Nonlinear Optical Characterization of 2D Materials
Abstract
:1. Introduction
2. Principle of NLO Microscopy Techniques
2.1. Nonlinear Polarization
2.2. Nonlinear Optical Characterization Methods
2.2.1. Second-Harmonic Generation (SHG)
2.2.2. Third-Harmonic Generation (THG)
2.2.3. Four-Wave Mixing (FWM)
2.2.4. Coherent Raman Spectroscopy
- 1.
- Coherent Anti-Stokes Raman Scattering (CARS)
- 2.
- Stimulated Raman Scattering (SRS)
2.2.5. Two-Photon Excitation Fluorescence (TPEF)
2.2.6. Typical Instrument
- 1.
- Typical SHG/THG Instrument
- 2.
- Typical CARS/SRS Instrument
3. Characterization of 2D Material Properties
3.1. Number of Layers
3.2. Crystal Structure Symmetry
3.2.1. Crystal Orientation
3.2.2. Crystal Phase
3.3. Defects
3.3.1. Zero-Dimensional Defects
3.3.2. One-Dimensional Defects
3.3.3. D Defects
3.4. Strain and Chemical Dynamics
3.4.1. Strain
3.4.2. Chemical Dynamics
3.5. Chemical Specificity and Ultrafast Dynamics of Excitons and Phonons
3.5.1. Chemical Specificity
3.5.2. Ultrafast Dynamics of Excitons and Phonons
4. Discussion
4.1. The Potential of NLO Characterization of 2D Materials
4.2. Challenges and Opportunities of System Instrument
4.3. External Modulation of NLO Signals
4.4. Internal Modulation of NLO Signals
4.5. Machine Learning: Powerful Support for Quantitative Characterization
4.6. CRS: A New Highland for 2D Material Characterization Applications
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (Mxenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Kostarelos, K. Translating Graphene and 2D Materials into Medicine. Nat. Rev. Mater. 2016, 1, 16084. [Google Scholar] [CrossRef]
- Wang, T.; Xu, Y.-Q. Photonic Structure-Integrated 2D Material Optoelectronics. Electronics 2016, 5, 93. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Meng, X.; Deng, D.; Bao, X. Confinement Catalysis with 2D Materials for Energy Conversion. Adv. Mater. 2019, 31, e1901996. [Google Scholar] [CrossRef]
- Li, B.; Zu, S.; Zhang, Z.; Zheng, L.; Jiang, Q.; Du, B.; Luo, Y.; Gong, Y.; Zhang, Y.; Lin, F.; et al. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Opto-Electron. Adv. 2019, 2, 19000801–19000809. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, K.; Zhou, K.-G. Lifting the mist of flatland: The recent progress in the characterizations of two-dimensional materials. Prog. Cryst. Growth Charact. Mater. 2017, 63, 72–93. [Google Scholar] [CrossRef]
- Welford, W.T. The Principles of Nonlinear Optics. Phys. Bull. 1985, 36, 178. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of Optical Harmonics. Phys. Rev. Lett. 1961, 7, 118–119. [Google Scholar] [CrossRef] [Green Version]
- Niesler, F.B.P.; Linden, S.; Förstner, J.; Grynko, Y.; Meier, T.; Wegener, M. Collective effects in second-harmonic generation from split-ring-resonator arrays. In Proceedings of the Conference on Lasers and Electro-Optics 2012, San Jose, CA, USA, 6 May 2012; p. QTh3E.2. [Google Scholar]
- Tsai, W.-Y.; Chung, T.L.; Hsiao, H.-H.; Chen, J.-W.; Lin, R.J.; Wu, P.C.; Sun, G.; Wang, C.-M.; Misawa, H.; Tsai, D.P. Second Harmonic Light Manipulation with Vertical Split Ring Resonators. Adv. Mater. 2019, 31, 1806479. [Google Scholar] [CrossRef] [Green Version]
- Sipe, J.E.; Moss, D.J.; van Driel, H.M. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys. Rev. B 1987, 35, 1129–1141. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Gong, Z.; Li, D. Nonlinear optics of two-dimensional transition metal dichalcogenides. InfoMat 2019, 1, 317–337. [Google Scholar] [CrossRef] [Green Version]
- Blanton, T.N.; Hung, L. X-ray Diffraction Characterization of Multilayer Epitaxial Thin Films Deposited on (0001) Sapphire. Rigaku J. 1996, 13, 3–8. [Google Scholar]
