Porous Si/Fe2O3 Dual Network Anode for Lithium–Ion Battery Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qin, C.L.; Zheng, D.H.; Hu, Q.F.; Zhang, X.M.; Wang, Z.F.; Li, Y.Y.; Zhu, J.S.; Ou, J.Z.; Yang, C.H.; Wang, Y.C. Flexible integrated metallic glass-based sandwich electrodes for high-performance wearable all-solid-state supercapacitors. Appl. Mater. Today 2020, 19, 100539. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Z.F.; Xi, W.; He, G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem. Commun. 2019, 101, 68–72. [Google Scholar] [CrossRef]
- Wang, Z.F.; Zhang, X.M.; Liu, X.L.; Zhang, Y.G.; Zhao, W.M.; Li, Y.Y.; Qin, C.L.; Bakenov, Z. High specific surface area bimodal porous carbon derived from biomass reed flowers for high performance lithium-sulfur batteries. J. Colloid Interface Sci. 2020, 569, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Zhang, X.M.; Liu, X.L.; Wang, Y.C.; Zhang, Y.G.; Li, Y.Y.; Zhao, W.M.; Qin, C.L.; Mukanova, A.; Bakenov, Z. Bimodal nanoporous NiO@Ni–Si network prepared by dealloying method for stable Li-ion storage. J. Power Sources 2020, 449, 227550. [Google Scholar] [CrossRef]
- Culebras, M.; Geaney, H.; Beaucamp, A.; Upadhyaya, P.; Dalton, E.; Ryan, K.M.; Collins, M.N. Bio-derived carbon nanofibres from lignin as high-performance Li-ion anode materials. ChemSusChem 2019, 12, 4516–4521. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Chen, Z.W.; Amine, K. 30 Years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef] [Green Version]
- Ashuri, M.; He, Q.R.; Shaw, L.L. Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter. Nanoscale 2016, 8, 74–103. [Google Scholar] [CrossRef]
- Jiang, H.R.; Lu, Z.H.; Wu, M.C.; Ciucci, F.; Zhao, T.S. Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 2016, 23, 97–104. [Google Scholar] [CrossRef]
- Kang, W.; Kim, J.C.; Kim, D.W. Waste glass microfiber filter-derived fabrication of fibrous yolk-shell structured silicon/carbon composite freestanding electrodes for lithium-ion battery anodes. J. Power Sources 2020, 468, 228407. [Google Scholar] [CrossRef]
- Tao, J.M.; Lu, L.; Wu, B.Q.; Fan, X.Y.; Yang, Y.M.; Li, J.X.; Lin, Y.B.; Li, Y.Y.; Huang, Z.G.; Lu, J. Dramatic improvement enabled by incorporating thermal conductive TiN into Si-based anodes for lithium ion batteries. Energy Storage Mater. 2020, 29, 367–376. [Google Scholar] [CrossRef]
- Li, W.H.; Sun, X.L.; Yu, Y. Si-, Ge-, Sn-based anode materials for lithium-ion batteries: From structure design to electrochemical performance. Small Methods 2017, 1, 1600037. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.Z.; Tang, Y.X.; Malyi, O.I.; Zhang, Y.Y.; Zhu, Z.Q.; Lv, Z.S.; Ge, X.; Xia, H.R.; Huang, J.Y.; Lai, Y.K.; et al. Mechanically reinforced localized structure design to stabilize solid-electrolyte interface of the composited electrode of Si nanoparticles and TiO2 nanotubes. Small 2020, 16, 2002094. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fang, C.; Wei, W.F.; Zhang, L.; Ye, Z.; He, G.; Huang, Y.H. Nano-ordered structure regulation in delithiated Si anode triggered by homogeneous and stable Li-ion diffusion at the interface. Nano Energy 2020, 72, 104651. [Google Scholar] [CrossRef]
