Molecular Weight Effects of Biscarbazole-Based Hole Transport Polymers on the Performance of Solid-State Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of poly{bis-[6-N-(2-Ethylhexyl)-carbazole-3-yl]-alt-aniline} (PBCzA)
2.3. Fabrication of ssDSCs
2.4. Fabrication of Hole-Only Devices
2.5. Measurements
3. Results and Discussion
3.1. Photophysical and Electrochemical Properties of PBCzAs
3.2. Photovoltaic Performance of ssDSCs with PBCzA-H and PBCzA-L
3.3. Effects of the Molecular Weight on Jsc
3.4. Effects of the Molecular Weight on Voc
3.5. Effects of the Molecular Weight on FF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sust. Energ. Rev. 2017, 68, 234–236. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Benesperi, I.; Michaels, H.; Freitang, M. The researcher’s guide to solid-state dye-sensitized solar cells. J. Mater. Chem. C. 2018, 6, 11903–11942. [Google Scholar] [CrossRef] [Green Version]
- Koh, J.K.; Kim, J.; Kim, B.; Kim, J.H.; Kim, E. Highly efficient, iodine-free dye-sensitized solar cells with solid-state synthesis of conducting polymers. Adv. Mater. 2011, 23, 1641–1646. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.; Lee, B.; He, J.; Chang, R.P.H.; Kanatzidis, M.G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485, 486–489. [Google Scholar] [CrossRef]
- Lee, B.; Stoumpos, C.C.; Zhou, N.; Hao, F.; Malliakas, C.; Yeh, C.-Y.; Marks, T.J.; Kanatazidis, M.G.; Chang, R.P.H. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J. Am. Chem. Soc. 2014, 136, 15379–15385. [Google Scholar] [CrossRef]
- Cao, Y.; Saygili, Y.; Ummadisingu, A.; Teuscher, J.; Luo, J.; Pellet, N.; Giordano, F.; Zakeeruddin, S.M.; Moser, J.-E.; Freitan, M.; et al. 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nat. Commun. 2016, 8, 15390. [Google Scholar] [CrossRef] [Green Version]
- Freitag, M.; Daniel, Q.; Pazoki, M.; Sveinbjörnsson, K.; Zhang, J.; Sun, L.; Hagfeldt, A.; Boschloo, G. High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor. Energy Environ. Sci. 2015, 8, 2634–2637. [Google Scholar] [CrossRef]
- Kashif, M.K.; Milhuisen, R.A.; Nippe, M.; Hellerstedt, J.; Zee, D.Z.; Duffy, N.W.; Halstead, B.; Angelis, F.D.; Fantacci, S.; Fuhrer, M.S.; et al. Cobalt polypyridyl complexes as transparent solution-processable solid-state charge transport materials. Adv. Energy Mater. 2016, 6, 1600874. [Google Scholar] [CrossRef]
- Yang, X.; Wang, H.; Cai, B.; Yu, Z.; Sun, L. Progress in hole-transporting materials for perovskite solar cells. J. Energy Chem. 2018, 27, 650–672. [Google Scholar] [CrossRef] [Green Version]
- Krishna, A.; Grimsdale, A.C. Hole transporting materials for mesoscopic perovskite solar cells—Towards a rational design? J. Mater. Chem. A. 2017, 5, 16446–16466. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, O.Y.; Lee, J.Y. Organic materials for organic electronic devices. J. Ind. Eng. Chem. 2014, 20, 1198–1208. [Google Scholar] [CrossRef]
- Xu, B.; Sheibani, E.; Liu, P.; Zhang, J.; Tian, H.; Vlachopoulos, N.; Boschloo, G.; Kloo, L.; Hagfeldt, A.; Sun, L. Carbazole-based hole-transport materials for efficient solid-state dye-sensitized solar cells and perovskite solar cells. Adv. Mater. 2014, 26, 6629–6634. [Google Scholar] [CrossRef]
- Thaengthong, A.-M.; Saengsuwan, S.; Jungsuttiwong, S.; Keawin, T.; Sudyoadsuk, T.; Promarak, V. Synthesis and characterization of high Tg carbazole-based amorphous hole-transporting materials for organic light-emitting devices. Tetrahedron Lett. 2011, 52, 4749–4752. [Google Scholar] [CrossRef]
- Bieliauskas, A.; Getautis, V.; Martynaitis, V.; Jankauskas, V.; Kamarauskas, E.; Krikštolaitytė, S.; Šačkus, A. Synthesis of electroactive hydrazones derived from carbazolyl-based 2-propenals for optoelectronics. Synth. Met. 2013, 179, 27–33. [Google Scholar] [CrossRef]
