Lung Toxicity Analysis of Nano-Sized Kaolin and Bentonite: Missing Indications for a Common Grouping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particle Characterization and Preparation of Suspensions
2.2. In Vitro Toxicity Test
2.3. Animal Experiments
2.4. Immunocytochemistry and Microscopy
2.5. Statistics
3. Results
3.1. Particle Size after Ultrasonic Dispersion
3.2. In Vitro Study
3.3. In Vivo Study
3.3.1. Quartz DQ12
3.3.2. Kaolin
3.3.3. Bentonite
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guldberg, M.; Jensen, S.L.; Knudsen, T.; Steenberg, T.; Kamstrup, O. High-Alumina Low-Silica HT Stone Wool Fibers: A Chemical Compositional Range with High Biosolubility. Regul. Toxicol. Pharm. 2002, 35, 217–226. [Google Scholar] [CrossRef]
- European chemicals agency Decision on substance evaluation: Aluminium sulphate 2017; European Chemicals Agency: Helsinki, Finland, 2017.
- Paz, L.N.F.; Moura, L.M.; Feio, D.C.A.; Cardoso, M.; de Souza Gonçalves Cardoso, M.; Ximenes, W.L.O.; Montenegro, R.C.; Alves, A.P.N.; Burbano, R.R.; Lima, P.D.L. Evaluation of in vivo and in vitro toxicological and genotoxic potential of aluminum chloride. Chemosphere 2017, 175, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Wohlleben, W.; Hellack, B.; Nickel, C.; Herrchen, M.; Hund-Rinke, K.; Kettler, K.; Riebeling, C.; Haase, A.; Funk, B.; Kühnel, D.; et al. The nanoGRAVUR framework to group (nano)materials for their occupational, consumer, environmental risks based on a harmonized set of material properties, applied to 34 case studies. Nanoscale 2019, 11, 17637–17654. [Google Scholar] [CrossRef] [PubMed]
- Bentonite, kaolin, and selected clay materials; Adamis, Z.; Inter-Organization Programme for the Sound Management of Chemicals, International Programme on Chemical Safety (Eds.) Environmental health criteria; World Health Organization: Geneva, Switzerland, 2005; ISBN 978-92-4-157231-6. [Google Scholar]
- Carleton, H.M. The Pulmonary Lesions produced by the Inhalation of Dust in Guinea-Pigs: A Report to the Medical Research Council. J. Hyg. (Lond) 1924, 22, 438–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edenfield, R.W. A clinical and roentgenological study of kaolin workers. Arch. Environ. Health 1960, 1, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, T.; Rawlings, W.; Baser, M.; Tockman, M. Pneumoconiosis in Georgia kaolin workers. Am. Rev. Respir. Dis. 1983, 127, 215–220. [Google Scholar]
- Oldham, P.D. Pneumoconiosis in Cornish china clay workers. Br. J. Ind. Med. 1983, 40, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.C.; Pooley, F.D.; Gibbs, A.; Lyons, J.; Sheers, G.; Moncrieff, C.B. Inhalation of china stone and china clay dusts: Relationship between the mineralogy of dust retained in the lungs and pathological changes. Thorax 1986, 41, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Sahu, A.P.; Shanker, R.; Zaidi, S.H. Pulmonary response to kaolin, mica and talc in mice. Exp. Pathol. 1978, 16, 276–282. [Google Scholar] [CrossRef]
- Rosmanith, J.; Hilscher, W.; Heßling, B.; Schyma, S.; Ehm, W. Über die fibrogene Wirkung von Kaolinit, Muskovit und Feldspat. In: Ergebnisse von Untersuchungen auf dem Gebiet der Staub- und Silikosebekämpfung im Steinkohlenbergbau. Si-likosebericht Nordrhein-Westfalen 1989, 17, 259–272. [Google Scholar]
- Wagner, J.C.; Griffiths, D.M.; Munday, D.E. Experimental studies with palygorskite dusts. Occup. Environ. Med. 1987, 44, 749–763. [Google Scholar] [CrossRef] [Green Version]
- Mohr, U.; Ernst, H.; Roller, M.; Pott, F. Pulmonary tumor types induced in Wistar rats of the so-called “19-dust study”. Exp. Toxicol. Pathol. 2006, 58, 13–20. [Google Scholar] [CrossRef]
- Vela, E.; Hernández-Orte, P.; Castro, E.; Ferreira, V.; Lopez, R. Effect of Bentonite Fining on Polyfunctional Mercaptans and Other Volatile Compounds in Sauvignon blanc Wines. Am. J. Enol. Vitic. 2017, 68, 30–38. [Google Scholar] [CrossRef]
- Phibbs, B.P.; Sundin, R.E.; Mitchell, R.S. Silicosis in Wyoming bentonite workers. Am. Rev. Respir. Dis. 1971, 103, 1–17. [Google Scholar]
- JRC Nanomaterials Repository List of Representative Nanomaterials 2016. Available online: https://ec.europa.eu/jrc/sites/jrcsh/files/JRC-Nanomaterials-Repository-List-of-Representative-Nanomaterials.pdf. (accessed on 23 January 2020).
