Microfluidic High-Throughput Platforms for Discovery of Novel Materials
Abstract
:1. Introduction
2. High-Throughput Microfluidic Platforms
3. Current Applications of HTPs for Material Synthesis
3.1. Inorganic Metals and Metal Alloys
3.2. Inorganic Biomaterials and Organic Polymer
4. Conclusions and Prospective
Funding
Conflicts of Interest
References
- Mayr, L.M.; Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 2009, 9, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Dévora, I.J.; Zhang, B.; Reyna, D.; Shi, Z.-D.; Xu, T. High throughput miniature drug-screening platform using bioprinting technology. Biofabrication 2012, 4, 035001. [Google Scholar] [CrossRef] [PubMed]
- Kempa, E.E.; Hollywood, K.; Smith, C.A.; Barran, P. High throughput screening of complex biological samples with mass spectrometry—From bulk measurements to single cell analysis. Analyst 2019, 144, 872–891. [Google Scholar] [CrossRef] [PubMed]
- Coley, C.W.; Thomas, D.A.; Lummiss, J.A.M.; Jaworski, J.N.; Breen, C.P.; Schultz, V.; Hart, T.; Fishman, J.S.; Rogers, L.; Gao, H.; et al. A Robotic Platform for Flow Synthesis of Organic Compounds Informed by AI Panning. Science 2019, 365, eaax1566. [Google Scholar] [CrossRef] [PubMed]
- Holdren, J.P. Materials Genome Initiative for Global Competitiveness. Available online: https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf (accessed on 1 June 2011).
- AlGahtani, M.S.; Scurr, D.J.; Hook, A.L.; Anderson, D.G.; Langer, R.S.; Burley, J.C.; Alexander, M.R.; Davies, M.C. High throughput screening for biomaterials discovery. J. Control. Release 2014, 190, 115–126. [Google Scholar] [CrossRef]
- Chhatre, S.; Titchener-Hooker, N.J. Review: Microscale methods for high-throughput chromatography development in the pharmaceutical industry. J. Chem. Technol. Biotechnol. 2009, 84, 927–940. [Google Scholar] [CrossRef]
- Ueda, E.; Geyer, F.L.; Nedashkivska, V.; Levkin, P.A. Droplet Microarray: Facile formation of arrays of microdroplets and hydrogel micropads for cell screening applications. Lab. Chip 2012, 12, 5218–5224. [Google Scholar] [CrossRef]
- Hughes, I.; Hunter, D. Techniques for analysis and purification in high-throughput chemistry. Curr. Opin. Chem. Biol. 2001, 5, 243–247. [Google Scholar] [CrossRef]
- Simon, C.G., Jr.; Sheng, L.G. Combinatorial and High-Throughput Screening of Biomaterials. Adv. Mater. 2011, 23, 369–387. [Google Scholar] [CrossRef]
- McClain, R.; Streckfuss, E. 9.07 High-Throughput Purification in Support of Pharmaceutical Discovery. In Comprehensive Organic Synthesis II; Elsevier BV: Amsterdam, The Netherlands, 2014; Volume 9, pp. 160–180. [Google Scholar]
- Wang, H.Z.; Wang, H.; Ding, H.; Xiang, X.D.; Xiang, Y.; Zhang, X.K. Progress in High-Throughput Materials Synthesis and Characterization. Sci. Technol. Rev. 2015, 33, 31–49. [Google Scholar]
- Anglin, E.J.; Salisbury, C.; Bailey, S.; Hor, M.; Macardle, P.J.; Fenech, M.; Thissen, H.; Voelcker, N.H. Sorted cell microarrays as platforms for high-content informational bioassays. Lab. Chip 2010, 10, 3413. [Google Scholar] [CrossRef]
- Boehnke, K.; Iversen, P.W.; Schumacher, D.; Lallena, M.J.; Haro, R.; Amat, J.; Haybaeck, J.; Liebs, S.; Lange, M.; Schäfer, R.; et al. Assay Establishment and Validation of a High-Throughput Screening Platform for Three-Dimensional Patient-Derived Colon Cancer Organoid Cultures. J. Biomol. Screen. 2016, 21, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.H.; Zhao, S.; Bachman, H.; Nama, N.; Li, Z.; Chen, C.; Yang, S.; Wu, M.; Zhang, S.P.; Huang, T.J. Acoustofluidic Synthesis of Particulate Nanomaterials. Adv. Sci. 2019, 6, 1900913. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Ishihara, M.; Nakamura, S.; Fukuda, K.; Takayama, T.; Hiruma, S.; Murakami, K.; Fujita, M.; Yokoe, H. Preparation and Application of Bioshell Calcium Oxide (BiSCaO) Nanoparticle-Dispersions with Bactericidal Activity. Molecules 2019, 24, 3415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Tian, Z.; Hao, N.; Bachman, H.; Zhang, P.; Hu, J.; Huang, T.J. Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells. Lab. Chip 2020. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, K.; Stefansky, T.; Davy, G.; Zackay, V.F.; Parker, E.R. Rapid Method for Determining Ternary-Alloy Phase Diagrams. J. Appl. Phys. 1965, 36, 3808–3810. [Google Scholar] [CrossRef] [Green Version]