- Lokhande, C.D.; Sankapal, B.R.; Mane, R.S.; Pathan, H.M.; Muller, M.; Giersig, M.; Ganesan, V. XRD, SEM, AFM, HRTEM, EDAX and RBS studies of chemically deposited Sb2S3 and Sb2Se3 thin films. Appl. Surf. Sci. 2002, 193, 1–10. [Google Scholar] [CrossRef]
- Li, D.; Xiong, W.; Jiang, L.; Xiao, Z.; Rabiee Golgir, H.; Wang, M.; Huang, X.; Zhou, Y.; Lin, Z.; Song, J.; et al. Multimodal Nonlinear Optical Imaging of MoS2 and MoS2-Based van der Waals Heterostructures. ACS Nano. 2016, 10, 3766–3775. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, Q.-H.; Wu, J.-B.; Shi, W.; Tan, P.-H. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 2016, 8, 6435–6450. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Qiao, X.-F.; Shi, W.; Wu, J.-B.; Jiang, D.-S.; Tan, P.-H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.-X.; Xie, X.S. Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications. J. Phys. Chem. B 2004, 108, 827–840. [Google Scholar] [CrossRef]
- Maker, P.; Terhune, R. Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength. Phys. Rev. X 1965, 137, 801–818. [Google Scholar] [CrossRef]
- Begley, R.F.; Harvey, A.B.; Byer, R.L. Coherent anti-Stokes Raman spectroscopy. Appl. Phys. Lett. 1974, 25, 387–390. [Google Scholar] [CrossRef] [Green Version]
- Baldacchini, T.; Zadoyan, R. In situ and real time monitoring of two-photon polymerization using broadband coherent anti-Stokes Raman scattering microscopy. Opt. Express 2010, 18, 19219–19231. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-X.; Xie, X.S. Coherent Raman Scattering Microscopy; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Woodbury, E.J.; Ng, W.N. Ruby laser operation in near IR. Proc. Inst. Radio Eng. 1962, 50, 2367. [Google Scholar]
- Freudiger, C.W.; Min, W.; Saar, B.G.; Lu, S.; Holtom, G.R.; He, C.; Tsai, J.C.; Kang, J.X.; Xie, X.S. Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science 2008, 322, 1857. [Google Scholar] [CrossRef] [Green Version]
- Nanakumar, P.; Kovalev, A.; Volkmer, A. Vibrational Imaging Based on Stimulated Raman Scattering Microscopy. Biophys. J. 2009, 96, 296a. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Ji, M.; Holtom, G.R.; Fu, D.; Freudiger, C.W.; Xie, X.S. Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator. Opt. Lett. 2013, 38, 145–147. [Google Scholar] [CrossRef] [Green Version]
- Denk, W.; Strickler, J.H.; Webb, W.W. Two-Photon Laser Scanning Fluorescence Microscopy. Science 1990, 248, 73–76. [Google Scholar] [CrossRef] [Green Version]
- de Grauw, C.J.; Vroom, J.M.; van der Voort, H.T.M.; Gerritsen, H.C. Imaging properties in two-photon excitation microscopy and effects of refractive-index mismatch in thick specimens. Appl. Opt. 1999, 38, 5995–6003. [Google Scholar] [CrossRef]
- Kang, D.; Li, R.; Cao, S.; Sun, M. Nonlinear optical microscopies: Physical principle and applications. Appl. Spectrosc. Rev. 2020. [Google Scholar] [CrossRef]
- Lin, X.; Liu, Y.; Wang, K.; Wei, C.; Zhang, W.; Yan, Y.; Li, Y.J.; Yao, J.; Zhao, Y.S. Two-Dimensional Pyramid-like WS2 Layered Structures for Highly Efficient Edge Second-Harmonic Generation. ACS Nano. 2018, 12, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Woodward, R.I.; Murray, R.T.; Phelan, C.F.; de Oliveira, R.E.P.; Runcorn, T.H.; Kelleher, E.J.R.; Li, S.; de Oliveira, E.C.; Fechine, G.J.M.; Eda, G.; et al. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Mater. 2017, 4, 011006. [Google Scholar] [CrossRef]
- Moger, J.; Johnston, B.D.; Tyler, C.R. Imaging metal oxide nanoparticles in biological structures with CARS microscopy. Opt. Express 2008, 16, 3408–3419. [Google Scholar] [CrossRef]
- Li, H.; Cheng, Y.; Tang, H.; Bi, Y.; Chen, Y.; Yang, G.; Guo, S.; Tian, S.; Liao, J.; Lv, X.; et al. Imaging Chemical Kinetics of Radical Polymerization with an Ultrafast Coherent Raman Microscope. Adv. Sci. 2020, 7, 1903644. [Google Scholar] [CrossRef] [Green Version]