- OECD Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, Dossier on Nanoclays, Series on the Safety of Manufactured Nanomaterials No. 47 2015. Available online: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2015)10&doclanguage=en (accessed on 23 January 2020).
- Babick, F.; Mielke, J.; Wohlleben, W.; Weigel, S.; Hodoroaba, V.-D. How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. J. Nanopart. Res. 2016, 18, 158. [Google Scholar] [CrossRef] [Green Version]
- Van Landuyt, K.L.; Cokic, S.M.; Asbach, C.; Hoet, P.; Godderis, L.; Reichl, F.X.; Van Meerbeek, B.; Vennemann, A.; Wiemann, M. Interaction of rat alveolar macrophages with dental composite dust. Part. Fibre Toxicol 2016, 13, 62. [Google Scholar] [CrossRef] [Green Version]
- Wiemann, M.; Vennemann, A.; Sauer, U.G.; Wiench, K.; Ma-Hock, L.; Landsiedel, R. An in vitro alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials. J. Nanobiotechnol. 2016, 14, 16. [Google Scholar] [CrossRef] [Green Version]
- Neale, M.L.; Matthews, N. Development of tumour cell resistance to tumour necrosis factor does not confer resistance to cytotoxic drugs. Eur J. Cancer Clin. Oncol. 1989, 25, 133–137. [Google Scholar] [CrossRef]
- Vennemann, A.; Alessandrini, F.; Wiemann, M. Differential Effects of Surface-Functionalized Zirconium Oxide Nanoparticles on Alveolar Macrophages, Rat Lung, and a Mouse Allergy Model. Nanomaterials 2017, 7, 280. [Google Scholar] [CrossRef] [Green Version]
- Rehn, B.; Seiler, F.; Rehn, S.; Bruch, J.; Maier, M. Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: Untreated and surface treated. Toxicol. Appl. Pharmacol. 2003, 189, 84–95. [Google Scholar] [CrossRef]
- Rehn, B.; Bruch, J.; Zou, T.; Hobusch, G. Recovery of rat alveolar macrophages by bronchoalveolar lavage under normal and activated conditions. Environ. Health Perspect. 1992, 97, 11–16. [Google Scholar] [CrossRef]
- Gormley, I.P.; Addison, J. The in Vitro cytotoxicity of some standard clay mineral dusts in the respirable size range. Clay Miner. 1983, 18, 153–163. [Google Scholar] [CrossRef]
- Bowman, P.D.; Wang, X.; Meledeo, M.A.; Dubick, M.A.; Kheirabadi, B.S. Toxicity of Aluminum Silicates Used in Hemostatic Dressings Toward Human Umbilical Veins Endothelial Cells, HeLa Cells, and RAW267.4 Mouse Macrophages. J. Trauma Injury Infect. Crit. Care 2011, 71, 727–732. [Google Scholar] [CrossRef]
- Murphy, E.J.; Roberts, E.; Anderson, D.K.; Horrocks, L.A. Cytotoxicity of aluminum silicates in primary neuronal cultures. Neuroscience 1993, 57, 483–490. [Google Scholar] [CrossRef]
- Gao, N.; Keane, M.J.; Ong, T.; Ye, J.; Miller, W.E.; Wallace, W.E. Effects of Phospholipid Surfactant on Apoptosis Induction by Respirable Quartz and Kaolin in NR8383 Rat Pulmonary Macrophages. Toxicol. Appl. Pharmacol. 2001, 175, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Panas, A.; Marquardt, C.; Nalcaci, O.; Bockhorn, H.; Baumann, W.; Paur, H.-R.; Mülhopt, S.; Diabaté, S.; Weiss, C. Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology 2013, 7, 259–273. [Google Scholar] [CrossRef]