- Hanak, J.J. The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 1970, 5, 964–971. [Google Scholar] [CrossRef]
- Thomas, R.; Moulijn, J.; De Beer, V.; Medema, J. Structure/metathesis activity relations of silica supported molybdenum and tungsten oxide. J. Mol. Catal. 1980, 8, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.-D.; Sun, X.; Briceño, G.; Lou, Y.; Wang, K.-A.; Chang, H.; Wallace-Freedman, W.G.; Chen, S.-W.; Schultz, P.G. A Combinatorial Approach to Materials Discovery. Science 1995, 268, 1738–1740. [Google Scholar] [CrossRef]
- Orschel, M.; Klein, J.; Schmidt, H.W.; Maier, W.F. Detection of Reaction Selectivity on Catalyst Libraries by Spatially Resolved Mass Spectrometry. Angew. Chem. Int. Ed. Engl. 1999, 38, 2791–2794. [Google Scholar] [CrossRef]
- Senkan, S.M. High-throughput screening of solid-state catalyst libraries. Nat. Cell Biol. 1998, 394, 350–353. [Google Scholar] [CrossRef]
- Sun, X.-D.; Wang, K.-A.; Yoo, Y.; Wallace-Freedman, W.G.; Gao, C.; Xiang, X.-D.; Schultz, P.G. Solution-phase synthesis of luminescent materials libraries. Adv. Mater. 1997, 9, 1046–1049. [Google Scholar] [CrossRef]
- Zhao, J.-C.; Jackson, M.R.; Peluso, L.A.; Brewer, L.N. A Diffusion Multiple Approach for the Accelerated Design of Structural Materials. MRS Bull. 2002, 27, 324–329. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Veser, G. Heterogeneous–homogeneous interactions in catalytic microchannel reactors. AIChE J. 2006, 52, 2217–2229. [Google Scholar] [CrossRef]
- Demello, A.J. Control and detection of chemical reactions in microfluidic systems. Nat. Cell Biol. 2006, 442, 394–402. [Google Scholar] [CrossRef]
- Manz, A.; Harrison, D.; Verpoorte, E.M.; Fettinger, J.; Paulus, A.; Lüdi, H.; Widmer, H. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. J. Chromatogr. A 1992, 593, 253–258. [Google Scholar] [CrossRef]
- Nie, Z.; Li, W.; Seo, M.; Xu, S.; Kumacheva, E. Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-Assembly. J. Am. Chem. Soc. 2006, 128, 9408–9412. [Google Scholar] [CrossRef]
- Sinclair, J.; Pihl, J.; Olofsson, J.; Karlsson, M.; Jardemark, K.; Chiu, D.T.; Orwar, O. A Cell-Based Bar Code Reader for High-Throughput Screening of Ion Channel–Ligand Interactions. Anal. Chem. 2002, 74, 6133–6138. [Google Scholar] [CrossRef]
- Song, H.; Chen, D.L.; Ismagilov, R.F. Reactions in Droplets in Microfluidic Channels. Angew. Chem. Int. Ed. 2006, 45, 7336–7356. [Google Scholar] [CrossRef] [Green Version]
- Takimoto, K.; Takano, E.; Kitayama, Y.; Takeuchi, T. Synthesis of Monodispersed Submillimeter-Sized Molecularly Imprinted Particles Selective for Human Serum Albumin Using Inverse Suspension Polymerization in Water-in-Oil Emulsion Prepared Using Microfluidics. Langmuir 2015, 31, 4981–4987. [Google Scholar] [CrossRef]
- Thorsen, T.; Maerkl, S.J.; Quake, S.R. Microfluidic Large-Scale Integration. Science 2002, 298, 580–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Liberski, A.; Sanchez-Martin, R.M.; Bradley, M. Microarrays of over 2000 hydrogels–Identification of substrates for cellular trapping and thermally triggered release. Biomaterials 2009, 30, 6193–6201. [Google Scholar] [CrossRef]
- Perera, D.; Tucker, J.W.; Brahmbhatt, S.; Helal, C.J.; Chong, A.; Farrell, W.; Richardson, P.; Sach, N.W. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science 2018, 359, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Duffy, C.; Venturato, A.; Callanan, A.; Lilienkampf, A.; Bradley, M. Arrays of 3D double-network hydrogels for the high-throughput discovery of materials with enhanced physical and biological properties. Acta Biomater. 2016, 34, 104–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, A.; McMillan, L.; Morrison, A.; Petrik, J.; Bradley, M. Polymers for the rapid and effective activation and aggregation of platelets. Biomaterials 2011, 32, 7034–7041. [Google Scholar] [CrossRef]