- Wang, H.; Ryu, J.-T.; Kwon, Y. Carbazole/triarylamine based polymers as a hole injection/transport layer in organic light emitting devices. J. Nanosci. Nanotechnol. 2012, 12, 4330–4334. [Google Scholar] [CrossRef]
- Wang, H.; Ryu, J.T.; Han, Y.S.; Kim, D.H.; Choi, B.D.; Park, L.S.; Kwon, Y. Alternating copolymers of N-(2-ethylhexyl)-carbazole derivatives with aniline units: Synthesis and properties. Mol. Cryst. Liq. Cryst. 2006, 459, 85–365. [Google Scholar] [CrossRef]
- Baek, G.W.; Kim, Y.-J.; Jung, K.-H.; Han, Y.S. Enhancement of solar cell performance through the formation of a surface dipole on polyacrylonitrile-treated TiO2 photoelectrodes. J. Ind. Eng. Chem. 2019, 73, 260–267. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kwak, G.; Choi, Y.C.; Kim, D.-H.; Han, Y.S. Enhanced performance of perovskite solar cells by incorporation of a triphenylamine derivative into hole-transporting poly(3-hexylthiophene) layers. J. Ind. Eng. Chem. 2019, 73, 175–181. [Google Scholar] [CrossRef]
- Cinà, L.; Taheri, B.; Reale, A.; Di Carlo, A. Diffusion length mapping for dye-sensitized solar cells. Energies 2016, 9, 686. [Google Scholar] [CrossRef] [Green Version]
- Lamberti, A.; Sacco, A.; Bianco, S.; Manfredi, D.; Armandi, M.; Quaglio, M.; Tresso, E.; Pirri, C.F. An easy approach for the fabrication of TiO2 nanotube-based transparent photoanodes for dye-sensitized solar cells. Sol. Energy. 2019, 95, 90–98. [Google Scholar] [CrossRef]
- Longeaud, C.; Allah, A.F.; Schmidt, J.; El Yaakoubi, M.; Berson, S.; Lemaitre, N. Determination of diffusion lengths in organic semiconductors: Correlation with solar cell performances. Org. Electron. 2016, 31, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Mikhnenko, O.V.; Blom, P.W.M.; Nguyen, T.-Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 2015, 8, 1867–1888. [Google Scholar] [CrossRef]
- Peng, J.; Chen, Y.; Zheng, K.; Pullerits, T.; Liang, Z. Insights into charge carrier dynamics in organo-metal halide perovskites: From neat films to solar cells. Chem. Soc. Rev. 2017, 46, 5714–5729. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.-Y.; Kim, H.-S.; Akin, S.; Stojanovic, M.; Simon, E.; Fleischer, M.; Hagfeldt, A.; Zakeeruddin, S.M.; Grätzel, M. Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy Environ. Sci. 2018, 11, 2985–2992. [Google Scholar] [CrossRef]
- Kim, G.-W.; Kang, G.; Byranvand, M.M.; Lee, G.-Y.; Park, T. Gradated mixed hole transport layer in a perovskite solar cell: Improving moisture stability and efficiency. ACS Appl. Mater. Interfaces 2017, 9, 27720–27726. [Google Scholar] [CrossRef]
- Nia, N.Y.; Matteocci, F.; Cina, L.; Carlo, A.D. High-efficiency perovskite solar cell based on poly(3-hexylthiophene): Influence of molecular weight and mesoscopic scaffold layer. ChemSusChem 2017, 10, 3854–3860. [Google Scholar] [CrossRef] [Green Version]
- Kulshreshtha, C.; Choi, J.W.; Kim, J.-K.; Jeon, W.S.; Suh, M.C.; Park, Y.; Kwon, J.H. Open-circuit voltage dependency on hole-extraction layers in planar heterojunction organic solar cells. Appl. Phys. Lett. 2011, 99, 023308. [Google Scholar] [CrossRef]
- Elumalai, N.K.; Uddin, A. Open circuit voltage of organic solar cells: An in-depth review. Energy Environ. Sci. 2016, 9, 391–410. [Google Scholar] [CrossRef]