- Von Vacano, B.; Meyer, L.; Motzkus, M. Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy. J. Raman Spectrosc. 2007, 38, 916–926. [Google Scholar] [CrossRef]
- Zeng, H.; Liu, G.-B.; Dai, J.; Yan, Y.; Zhu, B.; He, R.; Xie, L.; Xu, S.; Chen, X.; Yao, W.; et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 2013, 3, 1608. [Google Scholar] [CrossRef] [Green Version]
- Heflin, J.R.; Figura, C.; Marciu, D.; Liu, Y.; Claus, R.O. Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers. Appl. Phys. Lett. 1999, 74, 495–497. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Hu, S.; Lin, M.; Gan, X.; Tan, P.; Zhao, J. Extraordinary Second Harmonic Generation in ReS2 Atomic Crystals. ACS Photonics 2018, 5, 3485–3491. [Google Scholar] [CrossRef] [Green Version]
- Jie, W.; Chen, X.; Li, D.; Xie, L.; Hui, Y.Y.; Lau, S.P.; Cui, X.; Hao, J. Layer-Dependent Nonlinear Optical Properties and Stability of Non-Centrosymmetric Modification in Few-Layer GaSe Sheets. Angew. Chem. Int. Ed. 2015, 54, 1185–1189. [Google Scholar] [CrossRef]
- Hao, Q.; Yi, H.; Su, H.; Wei, B.; Wang, Z.; Lao, Z.; Chai, Y.; Wang, Z.; Jin, C.; Dai, J.; et al. Phase Identification and Strong Second Harmonic Generation in Pure ε-InSe and Its Alloys. Nano. Lett. 2019, 19, 2634–2640. [Google Scholar] [CrossRef]
- Song, Y.; Tian, R.; Yang, J.; Yin, R.; Zhao, J.; Gan, X. Second Harmonic Generation in Atomically Thin MoTe2. Adv. Opt. Mater. 2018, 6, 1701334. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Yi, Y.; Song, T.; Clark, G.; Huang, B.; Shan, Y.; Wu, S.; Huang, D.; Gao, C.; Chen, Z.; et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 2019, 572, 497–501. [Google Scholar] [CrossRef]
- Hendry, E.; Hale, P.J.; Moger, J.; Savchenko, A.K.; Mikhailov, S.A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 2010, 105, 097401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Zhou, Y.S.; Huang, X.; Jiang, L.; Silvain, J.F.; Lu, Y. In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene. Nanoscale 2015. [Google Scholar] [CrossRef]
- Ling, J.; Miao, X.; Sun, Y.; Feng, Y.; Zhang, L.; Sun, Z.; Ji, M. Vibrational Imaging and Quantification of Two-Dimensional Hexagonal Boron Nitride with Stimulated Raman Scattering. ACS Nano. 2019, 13, 14033–14040. [Google Scholar] [CrossRef]
- Wang, R.; Chien, H.-C.; Kumar, J.; Kumar, N.; Chiu, H.-Y.; Zhao, H. Third-harmonic generation in ultrathin films of MoS2. ACS Appl. Mater. Interfaces 2014, 6, 314–318. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dadap, J.; Petrone, N.; Yeh, P.C.; Hone, J.; Osgood, R., Jr. Optical Third-Harmonic Generation in Graphene. Phys. Rev. X 2013, 3, 021014. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-Y.; Yen, Y.; Liu, C.-H. Observation of polarization and thickness dependent third-harmonic generation in multilayer black phosphorus. Appl. Phys. Lett. 2016, 109, 261902. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Y.; Shi, J.; Sun, M.; Qian, W.U.; Liu, X.F.; Liu, M. Structural studieson Raman spectroscopy and optical second harmonic generation based tin diselenide. Shandong Sci. 2017, 30, 26–32. [Google Scholar]
- Autere, A.; Ryder, C.R.; Säynätjoki, A.; Karvonen, L.; Amirsolaimani, B.; Norwood, R.A.; Peyghambarian, N.; Kieu, K.; Lipsanen, H.; Hersam, M.C.; et al. Rapid and Large-Area Characterization of Exfoliated Black Phosphorus Using Third-Harmonic Generation Microscopy. J. Phys. Chem. Lett. 2017, 8, 1343–1350. [Google Scholar] [CrossRef]
- Youngblood, N.; Peng, R.; Nemilentsau, A.; Low, T.; Li, M. Layer-Tunable Third-Harmonic Generation in Multilayer Black Phosphorus. ACS Photonics 2017, 4, 8–14. [Google Scholar] [CrossRef]
- Li, X.-L.; Han, W.-P.; Wu, J.-B.; Qiao, X.-F.; Zhang, J.; Tan, P.-H. Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination. Adv. Funct. Mater. 2017, 27, 1604468. [Google Scholar] [CrossRef]