- Hay, D.C.; Pernagallo, S.; Díaz-Mochón, J.J.; Medine, C.N.; Greenhough, S.; Hannoun, Z.; Schrader, J.; Black, J.R.; Fletcher, J.; Dalgetty, D.; et al. Unbiased screening of polymer libraries to define novel substrates for functional hepatocytes with inducible drug metabolism. Stem Cell Res. 2011, 6, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hook, A.L.; Scurr, D.J.; Anderson, D.G.; Langer, R.; Williams, P.; Davies, M.C.; Alexander, M.R. High throughput discovery of thermo-responsive materials using water contact angle measurements and time-of-flight secondary ion mass spectrometry. Surf. Interface Anal. 2012, 45, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Tare, R.S.; Kanczler, J.M.; Oreffo, R.; Bradley, M. Strategies for cell manipulation and skeletal tissue engineering using high-throughput polymer blend formulation and microarray techniques. Biomater. 2010, 31, 2216–2228. [Google Scholar] [CrossRef]
- Moraes, C.; Wang, G.; Sun, Y.; Simmons, C.A. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials 2010, 31, 577–584. [Google Scholar] [CrossRef]
- Du, W.; Li, L.; Nichols, K.P.; Ismagilov, R.F. SlipChip. Lab. Chip 2009, 9, 2286–2292. [Google Scholar] [CrossRef]
- Shepherd, R.F.; Conrad, J.C.; Rhodes, S.K.; Link, D.R.; Marquez, M.; Weitz, D.A.; Lewis, J.A. Microfluidic Assembly of Homogeneous and Janus Colloid-Filled Hydrogel Granules. Langmuir 2006, 22, 8618–8622. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, V.; Zaborenko, N.; Gu, L.; Jensen, K.F. Microfluidic Assisted Synthesis of Hybrid Au–Pd Dumbbell-like Nanostructures: Sequential Addition of Reagents and Ultrasonic Radiation. Cryst. Growth Des. 2017, 17, 2700–2710. [Google Scholar] [CrossRef]
- Cho, S.K.; Fan, S.K.; Moon, H.; Kim, C.J. Towards Tigital Microfluidic Circuits: Creating, Transporting, Cutting and Merging Liquid Droplets by Electrowetting-based Actuation. In Proceedings of the Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 24 January 2002. [Google Scholar]
- Marre, S.; Jensen, K.F. Synthesis of micro and nanostructures in microfluidic systems. Chem. Soc. Rev. 2010, 39, 1183–1202. [Google Scholar] [CrossRef] [PubMed]
- Hakala, T.A.; Bialas, F.; Toprakcioglu, Z.; Bräuer, B.; Bohndiek, S.E.; Levin, A.; Bernardes, G.J.L.; Becker, C.F.W.; Knowles, T.P. Continuous Flow Reactors from Microfluidic Compartmentalization of Enzymes within Inorganic Microparticles. ACS Appl. Mater. Interfaces 2020, 12, 32951–32960. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, J.; Campos, J.B.L.M.; Miranda, J.M. High viscosity polymeric fluid droplet formation in a flow focusing microfluidic device – Experimental and numerical study. Chem. Eng. Sci. 2019, 195, 442–454. [Google Scholar] [CrossRef]
- Juthani, N.; Doyle, P.S. A platform for multiplexed colorimetric microRNA detection using shape-encoded hydrogel particles. Analyst 2020, 145, 5134–5140. [Google Scholar] [CrossRef] [PubMed]
- Parthiban, P.; Doyle, P.S.; Hashimoto, M. Self-assembly of droplets in three-dimensional microchannels. Soft Matter 2019, 15, 4244–4254. [Google Scholar] [CrossRef]
- Hao, N.; Nie, Y.; Xu, Z.; Jin, C.; Fyda, T.J.; Zhang, J.X.J. Microfluidics-enabled acceleration of Fenton oxidation for degradation of organic dyes with rod-like zero-valent iron nanoassemblies. J. Colloid Interface Sci. 2020, 559, 254–262. [Google Scholar] [CrossRef]
- Cooney, C.G.; Chen, C.-Y.; Emerling, M.R.; Nadim, A.; Sterling, J.D. Electrowetting droplet microfluidics on a single planar surface. Microfluid. Nanofluidics 2006, 2, 435–446. [Google Scholar] [CrossRef]