- Zeng, L.X.; Liu, R.P.; Han, L.; Luo, F.Q.; Chen, X.; Wang, J.B.; Qian, Q.R.; Chen, Q.H.; Wei, M.D. Preparation of a Si/SiO2-ordered-mesoporous-carbon nanocomposite as an anode for high-performance lithium-ion and sodium-ion batteries. Chem. Eur. J. 2018, 24, 4841–4848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; Zhou, X.Y.; Tang, J.J.; Ren, Y.P.; Jiang, M.; Tang, Y.G.; Wang, H.Y.; Yang, J. Phosphoric acid induced homogeneous crosslinked phosphorus doped porous Si nanoparticles with superior lithium storage performance. Appl. Surf. Sci. 2020, 509, 144873. [Google Scholar] [CrossRef]
- Chen, S.; Ling, H.Y.; Chen, H.; Zhang, S.Q.; Du, A.J.; Yan, C. Development of cross-linked dextrin as aqueous binders for silicon based anodes. J. Power Sources 2020, 450, 227671. [Google Scholar] [CrossRef]
- Li, Q.G.; Wang, Y.H.; Lu, B.; Yu, J.; Yuan, M.L.; Tan, Q.Q.; Zhong, Z.Y.; Su, F.B. Hollow core-shell structured Si@NiAl-LDH composite as high-performance anode material in lithium-ion batteries. Electrochim. Acta 2020, 331, 135331. [Google Scholar] [CrossRef]
- Yang, W.T.; Ying, H.J.; Zhang, S.L.; Guo, R.N.; Wang, J.L.; Han, W.Q. Electrochemical performance enhancement of porous Si lithium-ion battery anode by integrating with optimized carbonaceous materials. Electrochim. Acta 2020, 337, 135687. [Google Scholar] [CrossRef]
- Fang, R.; Xiao, W.; Miao, C.; Mei, P.; Zhang, Y.; Yan, X.M.; Jiang, Y. Fabrication of Si-SiO2@Fe/NC composite from industrial waste AlSiFe powders as high stability anodes for lithium ion batteries. Electrochim. Acta 2019, 324, 134860. [Google Scholar] [CrossRef]
- Geng, L.Y.; Yang, D.D.; Gao, S.L.; Zhang, Z.X.; Sun, F.Y.; Pan, Y.Y.; Li, S.Q.; Li, X.H.; Cao, P.F.; Yang, H.B. Facile fabrication of porous Si microspheres from low-cost precursors for high-capacity electrode. Adv. Mater. Interfaces 2020, 3, 1901726. [Google Scholar] [CrossRef]
- Cho, G.B.; Park, S.H.; Park, S.H.; Ju, J.H.; Cho, K.K.; Ahn, H.J.; Kim, K.W. Si film electrodes adopting a dual thermal effect of metal-induced crystallization (MIC) and kirkendall effect. J. Alloys Compd. 2019, 809, 151810. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, H.J.; Hwang, T.H.; Choi, S.; Park, S.H.; Deniz, E.; Jung, D.S.; Choi, J.W. Delicate structural control of Si-SiOx-C composite via high-speed spray pyrolysis for Li-ion battery anodes. Nano Lett. 2017, 17, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zheng, L.H.; Zhan, J.; Du, N.; Liu, W.J.; Ma, J.; Su, L.W.; Wang, L.B. Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes. J. Power Sources 2020, 449, 227513. [Google Scholar] [CrossRef]
- Grinbom, G.; Duveau, D.; Gershinsky, G.; Monconduit, L.; Zitoun, D. Silicon/hollow γ-Fe2O3 nanoparticles as efficient anodes for Li-ion batteries. Chem. Mater. 2015, 27, 2703–2710. [Google Scholar] [CrossRef]
- Wang, Z.F.; Zhang, X.M.; Yan, Y.H.; Zhang, Y.G.; Wang, Y.C.; Qin, C.L.; Bakenov, Z. Nanoporous GeO2/Cu/Cu2O network synthesized by dealloying method for stable Li-ion storage. Electrochim. Acta 2019, 300, 363–372. [Google Scholar] [CrossRef]