- Maragkakis, G.M.; Psilodimitrakopoulos, S.; Mouchliadis, L.; Paradisanos, I.; Lemonis, A.; Kioseoglou, G.; Stratakis, E. Imaging the crystal orientation of 2D transition metal dichalcogenides using polarization-resolved second-harmonic generation. Opto-Electron. Adv. 2019, 2, 19002601–19002608. [Google Scholar] [CrossRef]
- Malard, L.M.; Alencar, T.V.; Barboza, A.P.M.; Mak, K.F.; de Paula, A.M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 2013, 87, 201401. [Google Scholar] [CrossRef] [Green Version]
- Balla, N.K.; O’Brien, M.; McEvoy, N.; Duesberg, G.S.; Rigneault, H.; Brasselet, S.; McCloskey, D. Effects of Excitonic Resonance on Second and Third Order Nonlinear Scattering from Few-Layer MoS2. ACS Photonics 2018, 5, 1235–1240. [Google Scholar] [CrossRef]
- Yin, X.; Ye, Z.; Chenet, D.A.; Ye, Y.; O’Brien, K.; Hone, J.C.; Zhang, X. Edge Nonlinear Optics on a MoS2; Atomic Monolayer. Science 2014, 344, 488. [Google Scholar] [CrossRef]
- Ribeiro-Soares, J.; Janisch, C.; Liu, Z.; Elías, A.L.; Dresselhaus, M.S.; Terrones, M.; Cançado, L.G.; Jorio, A. Second Harmonic Generation in WSe 2. 2D Mater. 2015, 2, 045015. [Google Scholar] [CrossRef]
- Beams, R.; Cançado, L.G.; Krylyuk, S.; Kalish, I.; Kalanyan, B.; Singh, A.K.; Choudhary, K.; Bruma, A.; Vora, P.M.; Tavazza, F.; et al. Characterization of Few-Layer 1T′ MoTe2 by Polarization-Resolved Second Harmonic Generation and Raman Scattering. ACS Nano. 2016, 10, 9626–9636. [Google Scholar] [CrossRef]
- Hsu, W.-T.; Zhao, Z.-A.; Li, L.-J.; Chen, C.-H.; Chiu, M.-H.; Chang, P.-S.; Chou, Y.-C.; Chang, W.-H. Second Harmonic Generation from Artificially Stacked Transition Metal Dichalcogenide Twisted Bilayers. ACS Nano. 2014, 8, 2951–2958. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Lin, C.-H.; Tseng, Y.-W.; Huang, K.-H.; Lee, Y.-H. Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano. Lett. 2015, 15, 410–415. [Google Scholar] [CrossRef]
- Fan, X.; Jiang, Y.; Zhuang, X.; Liu, H.; Xu, T.; Zheng, W.; Fan, P.; Li, H.; Wu, X.; Zhu, X.; et al. Broken Symmetry Induced Strong Nonlinear Optical Effects in Spiral WS2 Nanosheets. ACS Nano. 2017, 11, 4892–4898. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhou, M.; Liu, J.; Xu, J.; Fu, L. Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater. 2019, 62, 759–775. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 2016, 45, 63–82. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Lee, M.-J.; Heo, H.; Sung, J.; Kim, K.; Hwang, H.; Jo, M.-H. Deterministic Two-Dimensional Polymorphism Growth of Hexagonal n-Type SnS 2 and Orthorhombic p-Type SnS Crystals. Nano. Lett. 2015, 15, 3703–3708. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.; Huang, D.; Sun, H.; Fan, F.; Feng, J.; Wang, Z.; Ning, C.Z. Room-temperature Continuous-wave Lasing from Monolayer Molybdenum Ditelluride with a Silicon Nanobeam Cavity. arXiv 2017, arXiv:1701.07921. [Google Scholar] [CrossRef] [Green Version]
- Mai, C.; Barrette, A.; Yu, Y.; Semenov, Y.G.; Kim, K.W.; Cao, L.; Gundogdu, K. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano. Lett 2014, 14, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhao, Y.; Feng, Q.; Lu, H.; Zhang, S.; Zhang, N.; Ma, C.; Li, J.; Zheng, J.; Zhang, J.; et al. Linear Dichroism and Nondestructive Crystalline Identification of Anisotropic Semimetal Few-Layer MoTe2. Small 2019, 15, 1903159. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, J.; Zhu, H.; Li, Y.; Alsaid, Y.; Fong, K.Y.; Zhou, Y.; Wang, S.; Shi, W.; Wang, Y.; et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 2017, 550, 487–491. [Google Scholar] [CrossRef]
- Su, H.; Liu, X.; Wei, C.; Li, J.; Sun, Z.; Liu, Q.; Zhou, X.; Deng, J.; Yi, H.; Hao, Q.; et al. Pressure-Controlled Structural Symmetry Transition in Layered InSe. Laser Photonics Rev. 2019, 13, 1900012. [Google Scholar] [CrossRef] [Green Version]