- Prakash, S.; Ashley, B.K.; Doyle, P.S.; Hassan, U. Design of a Multiplexed Analyte Biosensor using Digital Barcoded Particles and Impedance Spectroscopy. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, Y.; Zhang, Z.; Wang, F.; Wang, Z.; Wang, H.; Pan, T. Digital microfluidic meter-on-chip. Lab. Chip 2020, 20, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Yobas, L.; Martens, S.; Ong, W.-L.; Ranganathan, N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab. Chip 2006, 6, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhu, P.; Tian, Y.; Xu, M.; Wang, L. Engineering Micromotors with Droplet Microfluidics. ACS Nano 2019, 13, 6319–6329. [Google Scholar] [CrossRef]
- Millington, D.; Norton, S.; Singh, R.; Sista, R.; Srinivasan, V.; Pamula, V. Digital microfluidics comes of age: High-throughput screening to bedside diagnostic testing for genetic disorders in newborns. Expert Rev. Mol. Diagn. 2018, 18, 701–712. [Google Scholar] [CrossRef]
- Scheler, O.; Postek, W.; Garstecki, P. Recent developments of microfluidics as a tool for biotechnology and microbiology. Curr. Opin. Biotechnol. 2019, 55, 60–67. [Google Scholar] [CrossRef]
- Yang, D.; Priest, C. Microfluidic Platform for High-Throughput Screening of Leach Chemistry. Anal. Chem. 2018, 90, 8517–8522. [Google Scholar] [CrossRef]
- Brouzes, E.; Medkova, M.; Savenelli, N.; Marran, D.; Twardowski, M.; Hutchison, J.B.; Rothberg, J.M.; Link, D.R.; Perrimon, N.; Samuels, M.L. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. USA 2009, 106, 14195–14200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Zeng, J.; Grant, J.; Wu, H.; Xia, Y. On-Chip Screening of Experimental Conditions for the Synthesis of Noble-Metal Nanostructures with Different Morphologies. Small 2011, 7, 3308–3316. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Salgado, C.L.; Song, W.; Mano, J.F. Combinatorial On-Chip Study of Miniaturized 3D Porous Scaffolds Using a Patterned Superhydrophobic Platform. Small 2012, 9, 768–778. [Google Scholar] [CrossRef]
- Guillemot, F.; Souquet, A.; Catros, S.; Guillotin, B.; Lopez, J.; Faucon, M.; Pippenger, B.; Bareille, R.; Rémy, M.; Bellance, S.; et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010, 6, 2494–2500. [Google Scholar] [CrossRef] [PubMed]
- Hook, A.L.; Chang, C.; Yang, J.; Atkinson, S.; Langer, R.; Anderson, D.G.; Davies, M.C.; Williams, P.; Alexander, M.R. Discovery of Novel Materials with Broad Resistance to Bacterial Attachment Using Combinatorial Polymer Microarrays. Adv. Mater. 2013, 25, 2542–2547. [Google Scholar] [CrossRef]
- Lohse, S.E.; Eller, J.R.; Sivapalan, S.T.; Plews, M.R.; Murphy, C.J. A Simple Millifluidic Benchtop Reactor System for the High-Throughput Synthesis and Functionalization of Gold Nanoparticles with Different Sizes and Shapes. ACS Nano 2013, 7, 4135–4150. [Google Scholar] [CrossRef]
- Watt, J.; Hance, B.G.; Anderson, R.S.; Huber, D.L. Effect of Seed Age on Gold Nanorod Formation: A Microfluidic, Real-Time Investigation. Chem. Mater. 2015, 27, 6442–6449. [Google Scholar] [CrossRef]
- Usón, L.; Sebastian, V.; Arruebo, M.; Santamaría, J. Continuous microfluidic synthesis and functionalization of gold nanorods. Chem. Eng. J. 2016, 285, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.A.; Sandre, O.; Cabuil, V.; Tabeling, P. Synthesis of iron oxide nanoparticles in a microfluidic device: Preliminary results in a coaxial flow millichannel. Chem. Commun. 2008, 1783–1785. [Google Scholar] [CrossRef] [Green Version]
- Abou-Hassan, A.; Sandre, O.; Neveu, S.; Cabuil, V. Synthesis of Goethite by Separation of the Nucleation and Growth Processes of Ferrihydrite Nanoparticles Using Microfluidics. Angew. Chem. Int. Ed. 2009, 48, 2342–2345. [Google Scholar] [CrossRef] [Green Version]
- Simmons, M.D.; Jones, N.; Evans, D.J.; Wiles, C.; Watts, P.; Salamon, S.; Castillo, M.E.; Wende, H.; Lupascu, D.C.; Francesconi, M.G. Doping of inorganic materials in microreactors–preparation of Zn doped Fe3O4 nanoparticles. Lab. Chip 2015, 15, 3154–3162. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.; Song, S.; Lee, J.; Kim, J.-M. Nanoscale diameter control of sensory polydiacetylene nanoparticles on microfluidic chip for enhanced fluorescence signal. Sens. Actuators B Chem. 2016, 230, 623–629. [Google Scholar] [CrossRef]