- Wang, Z.F.; Zhang, X.M.; Zhang, Y.G.; Li, M.; Qin, C.L.; Bakenov, Z. Chemical dealloying synthesis of CuS nanowire-on-nanoplate network as anode materials for Li-ion batteries. Metals 2018, 8, 252. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.F.; Fei, P.Y.; Xiong, H.Q.; Qin, C.L.; Zhao, W.M.; Liu, X.Z. CoFe2O4 nanoplates synthesized by dealloying method as high performance Li-ion battery anodes. Electrochim. Acta 2017, 252, 295–305. [Google Scholar] [CrossRef]
- Qin, C.L.; Zhang, Y.S.; Wang, Z.F.; Xiong, H.Q.; Yu, H.; Zhao, W.M. One-step synthesis of CuO@brass foil by dealloying method for low-cost flexible supercapacitor electrodes. J. Mater. Sci.-Mater. Electron. 2016, 27, 9206–9215. [Google Scholar] [CrossRef]
- Jain, H.; Shadangi, Y.; Shivam, V.; Chakravarty, D.; Mukhopadhyay, N.K.; Kumar, D. Phase evolution and mechanical properties of non-equiatomic Fe-Mn-Ni-Cr-Al-Si-C high entropy steel. J. Alloys Compd. 2020, 834, 155013. [Google Scholar] [CrossRef]
- Novak, P.; Nova, K. Oxidation behavior of Fe-Al, Fe-Si and Fe-Al-Si intermetallics. Materials 2019, 12, 1748. [Google Scholar] [CrossRef] [Green Version]
- Garibaldi, M.; Ashcroft, I.; Lemke, J.N.; Simonelli, M.; Hague, R. Effect of annealing on the microstructure and magnetic properties of soft magnetic Fe-Si produced via laser additive manufacturing. Scr. Mater. 2018, 142, 121–125. [Google Scholar] [CrossRef]
- Li, P.; Hwang, J.Y.; Sun, Y.K. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery. ACS Nano 2019, 13, 2624–2633. [Google Scholar] [CrossRef] [PubMed]
- An, Y.L.; Tian, Y.; Wei, H.; Xi, B.J.; Xiong, S.L.; Feng, J.K.; Qian, Y.T. Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv. Funct. Mater. 2019, 30, 1908721. [Google Scholar] [CrossRef]
- Raj, H.; Singh, S.; Sil, A. TiO2 shielded Si nano-composite anode for high energy Li-ion batteries: The morphological and structural study of electrodes after charge-discharge process. Electrochim. Acta 2019, 326, 134981. [Google Scholar] [CrossRef]
- Wang, D.K.; Zhou, C.L.; Cao, B.; Xu, Y.C.; Zhang, D.H.; Li, A.; Zhou, J.S.; Ma, Z.K.; Chen, X.H.; Song, H.H. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Mater. 2020, 24, 312–318. [Google Scholar] [CrossRef]
- Zhang, N.S.; Wang, X.; Feng, J.Y.; Huang, H.T.; Guo, Y.S.; Li, Z.S.; Zou, Z.G. Paving the road toward the use of β-Fe2O3 in solar water splitting: Raman identification, phase transformation and strategies for phase stabilization. Nat. Sci. Rev. 2020, 7, 1059–1067. [Google Scholar] [CrossRef] [Green Version]
- Temple, P.A.; Hathaway, C.E. Multiphonon Raman spectrum of silicon. Phys. Rev. B 1973, 7, 3685–3697. [Google Scholar] [CrossRef]
- Zhao, B.G.; Jia, S.; Yuan, Y.L.; Song, T.T.; Ma, H.L.; Zhai, Q.J.; Gao, Y.L. Paving the way to Fe3O4 nano- and microoctahedra by dealloying Al-Fe binary alloys. Mater. Charact. 2019, 156, 109869. [Google Scholar] [CrossRef]
- Luo, W.; Wang, Y.X.; Wang, L.J.; Jiang, W.; Chou, S.L.; Dou, S.X.; Liu, H.K.; Yang, J.P. Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano 2016, 10, 10524–10532. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.H.; Wang, Y.Y.; Hou, B.H.; Zhang, J.P.; Wang, R.S.; Wu, X.L. Dual-carbon enhanced silicon-based composite as superior anode material for lithium-ion batteries. J. Power Sources 2016, 307, 738–745. [Google Scholar] [CrossRef]