- Le, C.T.; Clark, D.J.; Ullah, F.; Jang, J.I.; Senthilkumar, V.; Sim, Y.; Seong, M.-J.; Chung, K.-H.; Kim, J.W.; Park, S.; et al. Impact of Selenium Doping on Resonant Second-Harmonic Generation in Monolayer MoS2. ACS Photonics 2017, 4, 38–44. [Google Scholar] [CrossRef]
- Hoang, A.T.; Shinde, S.M.; Katiyar, A.K.; Dhakal, K.P.; Chen, X.; Kim, H.; Lee, S.W.; Lee, Z.; Ahn, J.-H. Orientation-dependent optical characterization of atomically thin transition metal ditellurides. Nanoscale 2018, 10, 21978–21984. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Sun, X.; Zhang, D.; Zheng, W.; Xiaopeng, F.; He, M.; Xu, T.; Sun, L.; Wang, X.; Pan, A. Controlled Vapor Growth and Nonlinear Optical Applications of Large-Area 3R Phase WS2 and WSe2 Atomic Layers. Adv. Funct. Mater. 2019, 29, 1806874. [Google Scholar] [CrossRef]
- Janisch, C.; Wang, Y.; Ma, D.; Mehta, N.; Elías, A.L.; Perea-López, N.; Terrones, M.; Crespi, V.; Liu, Z. Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers. Sci. Rep. 2014, 4, 5530. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Carvalho, B.; Kahn, E.; Lv, R.; Rao, R.; Terrones, H.; Pimenta, M.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002. [Google Scholar] [CrossRef]
- Carvalho, B.R.; Wang, Y.; Fujisawa, K.; Zhang, T.; Kahn, E.; Bilgin, I.; Ajayan, P.M.; de Paula, A.M.; Pimenta, M.A.; Kar, S.; et al. Nonlinear Dark-Field Imaging of One-Dimensional Defects in Monolayer Dichalcogenides. Nano. Lett. 2020, 20, 284–291. [Google Scholar] [CrossRef]
- Karvonen, L.; Säynätjoki, A.; Huttunen, M.J.; Autere, A.; Amirsolaimani, B.; Li, S.; Norwood, R.A.; Peyghambarian, N.; Lipsanen, H.; Eda, G.; et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat. Commun. 2017, 8, 15714. [Google Scholar] [CrossRef]
- Chen, J.; Hong, Z.; Chen, Y.; Lin, B.-Z.; Gao, B. One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light. Mater. Lett. 2015, 145, 129–132. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, D.; Shan, Y.; Jiang, T.; Zhang, Z.; Liu, K.; Shi, L.; Cheng, J.; Sipe, J.E.; Liu, W.-T.; et al. Doping-Induced Second-Harmonic Generation in Centrosymmetric Graphene from Quadrupole Response. Phys. Rev. Lett. 2019, 122, 047401. [Google Scholar] [CrossRef] [Green Version]
- Rosa, H.G.; Junpeng, L.; Gomes, L.C.; Rodrigues, M.J.L.F.; Haur, S.C.; Gomes, J.C.V. Second-Harmonic Spectroscopy for Defects Engineering Monitoring in Transition Metal Dichalcogenides. Adv. Opt. Mater. 2018, 6, 1701327. [Google Scholar] [CrossRef]
- Kong, L.; Mu, X.; Fan, X.; Li, R.; Zhang, Y.; Song, P.; Ma, F.; Sun, M. Site-selected N vacancy of g-C3N4 for photocatalysis and physical mechanism. Appl. Mater. Today 2018, 13, 329–338. [Google Scholar] [CrossRef]
- Kim, D.; Lim, D. Optical second-harmonic generation in few-layer MoSe2. J. Korean Phys. Soc. 2015, 66, 816–820. [Google Scholar] [CrossRef]
- Lin, Z.; Thee, M.; Elías, A.; Feng, S.; Zhou, C.; Fujisawa, K.; Perea-Lopez, N.; Carozo, V.; Terrones, H.; Terrones, M. Facile synthesis of MoS2 and MoXW1-xS2 triangular monolayers. APL Mater. 2014, 2, 092514. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Liu, Z.; Lupini, A.R.; Shi, G.; Lin, J.; Najmaei, S.; Lin, Z.; Elías, A.L.; Berkdemir, A.; You, G.; et al. Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide. Nano. Lett. 2014, 14, 442–449. [Google Scholar] [CrossRef]
- Kumar, N.; Najmaei, S.; Cui, Q.; Ceballos, F.; Ajayan, P.; Lou, J.; Zhao, H. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 2013, 87, 161403. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Xiao, Z.; Mu, S.; Wang, F.; Liu, Y.; Song, J.; Huang, X.; Jiang, L.; Xiao, J.; Liu, L.; et al. A Facile Space-Confined Solid-Phase Sulfurization Strategy for Growth of High-Quality Ultrathin Molybdenum Disulfide Single Crystals. Nano. Lett. 2018, 18, 2021–2032. [Google Scholar] [CrossRef]