- Wang, J.-X.; Zhang, Q.-X.; Zhou, Y.; Shao, L.; Chen, J.-F. Microfluidic synthesis of amorphous cefuroxime axetil nanoparticles with size-dependent and enhanced dissolution rate. Chem. Eng. J. 2010, 162, 844–851. [Google Scholar] [CrossRef]
- Liu, D.; Cito, S.; Zhang, Y.; Wang, C.-F.; Sikanen, T.M.; Santos, H.A. A Versatile and Robust Microfluidic Platform Toward High Throughput Synthesis of Homogeneous Nanoparticles with Tunable Properties. Adv. Mater. 2015, 27, 2298–2304. [Google Scholar] [CrossRef]
- Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Farokhzad, O.; Langer, R. Synthesis of Poly(lactide-co-glycolide)-b-Poly(ethyleneglycol) Nanoparticles Using Hydrodynamic Flow Focusing. Nano Lett. 2008, 8, 2906–2912. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Choi, J.-S.; Chen, K.-J.; Hou, S.; Yan, M.; Lin, W.-Y.; Chen, K.S.; Ro, T.; Lipshutz, G.S.; et al. A High-Throughput Platform for Formulating and Screening Multifunctional Nanoparticles Capable of Simultaneous Delivery of Genes and Transcription Factors. Angew. Chem. Int. Ed. 2015, 55, 169–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebastian, V.; Smith, C.D.; Jensen, K.F. Shape-controlled continuous synthesis of metal nanostructures. Nanoscale 2016, 8, 7534–7543. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, V.; Basak, S.; Jensen, K.F. Continuous synthesis of palladium nanorods in oxidative segmented flow. AIChE J. 2015, 62, 373–380. [Google Scholar] [CrossRef]
- Godfrin, P.D.; Lee, H.; Lee, J.H.; Doyle, P.S. Photopolymerized Micelle-Laden Hydrogels Can Simultaneously Form and Encapsulate Nanocrystals to Improve Drug Substance Solubility and Expedite Drug Product Design. Small 2019, 15, e1803372. [Google Scholar] [CrossRef]
- Witters, D.; Vergauwe, N.; Ameloot, R.; Vermeir, S.; De Vos, D.; Puers, R.; Sels, B.F.; Lammertyn, J. Digital Microfluidic High-Throughput Printing of Single Metal-Organic Framework Crystals. Adv. Mater. 2012, 24, 1316–1320. [Google Scholar] [CrossRef]
- Lu, Z.; Li, Y.; Qiu, W.; Rogach, A.L.; Nagl, S. Composite Films of CsPbBr3 Perovskite Nanocrystals in a Hydrophobic Fluoropolymer for Temperature Imaging in Digital Microfluidics. ACS Appl. Mater. Interfaces 2020, 12, 19805–19812. [Google Scholar] [CrossRef]
- Torabinia, M.; Asgari, P.; Dakarapu, U.S.; Jeon, J.; Moon, H. On-chip organic synthesis enabled using an engine-and-cargo system in an electrowetting-on-dielectric digital microfluidic device. Lab. Chip 2019, 19, 3054–3064. [Google Scholar] [CrossRef]
- Al-Kaidy, H.; Tippkötter, N. Superparamagnetic hydrophobic particles as shell material for digital microfluidic droplets and proof-of-principle reaction assessments with immobilized laccase. Eng. Life Sci. 2015, 16, 222–230. [Google Scholar] [CrossRef]
- Senkan, S.; Krantz, K.; Ozturk, S.; Zengin, V.; Onal, I. High-Throughput Testing of Heterogeneous Catalyst Libraries Using Array Microreactors and Mass Spectrometry. Angew. Chem. Int. Ed. 1999, 38, 2794–2799. [Google Scholar] [CrossRef]
- Kim, Y.H.; Zhang, L.; Yu, T.; Jin, M.; Qin, N.; Xia, Y. Droplet-Based Microreactors for Continuous Production of Palladium Nanocrystals with Controlled Sizes and Shapes. Small 2013, 9, 3462–3467. [Google Scholar] [CrossRef] [PubMed]
- Faustini, M.; Kim, J.; Jeong, G.-Y.; Kim, J.Y.; Moon, H.R.; Ahn, W.-S.; Kim, D.-P. Microfluidic Approach toward Continuous and Ultrafast Synthesis of Metal–Organic Framework Crystals and Hetero Structures in Confined Microdroplets. J. Am. Chem. Soc. 2013, 135, 14619–14626. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.D.; Kim, D.S.; Sánchez, S. Fabrication and applications of complex-shaped microparticles via microfluidics. Lab. Chip 2015, 15, 3622–3626. [Google Scholar] [CrossRef]
- Song, Y.; Kumar, C.S.; Hormes, J. Synthesis of palladium nanoparticles using a continuous flow polymeric micro reactor. J. Nanosci. Nanotechnol. 2004, 4, 788–793. [Google Scholar] [CrossRef]
- Song, Y.; Ji, S.; Song, Y.-J.; Li, R.; Ding, J.; Shen, X.; Wang, R.; Xu, R.; Gu, X. In Situ Redox Microfluidic Synthesis of Core–Shell Nanoparticles and Their Long-Term Stability. J. Phys. Chem. C 2013, 117, 17274–17284. [Google Scholar] [CrossRef]