- Pavan, C.; Delle Piane, M.; Gullo, M.; Filippi, F.; Fubini, B.; Hoet, P.; Horwell, C.J.; Huaux, F.; Lison, D.; Lo Giudice, C.; et al. The puzzling issue of silica toxicity: Are silanols bridging the gaps between surface states and pathogenicity? Part. Fibre Toxicol. 2019, 16, 32. [Google Scholar] [CrossRef]
- Kondej, D.; Sosnowski, T.R. Effect of clay nanoparticles on model lung surfactant: A potential marker of hazard from nanoaerosol inhalation. Environ. Sci. Pollut. Res. 2016, 23, 4660–4669. [Google Scholar] [CrossRef] [Green Version]
- Hasnuddin Siddiqui, M.K. Bleaching Earths; Elsevier Science: Kent, UK, 2014; ISBN 978-1-4831-6040-5. [Google Scholar]
- Wiemann, M.; Erlinghagen, C.; Bruch, J.; Rehn, B. Adsorption of lung surfactant by particles studied in an ex vivo model: Effects of quartz and amorphous silica. Untersuchungen zur Adsorption von Lungensurfactant durch Partikel mit einem ex vivo Modell: Effekte von Quarz und amorpher Kieselsäure. Materialwissenschaft und Werkstofftechnik 2010, 41, 1086–1092. [Google Scholar] [CrossRef]
- Driscoll, K.E.; Maurer, J.K.; Lindenschmidt, R.C.; Romberger, D.; Rennard, S.I.; Crosby, L. Respiratory tract responses to dust: Relationships between dust burden, lung injury, alveolar macrophage fibronectin release, and the development of pulmonary fibrosis. Toxicol. Appl. Pharmacol. 1990, 106, 88–101. [Google Scholar] [CrossRef]
- Schremmer, I.; Brik, A.; Weber, D.G.; Rosenkranz, N.; Rostek, A.; Loza, K.; Brüning, T.; Johnen, G.; Epple, M.; Bünger, J.; et al. Kinetics of chemotaxis, cytokine, and chemokine release of NR8383 macrophages after exposure to inflammatory and inert granular insoluble particles. Toxicol. Lett. 2016, 263, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Beck-Schimmer, B.; Schwendener, R.; Pasch, T.; Reyes, L.; Booy, C.; Schimmer, R.C. Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury. Respir. Res. 2005, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungváry, G.; Timár, M.; Tátrai, E.; Bácsy, E.; Gaál, G. Analysis of aluminium-silicate storage foci in the lungs. J. Exp. Pathol. 1983, 23, 203–214. [Google Scholar] [CrossRef]
- Ganrot, P.O. Metabolism and possible health effects of aluminum. Environ. Health Perspect. 1986, 65, 363–441. [Google Scholar] [PubMed]
- Roberts, J.R.; Young, S.-H.; Castranova, V.; Antonini, J.M. The soluble nickel component of residual oil fly ash alters pulmonary host defense in rats. J. Immunotoxicol. 2009, 6, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Bingmann, D.; Vorpahl, M.; Wiemann, M.; Brauer, H. Effects of metal ions on proliferation of aortic smooth muscle cells and myoblastic cells in vitro. Materialwissenschaft und Werkstofftechnik 2001, 32, 970–975. [Google Scholar] [CrossRef]
- Kato, T.; Toyooka, T.; Ibuki, Y.; Masuda, S.; Watanabe, M.; Totsuka, Y. Effect of physicochemical character differences on the genotoxic potency of kaolin. Genes Environ. 2017, 39, 12. [Google Scholar] [CrossRef] [Green Version]
- Van Dyke, K.; Patel, S.; Vallyathan, V. Lucigenin chemiluminescence assay as an adjunctive tool for assessment of various stages of inflammation: A study of quiescent inflammatory cells. J. Biosci. 2003, 28, 115–119. [Google Scholar] [CrossRef]
Value | Bentonite | Kaolin | Bentonite | Kaolin | Bentonite | Kaolin |
---|---|---|---|---|---|---|
in H2O | in F-12K Medium | in KRPG | ||||