- Duan, X.; Wang, C.; Shaw, J.; Cheng, R.; Chen, Y.; Li, H.; Wu, X.; Tang, Y.; Zhang, Q.L.; Pan, A.; et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9. [Google Scholar] [CrossRef]
- Behranginia, A.; Yasaei, P.; Majee, A.K.; Sangwan, V.K.; Long, F.; Foss, C.J.; Foroozan, T.; Fuladi, S.; Hantehzadeh, M.R.; Shahbazianyassar, R. Direct Growth of High Mobility and Low-Noise Lateral MoS2–Graphene Heterostructure Electronics. Small 2017, 13, 1604301. [Google Scholar] [CrossRef]
- Liu, J.; Lo, T.W.; Sun, J.; Yip, C.T.; Lam, C.H.; Lei, D.Y. A comprehensive comparison study on the vibrational and optical properties of CVD-grown and mechanically exfoliated few-layered WS2. J. Mater. Chem. C 2017, 5, 11239–11245. [Google Scholar] [CrossRef]
- Cunha, R.; Cadore, A.; Ramos, S.; Watanabe, K.; Taniguchi, T.; Kim, S.; Solntsev, A.; Aharonovich, I.; Malard, L. Second harmonic generation in defective hexagonal boron nitride. J. Phys. Condens. Matter 2020, 32, 19LT01. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Li, Y.; Huang, D.; Tong, Q.; Yao, W.; Liu, W.-T.; Wu, S. Stacking symmetry governed second harmonic generation in graphene trilayers. Sci. Adv. 2018, 4, eaat0074. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Cheng, J.; Zhou, Y.; Cao, T.; Hong, H.; Liao, Z.; Wu, S.; Peng, H.; Liu, K.; Yu, D. Strong Second-Harmonic Generation in Atomic Layered GaSe. J. Am. Chem. Soc. 2015, 137, 7994–7997. [Google Scholar] [CrossRef]
- Rui, L.; Yajun, Z.; Xuefeng, X.; Yi, Z.; Maodu, C.; Mengtao, S. Optical characterizations of two-dimensional materials using nonlinear optical microscopies of CARS, TPEF, and SHG. Nanophotonics 2018, 7, 873–881. [Google Scholar] [CrossRef]
- Li, D.; Wei, C.; Song, J.; Huang, X.; Wang, F.; Liu, K.; Xiong, W.; Hong, X.; Cui, B.; Feng, A.; et al. Anisotropic Enhancement of Second-Harmonic Generation in Monolayer and Bilayer MoS2 by Integrating with TiO2 Nanowires. Nano. Lett. 2019, 19, 4195–4204. [Google Scholar] [CrossRef]
- Mennel, L.; Paur, M.; Mueller, T. Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2. APL Photonics 2019, 4, 034404. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Zhang, J.; Li, Z.; Hong, H.; Wang, J.; Zhang, Z.; Zhou, X.; Qiao, R.; Xu, J.; Gao, P.; et al. Monitoring Local Strain Vector in Atomic-Layered MoSe2 by Second-Harmonic Generation. Nano. Lett. 2017, 17, 7539–7543. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wang, J.; Zhang, Z.; Su, Y.; Guo, Y.; Qiao, R.; Song, P.; Gao, P.; Zhao, Y.; Jiao, Q.; et al. Universal Imaging of Full Strain Tensor in 2D Crystals with Third-Harmonic Generation. Adv. Mater. 2019, 31, 1808160. [Google Scholar] [CrossRef]
- Koivistoinen, J.; Aumanen, J.; Hiltunen, V.-M.; Myllyperkiö, P.; Johansson, A.; Pettersson, M. Real-time monitoring of graphene patterning with wide-field four-wave mixing microscopy. Appl. Phys. Lett. 2016, 108, 153112. [Google Scholar] [CrossRef] [Green Version]
- Dovbeshko, G.; Fesenko, O.; Dementjev, A.; Karpicz, R.; Fedorov, V.; Posudievsky, O.Y. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide. Nanoscale Res. Lett. 2014, 9, 263. [Google Scholar] [CrossRef] [PubMed]
- Streets, A.M.; Li, A.; Chen, T.; Huang, Y. Imaging without Fluorescence: Nonlinear Optical Microscopy for Quantitative Cellular Imaging. Anal. Chem. 2014, 86, 8506–8513. [Google Scholar] [CrossRef]
- Boule, C.; Vaclavkova, D.; Bartos, M.; Nogajewski, K.; Zdražil, L.; Taniguchi, T.; Watanabe, K.; Potemski, M.; Kasprzak, J. Coherent dynamics and mapping of excitons in single-layer MoSe2 and WSe2 at the homogeneous limit. Phys. Rev. Mater. 2020, 4, 034001. [Google Scholar] [CrossRef] [Green Version]
- Jakubczyk, T.; Delmonte, V.; Koperski, M.; Nogajewski, K.; Faugeras, C.; Langbein, W.; Potemski, M.; Kasprzak, J. Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy. Nano. Lett. 2016, 16, 5333–5339. [Google Scholar] [CrossRef]