- Baumgartner, L.M.; Dennis, J.M.; White, N.A.; Buchwald, S.L.; Jensen, K.F. Use of a Droplet Platform To Optimize Pd-Catalyzed C–N Coupling Reactions Promoted by Organic Bases. Org. Process. Res. Dev. 2019, 23, 1594–1601. [Google Scholar] [CrossRef]
- Lee, K.G.; Hong, J.; Wang, K.W.; Heo, N.S.; Kim, H.; Lee, S.Y.; Lee, S.J.; Park, T.J. In Vitro Biosynthesis of Metal Nanoparticles in Microdroplets. ACS Nano 2012, 6, 6998–7008. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, G.; Lu, N.; Wang, J.; Tong, L.; Wang, L.; Kim, M.J.; Xia, Y. Continuous and Scalable Production of Well-Controlled Noble-Metal Nanocrystals in Milliliter-Sized Droplet Reactors. Nano Lett. 2014, 14, 6626–6631. [Google Scholar] [CrossRef]
- Maceiczyk, R.M.; Demello, A.J. Fast and Reliable Metamodeling of Complex Reaction Spaces Using Universal Kriging. J. Phys. Chem. C 2014, 118, 20026–20033. [Google Scholar] [CrossRef]
- Nightingale, A.M.; Bannock, J.H.; Krishnadasan, S.H.; O’Mahony, F.T.F.; Haque, S.A.; Sloan, J.; Drury, C.; McIntyre, R.; Demello, J.C. Large-scale synthesis of nanocrystals in a multichannel droplet reactor. J. Mater. Chem. A 2013, 1, 4067–4076. [Google Scholar] [CrossRef] [Green Version]
- Kwon, B.-H.; Lee, K.G.; Park, T.J.; Kim, H.; Lee, T.J.; Lee, S.J.; Jeon, D.Y. Continuous In Situ Synthesis of ZnSe/ZnS Core/Shell Quantum Dots in a Microfluidic Reaction System and its Application for Light-Emitting Diodes. Small 2012, 8, 3257–3262. [Google Scholar] [CrossRef]
- Yao, S.; Shu, Y.; Yang, Y.J.; Yu, X.; Pang, D.W.; Zhang, Z.L. Picoliter Droplets Developed as Microreactors for Ultrafast Synthesis of Multi-color Water-Woluble CdTe Quantum Dots. Chem. Commun. 2013, 49, 7114–7116. [Google Scholar] [CrossRef]
- Chen, L.; Luo, A.; Zhang, Y.; Liu, F.; Jiang, Y.; Xu, Q.; Chen, X.; Hu, Q.; Chen, S.-F.; Chen, K.-J.; et al. Optimization of the Single-Phased White Phosphor of Li2SrSiO4: Eu2+, Ce3+ for Light-Emitting Diodes by Using the Combinatorial Approach Assisted with the Taguchi Method. ACS Comb. Sci. 2012, 14, 636–644. [Google Scholar] [CrossRef]
- Biemmi, E.; Christian, S.; Stock, N.; Bein, T. High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous Mesoporous Mater. 2009, 117, 111–117. [Google Scholar] [CrossRef]
- Fernandes, T.G.; Diogo, M.M.; Clark, D.S.; Dordick, J.S.; Cabral, J.M. High-throughput cellular microarray platforms: Applications in drug discovery, toxicology and stem cell research. Trends Biotechnol. 2009, 27, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.; Ruditskiy, A.; Vara, M.; Xia, Y. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chem. Soc. Rev. 2015, 44, 5806–5820. [Google Scholar] [CrossRef]
- Trau, M.; Battersby, B.J. Novel Colloidal Materials for High-Throughput Screening Applications in Drug Discovery and Genomics. Adv. Mater. 2001, 13, 975–979. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, L.H.; Yan, L.J.; Xiang, X.D.; Xu, B.M. Accelerating the Screening of Perovskite Compositions for Photovoltaic Applications through High-hroughput Inkjet Printing. Adv. Funct. Mater. 2019, 29, 1905487. [Google Scholar] [CrossRef]
- Horike, S.; Shimomura, S.; Kitagawa, S. Soft porous crystals. Nat. Chem. 2009, 1, 695–704. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nat. Cell Biol. 1999, 402, 276–279. [Google Scholar] [CrossRef] [Green Version]
- Mondloch, J.E.; Katz, M.J.; Iii, W.C.I.; Ghosh, P.; Liao, P.; Bury, W.; Wagner, G.W.; Hall, M.G.; Decoste, J.B.; Peterson, G.W.; et al. Destruction of chemical warfare agents using metal–organic frameworks. Nat. Mater. 2015, 14, 512–516. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, M.; Peskov, M.A.; Ramsden, S.J.; Yaghi, O.M. The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets. Accounts Chem. Res. 2008, 41, 1782–1789. [Google Scholar] [CrossRef]
- Panda, T.; Horike, S.; Hagi, K.; Ogiwara, N.; Kadota, K.; Itakura, T.; Tsujimoto, M.; Kitagawa, S. Mechanical Alloying of Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2017, 56, 2413–2417. [Google Scholar] [CrossRef]
