.; Xu, Y. Ab initio electronic transport study of two-dimensional silicon carbide-based p-n junctions. J. Semicond. 2017, 38, 033002. [Google Scholar] [CrossRef]
- Phys, A.; Kaiser, F.; Anderson, C.P.; Bourassa, A.; Miao, K.C.; Babin, C.; Ivanov, I.G.; Widmann, M.; Niethammer, M.; Hassan, J.U.; et al. Developing silicon carbide for quantum spintronics Developing silicon carbide for quantum spintronics. Appl. Phys. Lett. 2020, 116, 190501. [Google Scholar] [CrossRef]
- Fabian, J.; Matos-Abiague, A.; Ertler, C.; Stano, P.; Zutic, I. Semiconductor spintronics. arXiv 2007, arXiv:0711.1461. [Google Scholar] [CrossRef] [Green Version]
- Bouziane, K.; Mamor, M.; Elzain, M.; Djemia, P.; Chérif, S.M. Defects and magnetic properties in Mn-implanted 3 C-SiC epilayer on Si (100): Experiments and first-principles calculations. Phys. Rev. B 2008, 78, 195305. [Google Scholar] [CrossRef]
- Baumeier, B.; Krüger, P.; Pollmann, J. Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys. Rev. B 2007, 76, 85407. [Google Scholar] [CrossRef]
- Sun, L.; Wang, B.; Wang, Y. A novel silicon carbide nanosheet for high-performance humidity sensor. Adv. Mater. Interfaces 2018, 5, 1701300. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, Y.; Wang, Y.; Li, H.; Yu, C.; Cui, J.; Qin, Y.; Sun, J.; Yan, J.; Zheng, H. Enhanced supercapacitive performance of novel ultrathin SiC nanosheets directly by liquid phase exfoliation. Inorg. Chem. Commun. 2019, 106, 174–179. [Google Scholar] [CrossRef]
- Sun, L.; Han, C.; Wu, N.; Wang, B.; Wang, Y. High temperature gas sensing performances of silicon carbide nanosheets with an n-p conductivity transition. RSC Adv. 2018, 8, 13697–13707. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Wang, B.; Wang, Y. A Schottky-junction-based platinum nanoclusters@ silicon carbide nanosheet as long-term stable hydrogen sensors. Appl. Surf. Sci. 2019, 473, 641–648. [Google Scholar] [CrossRef]
- Farmanzadeh, D.; Ardehjani, N.A. Adsorption of O3, SO2 and NO2 molecules on the surface of pure and Fe-doped silicon carbide nanosheets: A computational study. Appl. Surf. Sci. 2018, 462, 685–692. [Google Scholar] [CrossRef]
- Wang, N.; Tian, Y.; Zhao, J.; Jin, P. CO oxidation catalyzed by silicon carbide (SiC) monolayer: A theoretical study. J. Mol. Graph. Model. 2016, 66, 196–200. [Google Scholar] [CrossRef]
- Wen Feng, J.; Jie Liu, Y.; Xiang Zhao, J. Layered SiC sheets: A promising metal-free catalyst for NO reduction. J. Mol. Graph. Model. 2015, 60, 132–141. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, B.B.; Hou, X.L.; Zhu, Y.F.; Jiang, Q. Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Sci. Rep. 2014, 3821, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nematollahi, P.; Esrafili, M.D. Catalytic activity of silicon carbide nanotubes and nanosheets for oxidation of CO: A DFT study. New J. Chem. 2016, 40, 2775–2784. [Google Scholar] [CrossRef]
- Kim, M.; Jung, N.; Eom, K.; Yoo, S.J.; Kim, J.Y.; Jang, J.H.; Kim, H.-J.; Hong, B.K.; Cho, E. Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells. J. Power Sources 2014, 266, 332–340. [Google Scholar] [CrossRef]
- Tsai, W.-Y.; Gao, P.-C.; Daffos, B.; Taberna, P.-L.; Pérez, C.R.; Gogotsi, Y.; Favier, F.; Simon, P. Ordered mesoporous silicon carbide-derived carbon for high-power supercapacitors. Electrochem. Commun. 2013, 34, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 4248–4253. [Google Scholar] [CrossRef] [Green Version]
- Phosphorus, T.B.; Kang, J.; Wood, J.D.; Wells, S.A.; Lee, J.; Liu, X.; Chen, K.; Hersam, M.C. Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus. ACS Nano 2015, 9, 3596–3604. [Google Scholar]
- Article, R. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Dong, S.; Liu, Y.; Nai, C.T.; Shin, H.S.; Jeong, H.Y. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 2014, 1–7. [Google Scholar] [CrossRef]
- Chen, J.; Li, N.; Wei, Y.; Han, B.; Zhang, Y. A low-cost approach to fabricate SiC nanosheets by reactive sintering from Si powders and graphite. J. Alloys Compd. 2019, 788, 345–351. [Google Scholar] [CrossRef]
- Wang, C.; Huang, N.; Zhuang, H.; Zhai, Z.; Yang, B.; Liu, L.; Jiang, X. Growth of large-scale heteroepitaxial 3C-SiC films and nanosheets on silicon substrates by microwave plasma enhanced CVD at higher powers. Surf. Coatings Technol. 2016, 299, 96–103. [Google Scholar] [CrossRef]
- Chabi, S.; Rocha, V.G.; Garclá-TunÌón, E.; Ferraro, C.; Saiz, E.; Xia, Y.; Zhu, Y. Ultralight, Strong, Three-Dimensional SiC Structures. ACS Nano 2016, 10, 1871–1876. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage have been synthesized and studied, and dozens more predicted to exist. Highly electromagnetic interference shielding, electrocatalysis, plasmonics and other. Nat. Rev. Mater. 2017, 2, 1–27. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chabi, S.; Kadel, K. Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor. Nanomaterials 2020, 10, 2226. https://doi.org/10.3390/nano10112226
Chabi S, Kadel K. Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor. Nanomaterials. 2020; 10(11):2226. https://doi.org/10.3390/nano10112226
Chicago/Turabian StyleChabi, Sakineh, and Kushal Kadel. 2020. "Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor" Nanomaterials 10, no. 11: 2226. https://doi.org/10.3390/nano10112226
APA StyleChabi, S., & Kadel, K. (2020). Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor. Nanomaterials, 10(11), 2226. https://doi.org/10.3390/nano10112226