- Becker, M.; Scarpelli, L.; Nedelcu, G.; Rainò, G.; Masia, F.; Borri, P.; Stöferle, T.; Kovalenko, M.; Langbein, W.; Mahrt, R. Long Exciton Dephasing Time and Coherent Phonon Coupling in CsPbBr2Cl Perovskite Nanocrystals. Nano. Lett. 2018, 18, 7546–7551. [Google Scholar] [CrossRef] [Green Version]
- Jakubczyk, T.; Nogajewski, K.; Molas, M.R.; Bartos, M.; Langbein, W.W.; Potemski, M.; Kasprzak, J. Impact of environment on dynamics of exciton complexes in a WS2 monolayer. 2D Mater. 2018, 5, 031007. [Google Scholar] [CrossRef]
- Jakubczyk, T.; Nayak, G.; Scarpelli, L.; Liu, W.-L.; Dubey, S.; Bendiab, N.; Marty, L.; Taniguchi, T.; Watanabe, K.; Masia, F.; et al. Coherence and Density Dynamics of Excitons in a Single-Layer MoS2 Reaching the Homogeneous Limit. ACS Nano. 2019, 13, 3500–3511. [Google Scholar] [CrossRef]
- Koivistoinen, J.; Myllyperkio, P.; Pettersson, M. Time-Resolved Coherent Anti-Stokes Raman Scattering of Graphene: Dephasing Dynamics of Optical Phonon. J. Phys. Chem. Lett. 2017, 8, 4108–4112. [Google Scholar] [CrossRef]
- Tobias, M.; Michael, S.; Benjamin, D.; Jürgen, P. Accumulating advantages, reducing limitations Multimodal nonlinear imaging in biomedical sciences—The synergy of multiple contrast mechanisms. J. Biophoton. 2013, 6, 887–904. [Google Scholar] [CrossRef]
- Yue, S.; Slipchenko, M.N.; Cheng, J.X. Multimodal Nonlinear Optical Microscopy. Laser Photonics Rev. 2011, 5, 496–512. [Google Scholar] [CrossRef]
- Mokim, M.; Card, A.; Ganikhanov, F. Nonlinear optical susceptibility of atomically thin WX2 crystals. Opt. Mater. 2019, 88, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, D.R.; Pavlov, V.V.; Rodina, A.V.; Pisarev, R.V.; Mund, J.; Warkentin, W.; Bayer, M. Exciton Spectroscopy of Semiconductors by the Method of Optical Harmonics Generation (Review). Phys. Solid State 2018, 60, 1471–1486. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.; Hentschel, M.; Lippitz, M.; Giessen, H. Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Opt. Lett. 2012, 37, 4741–4743. [Google Scholar] [CrossRef]
- Stiehm, T.; Schneider, R.; Kern, J.; Niehues, I.; Michaelis de Vasconcellos, S.; Bratschitsch, R. Supercontinuum second harmonic generation spectroscopy of atomically thin semiconductors. Rev. Sci. Instrum. 2019, 90, 083102. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-X.; Volkmer, A.; Book, L.; Xie, X. Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles. J. Phys. Chem. B 2002, 106, 8493–8498. [Google Scholar] [CrossRef]
- Slipchenko, M.; Oglesbee, R.; Zhang, D.; Wu, W.; Cheng, J.-X. Heterodyne detected nonlinear optical imaging in a lock-in free manner. J. Biophotonics 2012, 5, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Mannebach, E.M.; Duerloo, K.-A.N.; Pellouchoud, L.A.; Sher, M.-J.; Nah, S.; Kuo, Y.-H.; Yu, Y.; Marshall, A.F.; Cao, L.; Reed, E.J.; et al. Ultrafast Electronic and Structural Response of Monolayer MoS2 under Intense Photoexcitation Conditions. ACS Nano. 2014, 8, 10734–10742. [Google Scholar] [CrossRef]
- Zeng, H.; Dai, J.; Yao, W.; Di, X.; Cui, X. Valley Polarization in MoS2 Monolayers by Optical Pumping. Nat. Nanotechnol. 2012, 7, 490–493. [Google Scholar] [CrossRef]
- Mak, K.F.; He, K.; Shan, J.; Heinz, T.F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Brun, S.J.; Pedersen, T.G. Intense and tunable second-harmonic generation in biased bilayer graphene. Phys. Rev. B 2015, 91, 205405. [Google Scholar] [CrossRef]
- Klein, J.; Wierzbowski, J.; Steinhoff, A.; Florian, M.; Rösner, M.; Heimbach, F.; Müller, K.; Jahnke, F.; Wehling, T.O.; Finley, J.J.; et al. Electric-Field Switchable Second-Harmonic Generation in Bilayer MoS2 by Inversion Symmetry Breaking. Nano. Lett. 2017, 17, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Li, J.; Li, H.; Dai, Q.; Tie, S.; Lan, S. Effects of substrates on the nonlinear optical responses of two-dimensional materials. Opt. Express 2015, 23, 31817–31827. [Google Scholar] [CrossRef]