- Carbonell, C.; Stylianou, K.C.; Hernando, J.; Evangelio, E.; Barnett, S.A.; Nettikadan, S.; Imaz, I.; Maspoch, D. Femtolitre chemistry assisted by microfluidic pen lithography. Nat. Commun. 2013, 4, 2173. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, X.; Liu, L.; Zhou, P.; Zhou, J.; Shi, X.; Wang, Y. A microarray platform designed for high-throughput screening the reaction conditions for the synthesis of micro/nanosized biomedical materials. Bioact. Mater. 2020, 5, 286–296. [Google Scholar] [CrossRef]
- Taylor, M.; Urquhart, A.J.; Zelzer, M.; Davies, A.M.C.; Alexander, M.R. Picoliter Water Contact Angle Measurement on Polymers. Langmuir 2007, 23, 6875–6878. [Google Scholar] [CrossRef]
- Nisisako, T.; Ando, T.; Hatsuzawa, T. Capillary-Assisted Fabrication of Biconcave Polymeric Microlenses from Microfluidic Ternary Emulsion Droplets. Small 2014, 10, 5116–5125. [Google Scholar] [CrossRef] [PubMed]
- Um, T.; Hong, J.; Im do, J.; Lee, S.J.; Kang, I.S. Electrically Controllable Microparticle Synthesis and Digital Microfluidic Manipulation by Electric-Field-Induced Droplet Dispensing into Immiscible Fluids. Sci. Rep. 2016, 6, 31901. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Lin, B.; Qin, J. Synthesis of shape-controlled particles based on synergistic effect of geometry confinement, double emulsion template, and polymerization quenching. Microfluid. Nanofluidics 2011, 12, 33–39. [Google Scholar] [CrossRef]
- Guo, M.T.; Rotem, A.; Heyman, J.A.; Weitz, D.A. Droplet microfluidics for high-throughput biological assays. Lab. Chip 2012, 12, 2146–2155. [Google Scholar] [CrossRef]
- Su, Z.; He, J.; Zhou, P.; Huang, L.; Zhou, J. A high-throughput system combining microfluidic hydrogel droplets with deep learning for screening the antisolvent-crystallization conditions of active pharmaceutical ingredients. Lab. Chip 2020, 20, 1907–1916. [Google Scholar] [CrossRef] [PubMed]
Types of HTS Platforms | Platform Materials | Reactants | The Screening Materials | Advantages and Applications | Year | Ref. |
---|---|---|---|---|---|---|
A simple microarray reactor with one- or two-dimensional gradients | PDMS microarray, 9 × 9 micro-pores | HAuCl4 solution + cetyltrimethylammonium bromide (CTAB) solution + NaOH solution | Au, Pd | The morphologies of metal nanostructures under different experimental conditions | 2011 | [61] |
A microarray of polymer hydrogel | Microscope slide | Hydrogel + cells | Smart polymer with desired properties | Cell encapsulation | 2009 | [34] |
A high-throughput microarray with ToF-SIMS | 279 materials spots of two-generation microarray | Polymer materials spots | 279 unique materials with thermo-responsive properties | Discovery of novel switchable materials, and development of new way for high-throughput characterization | 2013 | [39] |
A patterned superhydrophobic platform with hydrophilic spots | Microarray based on chitosan and alginate | Osteoblast-like, fibroblasts, the scaffolds modified with fibronectin | The most favorable materials for cells | Discovery of the most favorable conditions for the culture of each cell type, and rapid collection of reliable and valid data | 2013 | [62] |
High-throughput array of cells and biomaterials via laser printing | Sodium alginate | Nano-HA + cells + sodium alginate solution | HA nanocrystals, 577 patterns with EA. hy926 cells after live/dead | Biopolymers, nano-sized particles of HA, human endothelial cells and 3D biostructures | 2010 | [63] |
Combinatorial polymer microarray | pHEMA and glass slide | Homopolymers + 3 different green fluorescent proteins (GFPs)-labeled bacterial species | Biomaterials with unique (meth)acrylate monomers | Discovery of novel materials with broad resistance to bacterial attachment | 2013 | [64] |
Microfluidic platform of ultra-small gold | Thermoplastics (PE and PEEK) | Mercaptobenzoic acid/CTAB + HAuCl4 + NaBH4 + AgNO3 + ascorbic acid | Au (spheres, 2–40 nm) and Au (nanorods, 10 nm × 50–100 nm) | Biosensing (chemical sensing, plasmonic functionalities, proof-of-concept) | 2013 | [65] |