- Perez, M.D.; Borek, C.; Forrest, S.R.; Thompson, M.E. Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices. J. Am. Chem. Soc. 2009, 131, 9281–9286. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.; Zarrabi, N.; Meredith, P.; Kassal, I.; Armin, A. Measuring energetic disorder in organic semiconductors using the photogenerated charge-separation efficiency. J. Phys. Chem. Lett. 2019, 10, 3863–3870. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shimazaki, A.; Yang, F.; Kanahashi, K.; Matsuki, K.; Miyauchi, Y.; Takenobu, T.; Wakamiya, A.; Murata, Y.; Matsuda, K. Highly efficient and stable perovskite solar cells by interfacial engineering using solution-processed polymer layer. J. Phys. Chem. C. 2017, 121, 1562–1568. [Google Scholar] [CrossRef]
- Tvingstedt, K.; Gil-Escrig, L.; Momblona, C.; Rieder, P.; Kiermasch, D.; Sessolo, M.; Baumann, A.; Bolink, H.J.; Dyakonov, V. Removing leakage and surface recombination in planar perovskite solar cells. ACS Energy Lett. 2017, 2, 424–430. [Google Scholar] [CrossRef]
- Min, J.; Zhang, Z.-G.; Hou, Y.; Quiroz, C.O.R.; Przybilla, T.; Bronnbauer, C.; Guo, F.; Forberich, K.; Azimi, H.; Ameri, T.; et al. Interface engineering of perovskite hybrid solar cells with solution-processed perylene−diimide heterojunctions toward high performance. Chem. Mater. 2015, 27, 227–234. [Google Scholar] [CrossRef]
- Auf der Maur, M.; Di Carlo, A. Analytic approximations for solar cell open circuit voltage, short circuit current and fill factor. Sol. Energy. 2019, 187, 358–367. [Google Scholar] [CrossRef]
- Ebenhoch, B.; Thomson, S.A.J.; Genevičius, K.; Juška, G.; Samuel, I.D.W. Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance. Org. Electron. 2015, 22, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Luo, G.; Xiao, B.; Wu, H.; He, Z.; Cao, Y. Origin of high fill factor in polymer solar cells from semiconducting polymer with moderate charge carrier mobility. Org. Electron. 2015, 24, 125–130. [Google Scholar] [CrossRef]
- Chandiran, A.K.; Abdi-Jalebi, M.; Nazeeruddin, M.K.; Grätzel, M. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano. 2014, 8, 2261–2268. [Google Scholar] [CrossRef]
HTM | Mw (g/mol) | PDI | λmax,UV (nm) | λmax,PL (nm) | Eg (eV) | HOMO (eV) | LUMO (eV) |
---|---|---|---|---|---|---|---|
PBCzA-H | 21,200 | 2.6 | 302 | 450 | 2.84 | −5.11 | −2.27 |
PBCzA-L | 2450 | 1.3 | 302 | 448 | 2.84 | −5.11 | −2.27 |
Devices | HTM | Jsc (mA/cm2) | Voc (mV) | FF (%) | PCE (%) | Rse (Ωcm2) | Rsh (Ωcm2) |
---|---|---|---|---|---|---|---|
ssDSC-H | PBCzA-H | 9.54 | 0.590 | 67.30 | 3.79 | 11.0 | 1238.4 |
ssDSC-L | PBCzA-L | 7.53 | 0.566 | 64.05 | 2.73 | 13.3 | 1100.1 |
Devices | Rs (Ω) | R1(Ω) | R2(Ω) | R3(Ω) | Conductivity(mS/m) |
---|---|---|---|---|---|
ssDSC-H | 9.85 | 1.65 | 19.64 | 55.41 | 15.88 |
ssDSC-L | 10.08 | 2.99 | 20.18 | 80.46 | 10.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, M.; Kim, K.S.; Nga, N.V.; Lee, Y.; Jeon, Y.S.; Cho, Y.; Kwon, Y.; Han, Y.S. Molecular Weight Effects of Biscarbazole-Based Hole Transport Polymers on the Performance of Solid-State Dye-Sensitized Solar Cells. Nanomaterials 2020, 10, 2516. https://doi.org/10.3390/nano10122516
Kong M, Kim KS, Nga NV, Lee Y, Jeon YS, Cho Y, Kwon Y, Han YS. Molecular Weight Effects of Biscarbazole-Based Hole Transport Polymers on the Performance of Solid-State Dye-Sensitized Solar Cells. Nanomaterials. 2020; 10(12):2516. https://doi.org/10.3390/nano10122516
Chicago/Turabian StyleKong, Minseon, Kyeong Seok Kim, Nguyen Van Nga, Yeonju Lee, Yu Seong Jeon, Yunsung Cho, Younghwan Kwon, and Yoon Soo Han. 2020. "Molecular Weight Effects of Biscarbazole-Based Hole Transport Polymers on the Performance of Solid-State Dye-Sensitized Solar Cells" Nanomaterials 10, no. 12: 2516. https://doi.org/10.3390/nano10122516
APA StyleKong, M., Kim, K. S., Nga, N. V., Lee, Y., Jeon, Y. S., Cho, Y., Kwon, Y., & Han, Y. S. (2020). Molecular Weight Effects of Biscarbazole-Based Hole Transport Polymers on the Performance of Solid-State Dye-Sensitized Solar Cells. Nanomaterials, 10(12), 2516. https://doi.org/10.3390/nano10122516