- Wang, Z.F.; Zhang, X.M.; Liu, X.L.; Zhang, W.Q.; Zhang, Y.G.; Li, Y.Y.; Qin, C.L.; Zhao, W.M.; Bakenov, Z. Dual-network nanoporous NiFe2O4/NiO composites for high performance Li-ion battery anodes. Chem. Eng. J. 2020, 388, 124207. [Google Scholar] [CrossRef]
- Guo, W.X.; Sun, W.W.; Lv, L.P.; Kong, S.F.; Wang, Y. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 2017, 11, 4198–4205. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.H.; Shi, Y.R.; Wang, Z.F.; Qin, C.L.; Zhang, Y.G. AlF3 microrods modified nanoporous Ge/Ag anodes fabricated by one-step dealloying strategy for stable lithium storage. Mater. Lett. 2020, 276, 128254. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Du, Y.J.; Li, H.B. Engineering of a bowl-like Si@rGO architecture for an improved lithium ion battery via a synergistic effect. Nanotechnology 2019, 31, 095402. [Google Scholar] [CrossRef]
- Fukata, N.; Mitome, M.; Bando, Y.; Wu, W.; Wang, Z.L. Lithium-ion battery anodes using Si-Fe based nanocomposite structures. Nano Energy 2016, 26, 37–42. [Google Scholar] [CrossRef]
- Polat, D.B.; Keles, O.; Amine, K. Compositionally-graded silicon-copper helical arrays as anodes for lithium-ion batteries. J. Power Sources 2016, 304, 273–281. [Google Scholar] [CrossRef]
- Zhu, W.J.; Wang, Y.Y.; Yu, Y.Z.; Hu, Y.H.; Chen, Y.C. Core-shell structured alpha-Fe2O3@Li4Ti5O12 composite as anode materials for high-performance lithium-ion batteries. J. Alloys Compd. 2020, 813, 152175. [Google Scholar] [CrossRef]
- Li, Y.F.; Fu, Y.Y.; Chen, S.H.; Huang, Z.Z.; Wang, L.; Song, Y.H. Porous Fe2O3/Fe3O4@carbon octahedron arrayed on three-dimensional graphene foam for lithium-ion battery. Compos. Part. B Eng. 2019, 171, 130–137. [Google Scholar] [CrossRef]
- Kwon, H.J.; Hwang, J.Y.; Shin, H.J.; Jeong, M.G.; Chung, K.Y.; Sun, Y.K.; Jung, H.G. Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries. Nano Lett. 2020, 20, 625–635. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.W.; Yu, X.F.; Chen, S.L. Improving rate capacity and cycling stability of Si-anode lithium ion battery by using copper nanowire as conductive additive. J. Alloys Compd. 2020, 822, 153664. [Google Scholar] [CrossRef]
- Sekar, S.; Ahmed, A.A.; Inamdar, A.I.; Lee, Y.; Im, H.; Kim, D.Y.; Lee, S. Activated carbon-decorated spherical silicon nanocrystal composites synchronously-derived from rice husks for anodic source of lithium-ion battery. Nanomaterials 2019, 9, 1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yan, Y.; Liu, X.; Zhao, Y.; Wu, X.; Zhou, J.; Wang, Z. Porous Si/Fe2O3 Dual Network Anode for Lithium–Ion Battery Application. Nanomaterials 2020, 10, 2331. https://doi.org/10.3390/nano10122331
Chen Y, Yan Y, Liu X, Zhao Y, Wu X, Zhou J, Wang Z. Porous Si/Fe2O3 Dual Network Anode for Lithium–Ion Battery Application. Nanomaterials. 2020; 10(12):2331. https://doi.org/10.3390/nano10122331
Chicago/Turabian StyleChen, Yanxu, Yajing Yan, Xiaoli Liu, Yan Zhao, Xiaoyu Wu, Jun Zhou, and Zhifeng Wang. 2020. "Porous Si/Fe2O3 Dual Network Anode for Lithium–Ion Battery Application" Nanomaterials 10, no. 12: 2331. https://doi.org/10.3390/nano10122331
APA StyleChen, Y., Yan, Y., Liu, X., Zhao, Y., Wu, X., Zhou, J., & Wang, Z. (2020). Porous Si/Fe2O3 Dual Network Anode for Lithium–Ion Battery Application. Nanomaterials, 10(12), 2331. https://doi.org/10.3390/nano10122331