2015 | [66] | |||||
2016 | [67] | |||||
A millimetric coaxial microfluidic device | PDMS | FeCl3 + FeCl2 + TMAOH | Fe3O4 (spheres, <7 nm) | Open the way to other experiments, MRI imaging | 2008 | [68] |
A microfluidic platform using two microreactors operating under different temperature and flow continuous | PDMS | FeCl3 + FeCl2 + HCl + TMAOH | Goethite | Promoting a rapid homogeneity of reactants, MRI imaging | 2009 | [69] |
One-step synthetic microreactor based on continuous droplets | Glass | FeCl3 + FeCl2 + HCl + ZnCl2 + NH4OH | Zn doped Fe3O4 nanoparticle with different sizes | Allowing greater control on the chemical stoichiometry, Fluorescence imaging | 2015 | [70] |
Microfluidic chips using a staggered herringbone micromixer | PDMS and glass slide | PCDA + DMSO + DI water | The fluorescence signal of PDA under different sizes | Stimulus-responsive fluorescence, improving the production for | 2016 | [71] |
Microfluidic chips with different junction reactor | Alloy (stainless steel) Glass PDMS | CFA + acetone + isopropyl ether; PLGA + HPCS + AcDX + PTX PLGA-PEG + CAN + H2O | Polymeric with different size (spheres) | drug delivery | 2010 | [72] |
2015 | [73] | |||||
2008 | [74] | |||||
Multi-microfluidic platforms for high-throughput production of nanoparticles | PDMS | Ad-PEG + Ad-PEG-RGD + As-PEG-TAT + CD-PEI + BSA-Cy5 + HRP-RhB + pEGFP | Colloidal nanocrystals/TFs | Immunotherapy, stem cell reprogramming | 2016 | [75] |
Gas-liquid multi-phase microfluidic droplet platform for shape-controlled continuous synthesis | Spiral silicon/pyrex | Oxygen + Pd precursor + ethylene glycol + bromide ions | Pd with different nanostructures | Catalysis, molecular detection and biomedical Phototherapies | 2016 | [76] |
A microfluidic reactor with segmented flow | Spiral | Na2PdCl4 + KBr + H2O + EG + PVP + Air | Pd nanorods | High activity catalytic hydrogenation of styrene | 2016 | [77] |
A microfluidic chip with photoinitiated polymerization | PDMS | Hydrogel PEGDA + PEG + PI | Photopolymerized hydrogels encapsulated API crystals | Drug delivery | 2019 | [78] |
Digital microfluidic high-throughput printing | Plates, ITO coated glass and hydrophobic Teflon-AF Layer | Cu (II) dimers and 1,3,5-benzenetricarboxylate | HKUST-1 crystals | Huge production of MOF crystals with different functionalities | 2012 | [79] |
Digital microfluidics | Glass substrates, copper wire | CsPbBr3 NCs and a Hyflon AD 60 fluoropolymer | CsPbBr3 NC-Hyflon films | Temperature sensor | 2020 | [80] |
An electrowetting-on-dielectric digital microfluidic platforms | A glass wafer and an indium tin oxide layer | Menthol+Triethylamine + 4-(dimethylamino)pyridine + acetic anhydride | Engine-and-cargo droplets with different shapes | Kinetics study, solvent screening, catalyst loading optimization | 2019 | [81] |
A reaction platform based on digital microfluidics | Quartz glass, polylactic and copper wire | FeCl3·6H2O + FeCl2·4H2O + NaOH + PFOTES + Silica | Superparamagnetic hydrophobic particles | Bio-chemical analysis | 2016 | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; He, J.; Huang, L.; Yu, Z.; Su, Z.; Shi, X.; Zhou, J. Microfluidic High-Throughput Platforms for Discovery of Novel Materials. Nanomaterials 2020, 10, 2514. https://doi.org/10.3390/nano10122514
Zhou P, He J, Huang L, Yu Z, Su Z, Shi X, Zhou J. Microfluidic High-Throughput Platforms for Discovery of Novel Materials. Nanomaterials. 2020; 10(12):2514. https://doi.org/10.3390/nano10122514
Chicago/Turabian StyleZhou, Peipei, Jinxu He, Lu Huang, Ziming Yu, Zhenning Su, Xuetao Shi, and Jianhua Zhou. 2020. "Microfluidic High-Throughput Platforms for Discovery of Novel Materials" Nanomaterials 10, no. 12: 2514. https://doi.org/10.3390/nano10122514
APA StyleZhou, P., He, J., Huang, L., Yu, Z., Su, Z., Shi, X., & Zhou, J. (2020). Microfluidic High-Throughput Platforms for Discovery of Novel Materials. Nanomaterials, 10(12), 2514. https://doi.org/10.3390/nano10122514