Mode [nm] | 141.0 ± 13.5 | 165.8 ± 3.9 | 350.9 ± 51.8 | 208.9 ± 541) | 218.5 ± 28.5 | 200.4 ± 65.4 |
d10 [nm] | 102.8 ± 9.3 | 131.9 ± 0.9 | 201.6 ± 9.6 | 124.9 ± 13.71) | 174.1 ± 6.4 | 111 ± 14.9 |
d50 [nm] | 139.8 ± 8.0 | 185.3 ± 2.7 | 318.3 ± 12.1 | 234.2 ± 13.21) | 262.7 ± 11.2 | 229.2 ± 14.2 |
d90 [nm] | 190.7 ± 8.8 | 294.8 ± 1.6 | 447.9 ± 20.9 | 327.4 ± 6.01) | 401.6 ± 9.4 | 360.5 ± 5.3 |
z-Potential [mV] | −47.4 | −30.0 | −18.2 | −16.7 | −31.8 | −31.5 |
Material | LDH [% of CTR]1) | GLU [% of CTR]1) | H2O2 [µmol/L] | TNFα [pg/mL] or [% cell eath]2) | |
---|---|---|---|---|---|
µg/mL | mean ± SD | mean ± SD | mean ± SD | mean ± SD | |
Corundum | 0 | 26.1 ± 3.6 | 3.3 ± 0.6 | 0.5 ± 0.1 | 7.8 ± 2.3 |
22.5 | 24.0 ± 0.6 | 1.1 ± 1.3 | 0.2 ± 0.1 | 8.5 ± 8.5 | |
45 | 27.1 ± 0.6 | 1.5 ± 1.4 | 0.7 ± 0.1 | 10.9 ± 10.8 | |
90 | 28.2 ± 2.2 | 1.4 ± 1.5 | 1.8 ± 0.1*** | 13.0 ± 12.1 | |
180 | 32.3 ± 0.7** | 2.0 ± 1.9 | 3.4 ± 0.2*** | 21.4 ± 25.3 | |
Quartz | 0 | 26.1 ± 3.6 | 3.3 ± 0.6 | 0.5 ± 0.1 | 7.8 ± 2.3 |
DQ12 | 22.5 | 29.9 ± 0.6 | 3.5 ± 0.3 | 0.0 ± 0.0 | 13.3 ± 6.6 |
45 | 46.7 ± 0.9*** | 6.6 ± 0.2** | 0.2 ± 0.2 | 31.8 ± 3.8 | |
90 | 82.4 ± 0.3*** | 22.1 ± 0.2*** | 0.6 ± 0.1 | 100.7 ± 20.3** | |
180 | 103.2 ± 0.2*** | 44.1 ± 0.5*** | 1.2 ± 0.3*** | 104.6 ± 47.1** | |
Kaolin | 0 | 26.1 ± 3.6 | 3.3 ± 0.6 | 0.5 ± 0.1 | 7.8 ± 2.3 |
2.8 | 38.0 ± 6.0 | 4.6 ± 0.4 | 0.2 ± 0.1 | ||
5.625 | 34.5 ± 9.3 | 4.4 ± 1.6 | 0.3 ± 0.1 | ||
11.25 | 31.9 ± 3.2 | 4.1 ± 0.6 | 0.5 ± 0.1 | ||
22.5 | 29.0 ± 3.9 | 4.4 ± 0.4 | 0.5 ± 0.2 | 5.6 ± 6.9 | |
45 | 51.0 ± 8.9*** | 8.8 ± 1.7*** | 1.1 ± 0.1** | 19.5 ± 13.7 | |
90 | 79.6 ± 2.4*** | 21.9 ± 0.7*** | 1.9 ± 0.2*** | 158.3 ± 101.6*** | |
180 | 93.6 ± 3.5*** | 32.4 ± 2.0*** | 2.1 ± 0.3*** | 142.4 ± 81.9*** | |
Bentonite | 0 | 26.1 ± 3.6 | 3.3 ± 0.6 | 0.5 ± 0.1 | 19.1 ± 10.2 |
2.8 | 20.0 ± 2.8 | 4.2 ± 2.5 | 0.6 ± 0.1 | ||
5.625 | 21.7 ± 0.8 | 3.8 ± 1.6 | 1.3 ± 0.1*** | ||
11.25 | 41.0 ± 3.1* | 5.0 ± 0.7 | 1.7 ± 0.2*** | ||
22.5 | 70.3 ± 3.1*** | 13.9 ± 0.8*** | 2.0 ± 0.5*** | 70.3 ± 16.4 | |
45 | 104.7 ± 6.7*** | 36.2 ± 2.2*** | 1.9 ± 0.1*** | 99.1 ± 2.2* | |
90 | 97.3 ± 3.9*** | 33.2 ± 1.6*** | 1.5 ± 0.1*** | 100.1 ± 2.1* | |
180 | 43.6 ± 1.9** | 28.7 ± 1.0*** | 1.6 ± 0.1*** | 100.8 ± 1.4* |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiemann, M.; Vennemann, A.; Wohlleben, W. Lung Toxicity Analysis of Nano-Sized Kaolin and Bentonite: Missing Indications for a Common Grouping. Nanomaterials 2020, 10, 204. https://doi.org/10.3390/nano10020204
Wiemann M, Vennemann A, Wohlleben W. Lung Toxicity Analysis of Nano-Sized Kaolin and Bentonite: Missing Indications for a Common Grouping. Nanomaterials. 2020; 10(2):204. https://doi.org/10.3390/nano10020204
Chicago/Turabian StyleWiemann, Martin, Antje Vennemann, and Wendel Wohlleben. 2020. "Lung Toxicity Analysis of Nano-Sized Kaolin and Bentonite: Missing Indications for a Common Grouping" Nanomaterials 10, no. 2: 204. https://doi.org/10.3390/nano10020204
APA StyleWiemann, M., Vennemann, A., & Wohlleben, W. (2020). Lung Toxicity Analysis of Nano-Sized Kaolin and Bentonite: Missing Indications for a Common Grouping. Nanomaterials, 10(2), 204. https://doi.org/10.3390/nano10020204