- Ding, S.; Luo, Z.-J.; Xie, Y.-M.; Pan, G.-M.; Qiu, Y.-H.; Chen, K.; Zhou, L.; Wang, J.; Lin, H.-Q.; Wang, Q. Strong magnetic resonances and largely enhanced second-harmonic generation of colloidal MoS2 and ReS2@Au nanoantennas with assembled 2D nanosheets. Nanoscale 2017, 10, 124–131. [Google Scholar] [CrossRef]
- Wang, R.; Wang, F.; Long, J.; Tao, Y.; Zhou, L.; Fu, H.; Liu, Y.; Jiao, B.; Deng, L.; Xiong, W. Polarized second-harmonic generation optical microscopy for laser-directed assembly of ZnO nanowires. Opt. Lett. 2019, 44, 4291–4294. [Google Scholar] [CrossRef]
- Huang, X.; Irmak, S.; Lu, Y.F.; Pipinos, I.; Casale, G.; Subbiah, J. Spontaneous and Coherent Anti-Stokes Raman Spectroscopy of Human Gastrocnemius Muscle Biopsies in Ch-Stretching Region for Discrimination of Peripheral Artery Disease. Biomed. Opt. Express 2015, 6, 2766–2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Yuan, Y.; Bielecki, T.A.; Mohapatra, B.C.; Luan, H.; Silva-Lopez, E.; West, W.W.; Band, V.; Lu, Y.; Band, H.; et al. Discrimination of Tumor from Normal Tissues in a Mouse Model of Breast Cancer Using Cars Spectroscopy Combined with Pc-Dfa Methodology. J. Raman Spectrosc. 2017, 48, 1166–1170. [Google Scholar] [CrossRef]
- Lafetá, L.; Cadore, A.R.; Mendes-de-Sa, T.G.; Watanabe, K.; Taniguchi, T.; Campos, L.C.; Jorio, A.; Malard, L.M. Anomalous Nonlinear Optical Response of Graphene Near Phonon Resonances. Nano. Lett. 2017, 17, 3447–3451. [Google Scholar] [CrossRef] [Green Version]
Advantages | Disadvantages | |
---|---|---|
Single-frequency CARS | High speed (us/pixel) | No spectral information |
Simple detection at new frequency | Nonresonant background | |
Efficient backward detection | Background from fluorescence | |
Single-frequency SRS | High speed (us/pixel) | No spectral information |
No nonresonant background | Complicated detection | |
Linear to molecular concentration | Accompanied by other pump-probe contrasts | |
Phase matched | ||
Not sensitive to incoherent background | ||
Multiplex CARS or SRS | Spectrally resolved detection | Integration time (tens of ms/pixle) |
Background removed in post-processing | ||
Hyperspectral CARS or SRS | Spectrally resolved detection | Narrow spectral window (200 cm−1) |
Fast acquisition (ms/pixel) | ||
Spontaneous Raman | Shot noise limited | Long integration time (s/pixle) |
Cost-effective (cw laser) | Very sensitive to incoherent background | |
Whole spectrum analysis |
Assignment | GNP (cm−1) | GO (cm−1) | HOPG (cm−1) |
---|---|---|---|
D | 1300 | 1306 | / |
New band | / | 1419 | / |
New band | 1500 | 1516 | / |
G | 1555 | 1584 | 1587 |
D’ | / | / | * |
2D(G’) | / | * | * |
D + D1 | 2460 | * | * |
2G CARS | 2960 | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Fu, H.; Lv, T.; Wang, C.; Gao, H.; Li, D.; Deng, L.; Xiong, W. Nonlinear Optical Characterization of 2D Materials. Nanomaterials 2020, 10, 2263. https://doi.org/10.3390/nano10112263
Zhou L, Fu H, Lv T, Wang C, Gao H, Li D, Deng L, Xiong W. Nonlinear Optical Characterization of 2D Materials. Nanomaterials. 2020; 10(11):2263. https://doi.org/10.3390/nano10112263
Chicago/Turabian StyleZhou, Linlin, Huange Fu, Ting Lv, Chengbo Wang, Hui Gao, Daqian Li, Leimin Deng, and Wei Xiong. 2020. "Nonlinear Optical Characterization of 2D Materials" Nanomaterials 10, no. 11: 2263. https://doi.org/10.3390/nano10112263
APA StyleZhou, L., Fu, H., Lv, T., Wang, C., Gao, H., Li, D., Deng, L., & Xiong, W. (2020). Nonlinear Optical Characterization of 2D Materials. Nanomaterials, 10(11), 2263. https://doi.org/10.3390/nano10112263